Editors
José Valente de Oliveira
Witold Pedrycz

Advances in

FUZZY
CLUSTERING

and its Applications

Advances in Fuzzy
Clustering and its
Applications

EDITED BY

J. Valente de Oliveira
University of Algarve, Portugal

W. Pedrycz

University of Alberta, Canada
Systems Research Institute of the Polish Academy
of Sciences, Poland

21807
{| 9WILEY [:
| 2007 :

o r

John Wiley & Sons, Ltd

Advances in Fuzzy Clustering
and its Applications

Advances in Fuzzy
Clustering and its
Applications

EDITED BY

J. Valente de Oliveira
University of Algarve, Portugal

W. Pedrycz

University of Alberta, Canada
Systems Research Institute of the Polish Academy
of Sciences, Poland

21807
{| 9WILEY [:
| 2007 :

o r

John Wiley & Sons, Ltd

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (4-44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,

except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued
by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the
permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand
names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The Publisher is not associated with any product or vendor
mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, Canada L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-02760-8 (HB)

Typeset in 9/11 pt Times Roman by Thomson Digital

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

List of Contributors
Foreword

Preface

Part I Fundamentals

1 Fundamentals of Fuzzy Clustering
Rudolf Kruse, Christian Déring and Marie-Jeanne Lesot

1.1 Introduction

1.2 Basic Clustering Algorithms

1.3 Distance Function Variants

1.4 Objective Function Variants

1.5 Update Equation Variants: Alternating Cluster Estimation
1.6 Concluding Remarks

Acknowledgements

References

2 Relational Fuzzy Clustering
Thomas A. Runkler

2.1 Introduction

2.2 Object and Relational Data

2.3 Object Data Clustering Models

2.4 Relational Clustering

2.5 Relational Clustering with Non-spherical Prototypes
2.6 Relational Data Interpreted as Object Data

2.7 Summary

2.8 Experiments

2.9 Conclusions

References

3 Fuzzy Clustering with Minkowski Distance Functions
Patrick J.F. Groenen, Uzay Kaymak and Joost van Rosmalen

3.1 Introduction
3.2 Formalization
3.3 The Majorizing Algorithm for Fuzzy C-means with Minkowski Distances

xi

XV

xvii

14
18
25
27
28
29

31

31
31
34
38
41
45
46
46
49
50

53

53
54
56

vi

CONTENTS

3.4 The Effects of the Robustness Parameter 4
3.5 Internet Attitudes

3.6 Conclusions

References

Soft Cluster Ensembles
Kunal Punera and Joydeep Ghosh

4.1 Introduction

4.2 Cluster Ensembles

4.3 Soft Cluster Ensembles

4.4 Experimental Setup

4.5 Soft vs. Hard Cluster Ensembles
4.6 Conclusions and Future Work
Acknowledgements

References

Part II Visualization

5

Aggregation and Visualization of Fuzzy Clusters Based on Fuzzy
Similarity Measures
Jdnos Abonyi and Baldzs Feil

5.1 Problem Definition

5.2 Classical Methods for Cluster Validity and Merging
5.3 Similarity of Fuzzy Clusters

5.4 Visualization of Clustering Results

5.5 Conclusions

Appendix 5A.1 Validity Indices

Appendix 5A.2 The Modified Sammon Mapping Algorithm
Acknowledgements

References

Interactive Exploration of Fuzzy Clusters
Bernd Wiswedel, David E. Patterson and Michael R. Berthold

6.1 Introduction

6.2 Neighborgram Clustering
6.3 Interactive Exploration
6.4 Parallel Universes

6.5 Discussion

References

Part III Algorithms and Computational Aspects

7

Fuzzy Clustering with Participatory Learning and Applications
Leila Roling Scariot da Silva, Fernando Gomide and Ronald Yager

7.1 Introduction
7.2 Participatory Learning

60
62
65
66

69

69
71
75
78
82
90
90
90

93

95

97

99
100
103
116
117
120
120
120

123

123
125
131
135
136
136

137

139

139
140

10

11

CONTENTS

7.3 Participatory Learning in Fuzzy Clustering
7.4 Experimental Results

7.5 Applications

7.6 Conclusions

Acknowledgements

References

Fuzzy Clustering of Fuzzy Data
Pierpaolo D’Urso

8.1 Introduction
8.2 Informational Paradigm, Fuzziness and Complexity
in Clustering Processes
8.3 Fuzzy Data
8.4 Fuzzy Clustering of Fuzzy Data
8.5 An Extension: Fuzzy Clustering Models for Fuzzy Data Time Arrays
8.6 Applicative Examples
8.7 Concluding Remarks and Future Perspectives
References

Inclusion-based Fuzzy Clustering
Samia Nefti-Meziani and Mourad Oussalah

9.1 Introduction

9.2 Background: Fuzzy Clustering

9.3 Construction of an Inclusion Index
9.4 Inclusion-based Fuzzy Clustering

9.5 Numerical Examples and Illustrations
9.6 Conclusions

Acknowledgements

Appendix 9A.1

References

Mining Diagnostic Rules Using Fuzzy Clustering
Giovanna Castellano, Anna M. Fanelli and Corrado Mencar

10.1 Introduction

10.2 Fuzzy Medical Diagnosis

10.3 Interpretability in Fuzzy Medical Diagnosis

10.4 A Framework for Mining Interpretable Diagnostic Rules
10.5 An Illustrative Example

10.6 Concluding Remarks

References

Fuzzy Regression Clustering
Mikal Sato-1lic

11.1 Introduction

11.2 Statistical Weighted Regression Models

11.3 Fuzzy Regression Clustering Models

11.4 Analyses of Residuals on Fuzzy Regression Clustering Models

vii

142
145
148
152
152
152

155

155

156
160
165
176
180
187
189

193

193
195
196
198
201
206
206
207
208

211

211
212
213
216
221
226
226

229

229
230
232
237

viii

12

13

14

CONTENTS

11.5 Numerical Examples
11.6 Conclusion
References

Implementing Hierarchical Fuzzy Clustering in Fuzzy Modeling
Using the Weighted Fuzzy C-means
George E. Tsekouras

12.1 Introduction

12.2 Takagi and Sugeno’s Fuzzy Model

12.3 Hierarchical Clustering-based Fuzzy Modeling
12.4 Simulation Studies

12.5 Conclusions

References

Fuzzy Clustering Based on Dissimilarity Relations Extracted from Data
Mario G.C.A. Cimino, Beatrice Lazzerini and Francesco Marcelloni

13.1 Introduction

13.2 Dissimilarity Modeling
13.3 Relational Clustering
13.4 Experimental Results
13.5 Conclusions
References

Simultaneous Clustering and Feature Discrimination
with Applications
Hichem Frigui

14.1 Introduction

14.2 Background

14.3 Simultaneous Clustering and Attribute Discrimination (SCAD)
14.4 Clustering and Subset Feature Weighting

14.5 Case of Unknown Number of Clusters

14.6 Application 1: Color Image Segmentation

14.7 Application 2: Text Document Categorization and Annotation

14.8 Application 3: Building a Multi-modal Thesaurus from Annotated Images

14.9 Conclusions
Appendix 14A.1
Acknowledgements
References

Part IV Real-time and Dynamic Clustering

15

Fuzzy Clustering in Dynamic Data Mining — Techniques and Applications
Richard Weber

15.1 Introduction
15.2 Review of Literature Related to Dynamic Clustering
15.3 Recent Approaches for Dynamic Fuzzy Clustering

242
245
245

247

247
248
249
256
261
261

265

265
267
275
280
281
281

285

285
287
289
296
298
298
302
305
309
310
311
311

313

315

315
315
317

16

17

CONTENTS

15.4 Applications

15.5 Future Perspectives and Conclusions
Acknowledgement

References

Fuzzy Clustering of Parallel Data Streams
Jiirgen Beringer and Eyke Hiillermeier

16.1 Introduction

16.2 Background

16.3 Preprocessing and Maintaining Data Streams
16.4 Fuzzy Clustering of Data Streams

16.5 Quality Measures

16.6 Experimental Validation

16.7 Conclusions

References

Algorithms for Real-time Clustering and Generation of Rules from Data
Dimitar Filev and Plamer Angelov

17.1 Introduction

17.2 Density-based Real-time Clustering

17.3 FSPC: Real-time Learning of Simplified Mamdani Models
17.4 Applications

17.5 Conclusion

References

Part V Applications and Case Studies

18

19

Robust Exploratory Analysis of Magnetic Resonance Images using FCM
with Feature Partitions
Mark D. Alexiuk and Nick J. Pizzi

18.1 Introduction

18.2 FCM with Feature Partitions
18.3 Magnetic Resonance Imaging
18.4 FMRI Analysis with FCMP
18.5 Data-sets

18.6 Results and Discussion

18.7 Conclusion
Acknowledgements

References

Concept Induction via Fuzzy C-means Clustering in a
High-dimensional Semantic Space
Dawei Song, Guihong Cao, Peter Bruza and Raymond Lau

19.1 Introduction

19.2 Constructing a High-dimensional Semantic Space via Hyperspace
Analogue to Language

19.3 Fuzzy C-means Clustering

324
331
331
331

333

333
334
336
340
343
345
350
351

353

353
355
358
362
367
368

371

373

373
374
379
381
382
384
390
390
390

393

393

395
397

X

19.4
19.5

CONTENTS

Word Clustering on a HAL Space — A Case Study
Conclusions and Future Work

Acknowledgement
References

20 Novel Developments in Fuzzy Clustering for the Classification
of Cancerous Cells using FTIR Spectroscopy
Xiao-Ying Wang, Jonathan M. Garibaldi, Benjamin Bird and Mike W. George

20.1 Introduction

20.2 Clustering Techniques

20.3 Cluster Validity

20.4 Simulated Annealing Fuzzy Clustering Algorithm
20.5 Automatic Cluster Merging Method

20.6 Conclusion

Acknowledgements

References

Index

399
402
402
402

405

405
406
412
413
418
423
424
424

427

List of Contributors

EDITORS

José Valente de Oliveira

The Ualg Informatics Lab

Faculty of Science and Technology
University of Algarve

Portugal

AUTHORS

Janos Abonyi

University of Veszprém
Department of Process Engineering
Hungary

Mark D. Alexiuk
Department of Electrical and
Computer Engineering
University of Manitoba
Canada

Palmen Angelov

Department of Communication
Systems

Lancaster University

UK

Jiirgen Beringer
Fakultit fiir Informatik

Otto-von-Guericke-Universitdt Magdeburg

Germany

Michael R. Berthold
Department of Computer and
Information Science
University of Konstanz
Germany

Witold Pedrycz

Department of Electrical and Computer
Engineering University of Alberta, Canada
and Systems Research Institute of the Polish
Academy of Sciences Warsaw, Poland

Benjamin Bird

School of Chemistry
University of Nottingham
UK

Peter Bruza

School of Information Technology
Queensland University of Technology
Australia

Guihong Cao

Department d’Informatique
et Recherche operationnelle
Université de Montreal
Canada

Giovanna Castellano
Department of Computer Science
University of Bari

Italy

Mario G.C.A. Cimino

Dipartimento di Ingegneria dell’Informazione:
Elettronica, Informatica, Telecomunicazioni
University of Pisa

Italy

Xii LIST OF CONTRIBUTORS

Christian Doring

School of Computer Science
Otto-von-Guericke-Universitit Magdeburg
Germany

Pierpaolo D’Urso

Dipartimento di Scienze Economiche
Gestionali e Sociali

Universita degli Studi del Molise
Italy

Anna M. Fanelli

Department of Computer Science
University of Bari

Italy

Balazs Feil

University of Veszprém
Department of Process Engineering
Hungary

Dimitar Filev

Ford Motor Company
Dearborn

USA

Hichem Frigui

Department of Computer Engineering
and Computer Science

University of Louisville

USA

Jonathan M. Garibaldi

School of Computer Science and Information
Technology

University of Nottingham

UK

Mike W. George

School of Chemistry
University of Nottingham
UK

Joydeep Ghosh

Department of Electrical and
Computer Engineering
University of Texas at Austin
Texas

USA

Fernando Gomide
State University of Campinas
Brazil

Patrick J.F. Groenen
Econometric Institute
Erasmus University Rotterdam
The Netherlands

Eyke Hiillermeier

Fakultit fiir Informatik
Otto-von-Guericke-Universitdt Magdeburg
Germany

Uzay Kaymak

Econometric Institute
Erasmus University Rotterdam
The Netherlands

Rudolf Kruse

School of Computer Science
Otto-von-Guericke-Universitit Magdeburg
Germany

Raymond Lau

Department of Information Systems
City University of Hong Kong
Hong Kong SAR

Beatrice Lazzerini

Dipartimento di Ingegneria dell’Informazione:
Elettronica, Informatica, Telecomunicazioni
University of Pisa

Italy

Marie-Jeanne Lesot

School of Computer Science
Otto-von-Guericke-Universitit Magdeburg
Germany

Francesco Marcelloni

Dipartimento di Ingegneria dell’Informazione:
Elettronica, Informatica, Telecomunicazioni
University of Pisa

Italy

Corrado Mencar

Department of Computer Science
University of Bari

Italy

Samia Nefti-Meziani

Department of Engineering and Technology
University of Manchester

UK

Mourad Oussalah

Electronics, Electrical and Computing Engineering
The University of Birmingham

UK

David E. Patterson
Department of Computer and
Information Science
University of Konstanz
Germany

Nick J. Pizzi

National Research Council
Institute for Biodiagnostics
Winnipeg

Canada

Kunal Punera

Department of Electrical and
Computer Engineering
University of Texas at Austin
USA

Thomas A. Runkler

Siemens AG

Corporate Technology Information and
Communications

Miinchen

Germany

Mika Sato-Ilic

Faculty of Systems and Information
Engineering

University of Tsukuba

Japan

LIST OF CONTRIBUTORS

Leila Roling Scariot da Silva
State University of Campinas
Brazil

Dawei Song

Knowledge Media Institute
The Open University
Milton Keynes

UK

George E. Tsekouras

Department of Cultural Technology and
Communication University of the Aegean
Mytilene

Greece

Joost van Rosmalen
Econometric Institute
Erasmus University Rotterdam
The Netherlands

Xiao-Ying Wang

School of Computer Science
and Information Technology
University of Nottingham
UK

Richard Weber

Department of Industrial Engineering
University of Chile

Santiago

Chile

Bernd Wiswedel
Department of Computer and
Information Science
University of Konstanz
Germany

Ronald Yager
Iona College
New Rochelle
USA

xiii

Foreword

Well, here I am writing a foreword for this book. Here is the (free dictionary, Farlex) definition:
‘foreword - a short introductory essay preceding the text of a book.’

An essay about fuzzy clustering? For inspiration, I looked at the forewords in my first two books. When
I'wrote my first book about fuzzy clustering (Bezdek, 1981), I asked Lotfi Zadeh to write a foreword for it.
By then, Lotfi and [were friends, so he did it, and I was happy. But why? Was it to prove to you that I could
get him to do it? Was it because he would say things that had never been said about fuzzy models? Was it a
promotional gimmick that the publisher thought would get more buyers interested? Was it . .. hmmm, I
still didn’t know, so I read more carefully.

Lotfi speculated on a variety of possibilities for fuzzy clustering in that foreword. The most interesting
sentence (Bezdek, 1981, p. 5) was perhaps:

“Although the results of experimental studies reported in this book indicate that fuzzy clustering
techniques often have significant advantages over more conventional methods, universal acceptance
of the theory of fuzzy sets as a natural basis for pattern recognition and cluster analysis is not likely to
materialize in the very near future.”

In short, his foreword was careful, and it was cautionary — Lotfi speculated that fuzzy clustering might
not assume a central place in clustering, but this seems overshadowed by his more general worry about the
role of fuzzy models in computation.

My second book (Bezdek and Pal, 1992) was much more similar to this volume than my first, because
the 1981 effort was a one-author text, while the 1992 book was a collection of 51 papers (the ““chapters’)
that Pal and I put together (we were editors, just like de Oliveira and Pedrycz) that seemed to provide a
state-of-the-art “survey” of what was happening with fuzzy models in various pattern recognition
domains in 1992. Perhaps the principal difference between these two books is that fuzzy clustering
was only one of the five topics of our 1992 book, whereas the current volume is only about fuzzy
clustering. The other noticeable difference was that the papers we collected had already been published
elsewhere, whereas the chapters in this book have not.

I am looking at the foreword to our 1992 book right now, again written by Lotfi. Well, a lot of positive
things happened for fuzzy sets in the 11 years that separated these two forewords (read, Japan builds fuzzy
controllers), and Lotfi’s 1992 foreword was both more historical and more confident than the 1981
offering. Here is the first sentence of that 1992 forward:

“To view the contents of this volume in a proper perspective it is of historical interest to note that the
initial development of the theory of fuzzy sets was motivated in large measure by problems in pattern
recognition and cluster analysis.”

XVi FOREWORD

Did you notice that Lotfi used exactly the same term ‘“pattern recognition and cluster analysis’ in both
forewords? In contradistinction, I believe that most people today view clustering as one of many topics
encompassed by the much broader field of pattern recognition (classifier design, feature selection, image
processing, and so on). My guess is that Lotfi probably used the term pattern recognition almost as a
synonym for classification. This is a small point, but in the context of this volume, an interesting one,
because to this day, Lotfi contends that the word cluster is ill defined, and hence cluster analysis is not
really a topic at all. Nonetheless, you have in your hands a new book about fuzzy cluster analysis.

‘What should I point out to you in 2006 about this topic? Well, the main point is that fuzzy clustering is
now a pretty mature field. I just “googled” the index term ‘‘fuzzy cluster analysis,” and the search
returned this statistic at 1 p.m. on September 6, 2006:

“Results 1-10 of about 1 640 000 for fuzzy cluster analysis (0.34 seconds).”

Never mind duplication, mixed indexing, and all the other false positives represented by this statistic. The
fact is fuzzy clustering is a pretty big field now. There are still some diehard statisticians out there who
deny its existence, much less its value to real applications, but by and large this is no longer a controversial
undertaking, nor is its real value to practitioners questionable. Moreover, I can pick any chapter in this
book and get returns from Google that amaze me. Example: Chapter 4 has the somewhat exotic title
“Fuzzy Clustering with Minkowski Distance Functions.” What would you guess for this topic — 12
papers? Here is the return:

“Results 1-10 of about 20000 for Fuzzy Clustering with Minkowski distance functions
(0.37 seconds).”

There aren’t 20 000 papers out there about this topic, but there are probably a few hundred, and this is what
makes the current book useful. Most of these chapters offer an encapsulated survey of (some of) the most
important work on their advertised contents. This is valuable, because I don’t want to sift through 20 000
entries to find the good stuff about Minkowski-based fuzzy clustering — I want the experts to guide me to
20 or 30 papers that have it.

Summary. We no longer need worry whether the fopics in this fuzzy clustering book are good stuff —
they are. What we need that these chapters provide is a quick index to the good stuff. And for this, you
should be grateful (and buy the book, for which de Oliveira and Pedrycz will be grateful!), because if you
rely on “google,” you can spend the rest of your life sifting through the chaff to find the grain.

Jim Bezdek
Pensacola, USA

Preface

Clustering has become a widely accepted synonym of a broad array of activities of exploratory data
analysis and model development in science, engineering, life sciences, business and economics, defense,
and biological and medical disciplines. Areas such as data mining, image analysis, pattern recognition,
modeling, and bio-informatics are just tangible examples of numerous pursuits that vigorously exploit the
concepts and algorithms of clustering treated as essential tools for problem formulation and development
of specific solutions or a vehicle facilitating interpretation mechanisms. The progress in the area happens
at a high pace and these developments concern the fundamentals, algorithmic enhancements, computing
schemes, and validation practices. The role of fuzzy clustering becomes quite prominent within the
general framework of clustering. This is not surprising given the fact that clustering helps gain an
interesting insight into data structure, facilitate efficient communication with users and data analysts, and
form essential building blocks for further modeling pursuits. The conceptual underpinnings of fuzzy sets
are particularly appealing, considering their abilities to quantify a level of membership of elements to
detected clusters that are essential when dealing with the inherent phenomenon of partial belongingness
to the group. This feature is of particular interest when dealing with various interpretation activities.

Even a very quick scan of the ongoing research reveals how dynamic the area of fuzzy clustering really
is. For instance, a simple query on Science Direct “fuzzy clustering” returns slightly under 400 hits (those
are the papers published since 2000). A similar search on ISI Web of Knowledge returns more than 500
hits. In IEEE Xplore one can find around 800 hits. More than half of these entries have been published
after 2000. These figures offer us an impression about the rapid progress in the area and highlight a
genuine wealth of the applications of the technology of fuzzy clustering.

This volume aims at providing a comprehensive, coherent, and in depth state-of-the-art account on
fuzzy clustering. It offers an authoritative treatment of the subject matters presented by leading
researchers in the area. While the volume is self-contained by covering some fundamentals and offering
an exposure to some preliminary material on algorithms and practice of fuzzy clustering, it offers a
balanced and broad coverage of the subject including theoretical fundamentals, methodological insights,
algorithms, and case studies.

The content of the volume reflects the main objectives we intend to accomplish. The organization of the
overall material helps the reader to proceed with some introductory material, move forward with more
advanced topics, become familiar with recent algorithms, and finally gain a detailed knowledge of various
application-driven facets.

The contributions have been organized into five general categories: Fundamentals, Visualization,
Algorithms and Computational Aspects, Real-time and Dynamic Clustering, and Applications and Case
Studies. They are fairly reflective of the key pursuits in the area.

Within the section dealing with the fundamentals, we are concerned with the principles of clustering as
those are seen from the perspective of fuzzy sets. We elaborate on the role of fuzzy sets in data analysis,
discuss the principles of data organization, and present fundamental algorithms and their augmentations.
Different paradigms of unsupervised learning along with so-called knowledge-based clustering and data
organization are also addressed in detail. This part is particularly aimed at the readers who would intend to
gather some background material and have a quick yet carefully organized look at the essential of the
methodology of fuzzy clustering.

Xviii PREFACE

In fuzzy clustering, visualization is an emerging subject. Due to its huge potential to address
interpretation and validation issues visualization deserves to be treated as a separate topic.

The part entitled Algorithms and Computational Aspects focuses on the major lines of pursuits on the
algorithmic and computational augmentations of fuzzy clustering. Here the major focus is on the
demonstration of effectiveness of the paradigm of fuzzy clustering in high-dimensional problems,
distributed problem solving, and uncertainty management.

The chapters arranged in the group entitled Real-time and Dynamic Clustering describe the state-of-
the-art algorithms for dynamical developments of clusters, i.e., for clustering built for data gathered over
time. Since new observations are available at each time instant, a dynamic update of clusters is required.

The Applications and Case Studies part is devoted to a series of applications in which fuzzy clustering
plays a pivotal role. The primary intent is to discuss its role in the overall design process in various tasks
of prediction, classification, control, and modeling. Here it becomes highly instructive to highlight at
which phase of the design clustering is of relevance, what role it plays, and how the results — information
granules — facilitate further detailed development of models or enhance interpretation aspects.

PART I FUNDAMENTALS

The part on Fundamentals consists of four chapters covering the essentials of fuzzy clustering and
presenting a rationality and a motivation, basic algorithms and their various realizations, and cluster
validity assessment.

Chapter 1 starts with an introduction to basic clustering algorithms including hard, probabilistic, and
possibilistic ones. Then more advanced methods are presented, including the Gustafson—Kessel algo-
rithm and kernel-based fuzzy clustering. Variants on a number of algorithm components as well as on
problem formulations are also considered.

Chapter 2 surveys the most relevant methods of relational fuzzy clustering, i.e., fuzzy clustering for
relational data. A distinction between object and relational data is presented and the consequences of this
distinction on clustering algorithms are thoroughly analyzed. A most useful taxonomy for relational
clustering algorithms together with some guidelines for selecting clustering schemes for a given
application can also be found in this chapter.

In Chapter 3 the authors offer a contribution that deals with another fundamental issue in clustering:
distance functions. The focus is on fuzzy clustering problems and algorithms using the Minkowski
distance — definitely an interesting and useful idea.

In Chapter 4 the authors discuss the combination of multiple partitioning obtained from independent
clustering runs into a consensus partition — a topic that is gaining interest and importance. A relevant
review of commonly used approaches, new consensus strategies (including one based on information-
theoretic K-means), as well as a thorough experimental evaluation of these strategies are presented.

PART Il VISUALIZATION

Visualization is an important tool in data analysis and interpretation. Visualization offers the user the
possibility of quickly inspecting a huge volume of data, and quickly selecting data space regions of
interest for further analysis. Generally speaking, this is accomplished by producing a low-dimensional
graphical representation of the clusters. The part of the book on Visualization consists of two major
contributions.

Chapter 5 reviews relevant approaches to validity and visualization of clustering results. It also presents
novel tools that allow the visualization of multi-dimensional data points in terms of bi-dimensional plots
which facilitates the assessment of clusters’ goodness. The chapter ends with an appendix with a
comprehensive description of cluster validity indexes.

Chapter 6 aims at helping the user to visually explore clusters. The approach consists of the construc-
tion of local, one-dimensional neighborhood models, the so-called neighborgrams. An algorithm is

PREFACE Xix

included that generates a subset of neighborgrams from which the user can manage potential cluster
candidates during the clustering process. This can be viewed as a form of integrating user domain
knowledge into the clustering process.

PART Il ALGORITHMS AND COMPUTATIONAL ASPECTS

This part provides the major lines of work on algorithmic and computational augmentations of fuzzy
clustering with the intention of demonstrating its effectiveness in high-dimensional problems, distributed
problem solving and uncertainty handling. Different paradigms of unsupervised learning along with so-
called knowledge-based clustering and data organization are also addressed.

Chapter describes and evaluates a clustering algorithm based on the Yager’s participatory learning rule.
This learning rule pays special attention to current knowledge as it dominates the way in which new data
are used for learning. In participatory clustering the number of clusters is not given a priori as it depends
on the cluster structure that is dynamically built by the algorithm.

Chapter 8 offers a comprehensive and in-depth study on fuzzy clustering of fuzzy data.

The authors of Chapter 9 also address the problem of clustering fuzzy data. In this case, clustering is
based on the amount of mutual inclusion between fuzzy sets, especially between data and cluster
prototypes.

Extraction of semantically valid rules from data is an active interdisciplinary research topic with
foundations in computer and cognitive sciences, psychology, and philosophy. Chapter 10 addresses this
topic from the clustering perspective. The chapter describes a clustering framework for extracting
interpretable rules for medical diagnostics.

Chapter 11 focuses on the combination of regression models with fuzzy clustering. The chapter
describes and evaluates several regression models for updating the partition matrix in clustering algo-
rithms. The evaluation includes an analysis of residuals and reveals the interesting characteristics of this
class of algorithm.

Hierarchical fuzzy clustering is discussed in Chapter 12. The chapter presents a clustering-based
systematic approach to fuzzy modeling that takes into account the following three issues: (1) the number
of clusters required a priori in fuzzy clustering; (2) initialization of fuzzy clustering methods, and (3) the
trade off between accuracy and interpretability.

Chapter 13 deals with the process of inferring dissimilarity relations from data. For this, two methods
are analyzed with respect to factors such as generalization and computational complexity. The approach is
particularly interesting for applications where the nature of dissimilarity is conceptual rather than metric.

Chapter 14 describes how clustering and feature selection can be unified to improve the discovery of
more relevant data structures. An extension of the proposed algorithm for dealing with an unknown
number of clusters is also presented. Interesting applications on image segmentation and text categoriza-
tion are included.

PART IV REAL-TIME AND DYNAMIC CLUSTERING

Real-time and dynamic clustering deals with clustering with time-varying or noisy data and finds its
applications in areas as distinct as video or stock market analysis. Three chapters focus on this timely
topic.

Chapter 15 provides a review of dynamic clustering emphasizing its relationship with the area of data
mining. Data mining is a matter of paramount relevance today and this chapter shows how dynamic
clustering can be brought into the picture. The chapter also describes two novel approaches to dynamic
clustering.

Chapter 16 describes the development of an efficient online version of the fuzzy C-means clustering for
data streams, i.e., data of potentially unbound size whose continuous evolution is not under the control of
the analyzer.

XX PREFACE

Chapter 17 presents two approaches to real-time clustering and generation of rules from data. The first
approach concerns a density-driven approach with its origin stemming from the techniques of mountain
and subtractive clustering while the second one looks at the distance based with foundations in the k-
nearest neighbors and self-organizing maps.

PART V APPLICATIONS AND CASE STUDIES

The last part of the book includes three chapters describing various applications and interesting case
studies in which fuzzy clustering plays an instrumental role. The function of fuzzy clustering is discussed
in the overall design process in a variety of tasks such as prediction, classification, and modeling.

Chapter 18 presents a novel clustering algorithm that incorporates spatial information by defining
multiple feature partitions and shows its application to the analysis of magnetic resonance images.

Chapter 19 exploits both the K-means and the fuzzy C-means clustering algorithms as the means to
identify correlations between words in texts, using the hyperspace analogue to language (HAL) model.

Another bio-medical application is provided in Chapter 20 where fuzzy clustering techniques are used
in the identification of cancerous cells.

FINAL REMARKS

All in all, fuzzy clustering forms a highly enabling technology of data analysis. The area is relatively
mature and exhibits a rapid expansion in many different directions including a variety of new concepts,
methodologies, algorithms, and innovative and highly advanced applications.

We do hope that the contributions compiled in this volume will bring the reader a fully updated and
highly comprehensive view of the recent developments in the fundamentals, algorithms, and applications
of fuzzy clustering.

Our gratitude goes to all authors for sharing their expertise and recent research outcomes and reviewers
whose constructive criticism was of immense help in producing a high quality volume. Finally, our
sincere thanks go to the dedicated and knowledgeable staff at John Wiley & Sons, Ltd, who were highly
instrumental in all phases of the project.

Part |

Fundamentials

]

Fundamentals of Fuzzy
Clustering

Rudolf Kruse, Christian Doring, and Marie-Jeanne Lesot

Department of Knowledge Processing and Language Engineering,
University of Magdeburg, Germany

1.1 INTRODUCTION

Clustering is an unsupervised learning task that aims at decomposing a given set of objects into subgroups
or clusters based on similarity. The goal is to divide the data-set in such a way that objects (or example
cases) belonging to the same cluster are as similar as possible, whereas objects belonging to different
clusters are as dissimilar as possible. The motivation for finding and building classes in this way can be
manifold (Bock, 1974). Cluster analysis is primarily a tool for discovering previously hidden structure in a
set of unordered objects. In this case one assumes that a ‘true’ or natural grouping exists in the data.
However, the assignment of objects to the classes and the description of these classes are unknown. By
arranging similar objects into clusters one tries to reconstruct the unknown structure in the hope that every
cluster found represents an actual type or category of objects. Clustering methods can also be used for data
reduction purposes. Then it is merely aiming at a simplified representation of the set of objects which
allows for dealing with a manageable number of homogeneous groups instead of with a vast number of
single objects. Only some mathematical criteria can decide on the composition of clusters when classify-
ing data-sets automatically. Therefore clustering methods are endowed with distance functions that
measure the dissimilarity of presented example cases, which is equivalent to measuring their similarity.
As a result one yields a partition of the data-set into clusters regarding the chosen dissimilarity relation.
All clustering methods that we consider in this chapter are partitioning algorithms. Given a positive
integer ¢, they aim at finding the best partition of the data into ¢ groups based on the given dissimilarity
measure and they regard the space of possible partitions into ¢ subsets only. Therein partitioning clustering
methods are different from hierarchical techniques. The latter organize data in a nested sequence of
groups, which can be visualized in the form of a dendrogram or tree. Based on a dendrogram one can
decide on the number of clusters at which the data are best represented for a given purpose. Usually the
number of (true) clusters in the given data is unknown in advance. However, using the partitioning
methods one is usually required to specify the number of clusters c¢ as an input parameter. Estimating the
actual number of clusters is thus an important issue that we do not leave untouched in this chapter.

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
© 2007 John Wiley & Sons, Ltd

4 FUNDAMENTALS OF FUZZY CLUSTERING

A common concept of all described clustering approaches is that they are prototype-based, i.e., the
clusters are represented by cluster prototypes C;,i = 1,. .., c. Prototypes are used to capture the structure
(distribution) of the data in each cluster. With this representation of the clusters we formally denote the set
of prototypes C = {Cy, ..., C.}. Each prototype C; is an n-tuple of parameters that consists of a cluster
center ¢; (location parameter) and maybe some additional parameters about the size and the shape of the
cluster. The cluster center ¢; is an instantiation of the attributes used to describe the domain, just as the data
points in the data-set to divide. The size and shape parameters of a prototype determine the extension of
the cluster in different directions of the underlying domain. The prototypes are constructed by the
clustering algorithms and serve as prototypical representations of the data points in each cluster.

The chapter is organized as follows: Section 1.2 introduces the basic approaches to hard, fuzzy, and
possibilistic clustering. The objective function they minimize is presented as well as the minimization
method, the alternating optimization (AO) scheme. The respective partition types are discussed and
special emphasis is put on a thorough comparison between them. Further, an intuitive understanding of
the general properties that distinguish their results is presented. Then a systematic overview of more
sophisticated fuzzy clustering methods is presented. In Section 1.3, the variants that modify the used
distance functions for detecting specific cluster shapes or geometrical contours are discussed. In
Section 1.4 variants that modify the optimized objective functions for improving the results regarding
specific requirements, e.g., dealing with noise, are reviewed. Lastly, in Section 1.5, the alternating cluster
estimation framework is considered. It is a generalization of the AO scheme for cluster model optimiza-
tion, which offers more modeling flexibility without deriving parameter update equations from opti-
mization constraints. Section 1.6 concludes the chapter pointing at related issues and selected
developements in the field.

1.2 BASIC CLUSTERING ALGORITHMS

In this section, we present the fuzzy C-means and possibilistic C-means, deriving them from the hard
c-means clustering algorithm. The latter one is better known as k-means, but here we call it (hard) C-
means to unify the notation and to emphasize that it served as a starting point for the fuzzy extensions. We
further restrict ourselves to the simplest form of cluster prototypes at first. That is, each prototype only
consists of the center vectors, C; = (¢;), such that the data points assigned to a cluster are represented by a
prototypical point in the data space. We consider as a distance measure d an inner product norm induced
distance as for instance the Euclidean distance. The description of the more complex prototypes and other
dissimilarity measures is postponed to Section 1.3, since they are extensions of the basic algorithms
discussed here.

All algorithms described in this section are based on objective functions J, which are mathematical
criteria that quantify the goodness of cluster models that comprise prototypes and data partition.
Objective functions serve as cost functions that have to be minimized to obtain optimal cluster solutions.
Thus, for each of the following cluster models the respective objective function expresses desired
properties of what should be regarded as “‘best” results of the cluster algorithm. Having defined such a
criterion of optimality, the clustering task can be formulated as a function optimization problem. That is,
the algorithms determine the best decomposition of a data-set into a predefined number of clusters by
minimizing their objective function. The steps of the algorithms follow from the optimization scheme that
they apply to approach the optimum of J. Thus, in our presentation of the hard, fuzzy, and possibilistic
c-means we discuss their respective objective functions first. Then we shed light on their specific
minimization scheme.

The idea of defining an objective function and have its minimization drive the clustering process is quite
universal. Aside from the basic algorithms many extensions and modifications have been proposed that
aim at improvements of the clustering results with respect to particular problems (e.g., noise, outliers).
Consequently, other objective functions have been tailored for these specific applications. We address the
most important of the proposed objective function variants in Section 1.4. However, regardless of the
specific objective function that an algorithm is based on, the objective function is a goodness measure.

BASIC CLUSTERING ALGORITHMS 5

Thus it can be used to compare several clustering models of a data-set that have been obtained by the same
algorithm (holding the number of clusters, i.e., the value of ¢, fixed).

In their basic forms the hard, fuzzy, and possibilistic C-means algorithms look for a predefined number
of ¢ clusters in a given data-set, where each of the clusters is represented by its center vector. However,
hard, fuzzy, and possibilistic C-means differ in the way they assign data to clusters, i.e., what type of data
partitions they form. In classical (hard) cluster analysis each datum is assigned to exactly one cluster.
Consequently, the hard C-means yield exhaustive partitions of the example set into non-empty and
pairwise disjoint subsets. Such hard (crisp) assignment of data to clusters can be inadequate in the
presence of data points that are almost equally distant from two or more clusters. Such special data points
can represent hybrid-type or mixture objects, which are (more or less) equally similar to two or more
types. A crisp partition arbitrarily forces the full assignment of such data points to one of the clusters,
although they should (almost) equally belong to all of them. For this purpose the fuzzy clustering
approaches presented in Sections 1.2.2 and 1.2.3 relax the requirement that data points have to be assigned
to one (and only one) cluster. Data points can belong to more than one cluster and even with different
degrees of membership to the different clusters. These gradual cluster assignments can reflect present
cluster structure in a more natural way, especially when clusters overlap. Then the memberships of data
points at the overlapping boundaries can express the ambiguity of the cluster assignment.

The shift from hard to gradual assignment of data to clusters for the purpose of more expressive data
partitions founded the field of fuzzy cluster analysis. We start our presentation with the hard C-means and
later on we point out the relatedness to the fuzzy approaches that is evident in many respects.

1.2.1 Hard c-means

In the classical C-means model each data point x; in the given data-set X = {x;,...,x,}, X C R is
assigned to exactly one cluster. Each cluster I'; is thus a subset of the given data-set, I'; C X. The set of
clustersI' = {I', ..., .} is required to be an exhaustive partition of the data-set X into ¢ non-empty and
pairwise disjoint subsets I';, 1 < ¢ < n.In the C-means such a data partition is said to be optimal when the
sum of the squared distances between the cluster centers and the data points assigned to them is minimal
(Krishnapuram and Keller, 1996). This definition follows directly from the requirement that clusters
should be as homogeneous as possible. Hence the objective function of the hard C-means can be written as
follows:

Th(X, U, C) = >0 " uydy, (1.1)
i=1 j=1

where C = {C,. .., C.}is the set of cluster prototypes, dj; is the distance between x; and cluster center c;,
U is a ¢ X n binary matrix called partition matrix. The individual elements
u; € {0, 1} (1.2)

indicate the assignment of data to clusters: u; = 1 if the data point x; is assigned to prototype C;, i.e.,
x; € I';; and u;; = O otherwise. To ensure that each data point is assigned exactly to one cluster, it is
required that:

Zu,-jzl, vie{l,...,n}. (1.3)
i=1

This constraint enforces exhaustive partitions and also serves the purpose to avoid the trivial solution
when minimizing Jj,, which is that no data is assigned to any cluster: u; = 0,Vi,j. Together with
u;j € {0, 1} it is possible that data are assigned to one or more clusters while there are some remaining
clusters left empty. Since such a situation is undesirable, one usually requires that:

S uy>0, Vie{l,...c} (1.4)
=1

6 FUNDAMENTALS OF FUZZY CLUSTERING

J, depends on the two (disjoint) parameter sets, which are the cluster centers ¢ and the assignment of data
points to clusters U. The problem of finding parameters that minimize the C-means objective function is
NP-hard (Drineas et al., 2004). Therefore, the hard C-means clustering algorithm, also known as
ISODATA algorithm (Ball and Hall, 1966; Krishnapuram and Keller, 1996), minimizes J, using an
alternating optimization (AO) scheme.

Generally speaking, AO can be applied when a criterion function cannot be optimized directly, or when
it is impractical. The parameters to optimize are split into two (or even more) groups. Then one group of
parameters (e.g., the partition matrix) is optimized holding the other group(s) (e.g., the current cluster
centers) fixed (and vice versa). This iterative updating scheme is then repeated. The main advantage of
this method is that in each of the steps the optimum can be computed directly. By iterating the two (or
more) steps the joint optimum is approached, although it cannot be guaranteed that the global optimum
will be reached. The algorithm may get stuck in a local minimum of the applied objective function J.
However, alternating optimization is the commonly used parameter optimization method in clustering
algorithms. Thus for each of the algorithms in this chapter we present the corresponding parameter update
equations of their alternating optimization scheme.

In the case of the hard C-means the iterative optimization scheme works as follows: at first initial cluster
centers are chosen. This can be done randomly, i.e., by picking ¢ random vectors that lie within the
smallest (hyper-)box that encloses all data; or by initializing cluster centers with randomly chosen data
points of the given data-set. Alternatively, more sophisticated initialization methods can be used as well,
e.g., Latin hypercube sampling (McKay, Beckman and Conover, 1979). Then the parameters C are held
fixed and cluster assignments U are determined that minimize the quantity of J;,. In this step each data
point is assigned to its closest cluster center:

~_ |1, if i = argminj_,dj
i = {0, otherwise . (1.5)

Any other assignment of a data point than to its closest cluster would not minimize Jj, for fixed clusters.
Then the data partition U is held fixed and new cluster centers are computed as the mean of all data vectors
assigned to them, since the mean minimizes the sum of the square distances in J;,. The calculation of the
mean for each cluster (for which the algorithm got its name) is stated more formally:

Dot U
it Ui

The two steps (1.5) and (1.6) are iterated until no change in C or U can be observed. Then the hard C-
means terminates, yielding final cluster centers and data partition that are possibly locally optimal only.

Concluding the presentation of the hard C-means we want to mention its expressed tendency to become
stuck in local minima, which makes it necessary to conduct several runs of the algorithm with different
initializations (Duda and Hart, 1973). Then the best result out of many clusterings can be chosen based on
the values of J,.

We now turn to the fuzzy approaches, that relax the requirement u; € {0, 1} thatis placed on the cluster
assignments in classical clustering approaches. The extensions are based on the concepts of fuzzy sets
such that we arrive at gradual memberships. We will discuss two major types of gradual cluster assign-
ments and fuzzy data partitions altogether with their differentiated interpretations and standard algo-
rithms, which are the (probabilistic) fuzzy C-means (FCM) in the next section and the possibilistic fuzzy
C-means (PCM) in Section 1.2.3.

(1.6)

¢ =

1.2.2 Fuzzy c-means

Fuzzy cluster analysis allows gradual memberships of data points to clusters measured as degrees in [0,1].
This gives the flexibility to express that data points can belong to more than one cluster. Furthermore,
these membership degrees offer a much finer degree of detail of the data model. Aside from assigning a
data point to clusters in shares, membership degrees can also express how ambiguously or definitely a data

BASIC CLUSTERING ALGORITHMS 7

point should belong to a cluster. The concept of these membership degrees is substantiated by the
definition and interpretation of fuzzy sets (Zadeh, 1965). Thus, fuzzy clustering allows fine grained
solution spaces in the form of fuzzy partitions of the set of given examples X = {xi, ..., x, }. Whereas the
clusters I'; of data partitions have been classical subsets so far, they are represented by the fuzzy sets yir, of
the data-set X in the following. Complying with fuzzy set theory, the cluster assignment u;; is now the
membership degree of a datum x; to cluster I';, such that: u; = ur,(x;) € [0, 1]. Since memberships to
clusters are fuzzy, there is not a single label that is indicating to which cluster a data point belongs. Instead,
fuzzy clustering methods associate a fuzzy label vector to each data point x; that states its memberships to
the c clusters:

u = (M]j,...,ucj)T. (17)

The ¢ x nmatrix U = (u;;) = (uy, ..., u,) is then called a fuzzy partition matrix. Based on the fuzzy set
notion we are now better suited to handle ambiguity of cluster assignments when clusters are badly
delineated or overlapping.

So far, the general definition of fuzzy partition matrices leaves open how assignments of data to more
than one cluster should be expressed in form of membership values. Furthermore, it is still unclear what
degrees of belonging to clusters are allowed, i.e., the solution space (set of allowed fuzzy partitions) for
fuzzy clustering algorithms is not yet specified. In the field of fuzzy clustering two types of fuzzy cluster
partitions have evolved. They differ in the constraints they place on the membership degrees and how the
membership values should be interpreted. In our discussion we begin with the most widely used type, the
probabilistic partitions, since they have been proposed first. Notice, that in literature they are sometimes
just called fuzzy partitions (dropping the word ‘probabilistic’). We use the subscript f for the probabilis-
tic approaches and, in the next section, p for the possibilistic models. The latter constitute the second type
of fuzzy partitions.

Let X = {xi,...,X,} be the set of given examples and let ¢ be the number of clusters (1 < ¢ < n)
represented by the fuzzy sets ur,, (i =1,...,c¢). Then we call Us = (u;) = (pur,(X;)) a probabilistic
cluster partition of X if

> u;>0, Vie{l,...,c}, and (1.8)
=

Suy=1, Vje{l,...,n} (1.9)
i=1

hold. The u;; € [0, 1] are interpreted as the membership degree of datum x; to cluster I'; relative to all other
clusters.

Constraint (1.8) guarantees that no cluster is empty. This corresponds to the requirement in classical
cluster analysis that no cluster, represented as (classical) subset of X, is empty (see Equation (1.4)).
Condition (1.9) ensures that the sum of the membership degrees for each datum equals 1. This means that
each datum receives the same weight in comparison to all other data and, therefore, that all data are
(equally) included into the cluster partition. This is related to the requirement in classical clustering that
partitions are formed exhaustively (see Equation (1.3)). As a consequence of both constraints no cluster
can contain the full membership of all data points. Furthermore, condition (1.9) corresponds to a
normalization of the memberships per datum. Thus the membership degrees for a given datum formally
resemble the probabilities of its being a member of the corresponding cluster.

Example: Figure 1.1 shows a (probabilistic) fuzzy classification of a two-dimensional symmetric data-
set with two clusters. The grey scale indicates the strength of belonging to the clusters. The darker shading
in the image indicates a high degree of membership for data points close to the cluster centers, while
membership decreases for data points that lie further away from the clusters. The membership values of
the data points are shown in Table 1.1. They form a probabilistic cluster partition according to the
definition above. The following advantages over a conventional clustering representation can be noted:
points in the center of a cluster can have a degree equal to 1, while points close to boundaries can be

8 FUNDAMENTALS OF FUZZY CLUSTERING

Figure 1.1 A symmetric data-set with two clusters.

identified as such, since their membership degree to the cluster they are closer to is considerably smaller
than 1. Points on class boundaries may be classified as undetermined with a degree of indeterminacy
proportional to their similarity to core points. The equidistant data point Xs in the middle of the figure
would have to be arbitrarily assigned with full weight to one of the clusters if only classical (‘crisp’)
partitions were allowed. In this fuzzy partition, however, it can be associated with the equimembership
vector (0.5, O.S)T to express the ambiguity of the assignment. Furthermore, crisp data partitions cannot
express the difference between data points in the center and those that are rather at the boundary of a
cluster. Both kinds of points would be fully assigned to the cluster they are most similar to. In a fuzzy
cluster partition they are assigned degrees of belonging depending on their closeness to the centers.
After defining probabilistic partitions we can turn to developing an objective function for the fuzzy
clustering task. Certainly, the closer a data point lies to the center of a cluster, the higher its degree of
membership should be to this cluster. Following this rationale, one can say that the distances between the
cluster centers and the data points (strongly) assigned to it should be minimal. Hence the problem to
divide a given data-set into c clusters can (again) be stated as the task to minimize the squared distances of
the data points to their cluster centers, since, of course, we want to maximize the degrees of membership.
The probabilistic fuzzy objective function J; is thus based on the least sum of squared distances just as Jj,

Table 1.1 A fuzzy partition of the symmetric data-set.

J x y Uo; uy;j
0 -3 0 0.93 0.07
1 -2 0 0.99 0.01
2 —1 0 0.94 0.06
3 -2 1 0.69 0.31
4 -2 -1 0.69 0.31
5 0 0 0.50 0.50
6 1 0 0.06 0.94
7 2 0 0.01 0.99
8 3 0 0.07 0.93
9 2 1 0.31 0.69
10 2 -1 0.31 0.69

BASIC CLUSTERING ALGORITHMS 9

of the hard C-means. More formally, a fuzzy cluster model of a given data-set X into ¢ clusters is defined to
be optimal when it minimizes the objective function:

(X, Uy, C) Zzumd; (1.10)

i=1 j=

under the constraints (1.8) and (1.9) that have to be satisfied for probabilistic membership degrees in Uy.
The condition (1.8) avoids the trivial solution of minimization problem, i.e., ; = 0, Vi, j. The normal-
ization constraint (1.9) leads to a ‘distribution’ of the weight of each data point over the different clusters.
Since all data points have the same fixed amount of membership to share between clusters, the normal-
ization condition implements the known partitioning property of any probabilistic fuzzy clustering
algorithm. The parameter m,m > 1, is called the fuzzifier or weighting exponent. The exponentiation
of the memberships with m in J; can be seen as a function g of the membership degrees, g(u;;) = u, that
leads to a generalization of the well-known least squared error functional as it was applied in the hard
c-means (see Equation (1.1)). The actual value of m then determines the ‘fuzziness’ of the classification. It
has been shown for the case m = 1 (when J;, and J; become identical), that cluster assignments remain
hard when minimizing the target function, even though they are allowed to be fuzzy, i.e., they are not
constrained in {0, 1} (Dunn, 1974b). For achieving the desired fuzzification of the resulting probabilistic
data partition the function g(u;) = u has been proposed first (Dunn, 1974b). The generalization for
exponents m > 1 that lead to fuzzy membershlps has been proposed in (Bezdek, 1973). With higher
values for m the boundaries between clusters become softer, with lower values they get harder. Usually
m = 2 is chosen. Aside from the standard weighting of the memberships with w7 other functions g that
can serve as fuzzifiers have been explored. Their influence on the memberships will be discussed in
Section 1.4.2.

The objective function J is alternately optimized, i.e., first the membership degrees are optimized for
fixed cluster parameters, then the cluster prototypes are optimized for fixed membership degrees:

U, =ju(C,1), 7>0 and (1.11)
C- =jc(Ur). (1.12)

In each of the two steps the optimum can be computed directly using the parameter update equations jy
and j for the membership degrees and the cluster centers, respectively. The update formulae are derived
by simply setting the derivative of the objective function Jy w.r.t. the parameters to optimize equal to zero
(taking into account the constraint (1.9)). The resulting equations for the two iterative steps form the fuzzy
C-means algorithm.
The membership degrees have to be chosen according to the following update formula that is
independent of the chosen distance measure (Bezdek, 1981; Pedrycz, 2005):
2
m—1
uj = ! 9 . (1.13)

d2 ml dml
SHOR >

In this case there exists a cluster i with zero distance to a datum x;, u;; = 1 and uj; = 0 for all other clusters
[# i. The above equation clearly shows the relative character of the probabilistic membership degree. It
depends not only on the distance of the datum x; to cluster i, but also on the distances between this data
point and other clusters.

The update formulae j for the cluster parameters depend, of course, on the parameters used to describe
a cluster (location, shape, size) and on the chosen distance measure. Therefore a general update formula
cannot be given. In the case of the basic fuzzy C-means model the cluster center vectors serve as
prototypes, while an inner product norm induced metric is applied as distance measure. Consequently the
derivations of J; w.r.t. the centers yield (Bezdek, 1981):

D1 UX
Z/ luj

¢ = (1.14)

10 FUNDAMENTALS OF FUZZY CLUSTERING

The choice of the optimal cluster center points for fixed memberships of the data to the clusters has the
form of a generalized mean value computation for which the fuzzy C-means algorithm has its name.

The general form of the AO scheme of coupled equations (1.11) and (1.12) starts with an update of the
membership matrix in the first iteration of the algorithm (7 = 1). The first calculation of memberships is
based on an initial set of prototypes Cy. Even though the optimization of an objective function could
mathematically also start with an initial but valid membership matrix (i.e., fulfilling constraints (1.8) and
(1.9)), a Cy initialization is easier and therefore common practice in all fuzzy clustering methods.
Basically the fuzzy C-means can be initialized with cluster centers that have been randomly placed in
the input space. The repetitive updating in the AO scheme can be stopped if the number of iterations 7
exceeds some predefined number of maximal iterations 7,,,,, or when the changes in the prototypes are
smaller than some termination accuracy. The (probabilistic) fuzzy C-means algorithm is known as a
stable and robust classification method. Compared with the hard C-means it is quite insensitive to its
initialization and it is not likely to get stuck in an undesired local minimum of its objective function in
practice (Klawonn, 2006). Due to its simplicity and low computational demands, the probabilistic fuzzy
C-means is a widely used initializer for other more sophisticated clustering methods. On the theoretical
side it has been proven that either the iteration sequence itself or any convergent subsequence of the
probabilistic FCM converges in a saddle point or a minimum — but not in a maximum — of the objective
function (Bezdek, 1981).

1.2.3 Possibilistic c-means

Although often desirable, the ‘relative’ character of the probabilistic membership degrees can be
misleading (Timm, Borgett, Doring and Kruse, 2004). Fairly high values for the membership of datum
in more than one cluster can lead to the impression that the data point is typical for the clusters, but this is
not always the case. Consider, for example, the simple case of two clusters shown in Figure 1.2. Datum x;
has the same distance to both clusters and thus it is assigned a membership degree of about 0.5. This is
plausible. However, the same degrees of membership are assigned to datum x; even though this datum is
further away from both clusters and should be considered less typical. Because of the normalization,
however, the sum of the memberships has to be 1. Consequently x, receives fairly high membership
degrees to both clusters. For a correct interpretation of these memberships one has to keep in mind that
they are rather degrees of sharing than of typicality, since the constant weight of 1 given to a datum must
be distributed over the clusters. A better reading of the memberships, avoiding misinterpretations, would
be (Hoppner, Klawonn, Kruse and Runkler 1999): ‘If the datum x; has to be assigned to a cluster, then with
the probability u;; to the cluster i’.

The normalization of memberships can further lead to undesired effects in the presence of noise and
outliers. The fixed data point weight may result in high membership of these points to clusters, even
though they are a large distance from the bulk of data. Their membership values consequently affect the
clustering results, since data point weight attracts cluster prototypes. By dropping the normalization
constraint (1.9) in the following definition one tries to achieve a more intuitive assignment of degrees of
membership and to avoid undesirable normalization effects.

[y
X1 e e X9
I'y

Figure 1.2 A situation in which the probabilistic assignment of membership degrees is counterintuitive for datum x;.

BASIC CLUSTERING ALGORITHMS 11

Let X = {xy,...,X,} be the set of given examples and let ¢ be the number of clusters (1 < ¢ < n)
represented by the fuzzy sets ur,, (i =1,...,¢). Then we call U, = (u;;) = (ur,(X;)) a possibilistic
cluster partition of X if

> up>0, Vie{l,...c} (1.15)
j=1

holds. The u;; € [0, 1] are interpreted as the degree of representativity or typicality of the datum x; to
cluster I';.

The membership degrees for one datum now resemble the possibility (in the sense of possibility theory
(Dubois and Prade, 1988) of its being a member of the corresponding cluster (Davé and Krishnapuram,
1997; Krishnapuram and Keller, 1993).

The objective function J; that just minimizes the squared distances between clusters and assigned data
points would not be appropriate for possibilistic fuzzy clustering. Dropping the normalization constraint
leads to the mathematical problem that the objective function would reach its minimum for u;; = 0 for all
ie{l,...,c}andj€{l,...,n}, ie., data points are not assigned to any cluster and all clusters are
empty. In order to avoid this trivial solution (that is also forbidden by constraint (1.15)), a penalty term is
introduced, which forces the membership degrees away from zero. That is, the objective function J; is
modified to

J,(X,U,,C) = izumd2+zn,21—u,,, (1.16)

i=1 j=

wheren; > 0(i =1, ..., c) (Krishnapuram and Keller, 1993). The first term leads to a minimization of the
weighted distances. The second term suppresses the trivial solution since this sum rewards high member-
ships (close to 1) that make the expression (1 — u;)" become approximately 0. Thus the desire for
(strong) assignments of data to clusters is expressed in the objective function J,. In tandem with the first
term the high membership can be expected especially for data that are close to their clusters, since with a
high degree of belonging the weighted distance to a closer cluster is smaller than to clusters further away.
The cluster specific constants 7); are used balance the contrary objectives expressed in the two terms of J,.
Itis a reference value stating at what distance to a cluster a data point should receive higher membership to
it. These considerations mark the difference to probabilistic clustering approaches. While in probabilistic
clustering each data point has a constant weight of 1, possibilistic clustering methods have to learn the
weights of data points.

The formula for updating the membership degrees that is derived from J, by setting its derivative to
zero is (Krishnapuram and Keller, 1993):

Uy = ——— . (1.17)

First of all, this update equation clearly shows that the membership of a datum x; to cluster i depends only
on its distance dj; to this cluster. Small distance corresponds to high degree of membership whereas larger
distances (i.e., strong dissimilarity) results in low membership degrees. Thus the u; have typicality
interpretation.

Equation (1.17) further helps to explain the parameters 7, of the clusters. Considering the case m = 2
and substituting 7, for dfj yields u;; = 0.5. It becomes obvious that 7; is a parameter that determines the
distance to the cluster i at which the membership degree should be 0.5. Since that value of membership
can be seen as definite assignment to a cluster, the permitted extension of the cluster can be controlled with
this parameter. Depending on the cluster’s shape the 7; have different geometrical interpretation. If
hyperspherical clusters as in the possibilistic C-means are considered, ,/7; is their mean diameter. In shell
clustering /7; corresponds to the mean thickness of the contours described by the cluster prototype
information (Hooppner, Klawonn, Kruse and Runkler 1999) (see Section 1.3.2). If such properties of the

12 FUNDAMENTALS OF FUZZY CLUSTERING

clusters to search for are known prior to the analysis of the given data, 7); can be set to the desired value. If
all clusters have the same properties, the same value can be chosen for all clusters. However, the
information on the actual shape property described by #; is often not known in advance. In that case
these parameters must be estimated. Good estimates can be found using a probabilistic clustering model
of the given data-set. The n; are then estimated by the fuzzy intra-cluster distance using the fuzzy
memberships matrix Uy as it has been determined by the probabilistic counterpart of the chosen
possibilistic algorithm (Krishnapuram and Keller, 1993). That is, for all clusters (i = 1,...,n):
i :72%1 u?ja (1.18)
2
Update equations jc for the prototypes are as well derived by simply setting the derivative of the
objective function J, w.r.t. the prototype parameters to optimize equal to zero (holding the membership
degrees U, fixed). Looking at both objective functions J; and J, it can be inferred that the update
equations for the cluster prototypes in the possibilistic algorithms must be identical to their probabilistic
counterparts. This is due to the fact that the second, additional term in J, vanishes in the derivative for
fixed (constant) memberships ;. Thus the cluster centers in the possibilistic C-means algorithm are
re-estimated as in Equation (1.14).

1.2.4 Comparison and Respective Properties of Probabilistic and
Possibilistic Fuzzy c-means

Aside from the different interpretation of memberships, there are some general properties that distinguish
the behaviour and the results of the possibilistic and probabilistic fuzzy clustering approaches.

Example: Figures 1.3 and 1.4 illustrate a probabilistic and a possibilistic fuzzy C-means classification of
the Iris data-set into three clusters (Blake and Merz, 1998; Fisher, 1936). The displayed partitions of the
data-set are the result of alternatingly optimizing J; and J,, respectively (Timm, Borgelt, Doring and
Kruse, 2004). The grey scale indicates the membership to the closest cluster. While probabilistic
memberships rather divide the data space, possibilistic membership degrees only depend on the typicality
to the respective closest clusters. On the left, the data-set is divided into three clusters. On the right, the
possibilistic fuzzy C-means algorithm detects only two clusters, since two of the three clusters in the
upper right of Figure 1.4 are identical. Note that this behaviour is specific to the possibilistic approach. In
the probabilistic counterpart the cluster centers are driven apart, because a cluster, in a way, ‘seizes’ part
of the weight of a datum and thus leaves less that may attract other cluster centers. Hence sharing a datum
between clusters is disadvantageous. In the possibilistic approach there is nothing that corresponds to this
effect.

Figure 1.3 Iris data-set classified with probalistic fuzzy C-means algorithm. Attributes petal length and petal width.

BASIC CLUSTERING ALGORITHMS 13

Figure 1.4 Iris data-set classifed with possibilistic fuzzy C-means algorithm. Attribtes petal length and petal width.

1.2.4.1 Cluster Coincidence

One of the major characteristics in which the approaches differ lies in the fact that probabilistic algorithms
are forced to partition the data exhaustively while the corresponding possibilistic approaches are not
compelled to do so. The former distribute the total membership of the data points (sums up to one)
whereas the latter are rather required to determine the data point weights by themselves. Probabilistic
algorithms attempt to cover all data points with clusters, since sharing data point weight is disadvanta-
geous. In the possibilistic case, there is no interaction between clusters. Thus the found clusters in
possibilistic models can be located much closer to each other than in a probabilistic clustering. Clusters
can even coincide, which has been widely observed (Barni, Cappellini and Mecocci, 1996; Krishnapuram
and Keller, 1996). This leads to solutions in which one cluster being actually present in a data-set can be
represented by two clusters in the possibilistic model. In worse cases there is data left in other regions of
the input space that has cluster structure, but which is not covered by clusters in the model. Then
possibilistic algorithms show the tendency to interpret data points in such left over regions as outliers by
assigning low memberships for these data to all clusters (close to 0) instead of further adjusting the
possibly non-optimal cluster set (Hoppner, Klawonn, Jruse and Runkler, 1999).

This described behaviour is exhibited, since J, treats each cluster independently. Every cluster
contributes to some extent to the value of the objective function J, regardless of other clusters. The
resulting behaviour has been regarded by stating that possibilistic clustering is a rather mode-seeking
technique, aimed at finding meaningful clusters (Krishnapuram and Keller, 1996). The number ¢ of
known or desired clusters has been interpreted as an upper bound, since cluster coincidence in effect leads
to a smaller number of clusters in the model (Hoppner, Klawonn, Kruse and Runkler, 1999). For reducing
the tendency of coinciding clusters and for a better coverage of the entire data space usually a probabilistic
analysis is carried out before (exploiting its partitional property). The result is used for the prototype
initialization of the first run of the possibilistic algorithm as well as for getting the initial guesses of the 7;
(and ¢). After the first possibilistic analysis has been carried out, the values of the 7, are re-estimated once
more using the first possibilistic fuzzy partition. The improved estimates are used for running the
possibilistic algorithm a second time yielding the final cluster solution (Hoppner, Klawonn, Jruse and
Runkler, 1999).

1.24.2 Cluster Repulsion

Dealing with the characteristics of the possibilistic clustering techniques as above is a quite good
measure. However, there are theoretical results, which put forth other developments. We discovered
that the objective function Jj, is, in general, truly minimized only if all cluster centers are identical (Timm,
Borgelt, Doring and Kruse, 2004). The possibilistic objective function can be decomposed into ¢
independent terms, one for each cluster. This is the amount by which each cluster contributes to the
value of J,,. If there is a single optimal point for a cluster center (as will usually be the case, since multiple

14 FUNDAMENTALS OF FUZZY CLUSTERING

optimal points would require a high symmetry in the data), all cluster centers moved to that point results in
the lowest value of J, for a given data-set. Consequently other results than all cluster centers being
identical are achieved only because the algorithm gets stuck in a local minimum of the objective function.
In the example of the PCM model in Figure 1.4 the cluster on the lower left in the figure has been found,
because it is well separated and thus forms a local minimum of the objective function. This, of course, is
not a desirable situation. Good solutions w.r.t the minimization of J, unexpectedly do not correspond to
what we regard as a good solution of the clustering problem. Hence the possibilistic algorithms can be
improved by modifying the objective function in such a way that the problematic property examined
above is removed (see Section 1.4.4). These modifications of J, lead to better detection of the shape of
very close or overlapping clusters. Such closely located point accumulations have been problematic, since
possibilistic clusters ‘wander’ in the direction where most of the data can be found in their 7; environment,
which easily leads to cluster coincidence. Nevertheless, the modified possibilistic techniques should also
be initialized with the corresponding probabilistic algorithms as described in the last paragraph. It is a
good measure for improving the chances that all data clouds will be regarded in the resulting possibilistic
model leaving no present cluster structure unclassified. Recent developments that try to alleviate the
problematic properties of the possibilistic clustering algorithms propose using a combination of both
fuzzy and possibilistic memberships (see Section 1.4.4).

1.2.4.3 Recognition of Positions and Shapes

The possibilistic models do not only carry problematic properties. Memberships that depend only on the
distance to a cluster while being totally independent from other clusters lead to prototypes that better
reflect human intuition. Calculated based on weights that reflect typicality, the centers of possibilistic
clusters as well as their shape and size better fit the data clouds compared to their probabilistic relatives.
The latter ones are known to be unable to recognize cluster shapes as perfectly as their possibilistic
counterparts. This is due to the following reasons: if clusters are located very close or are even over-
lapping, then they are separated well because sharing membership is disadvantageous (see upper right in
Figure 1.3). Higher memberships to data points will be assigned in directions pointing away from the
overlap. Thus the centers are repelling each other. If complex prototypes are used, detected cluster shapes
are likely to be slightly distorted compared to human intuition. Noise and outliers are another reason for
little prototype distortions. They have weight in probabilistic partitions and therefore attract clusters
which can result in small prototype deformations and less intuitive centers. Possibilistic techniques are
less sensitive to outliers and noise. Low memberships will be assigned due to greater distance. Due to this
property and the more intuitive determination of positions and shapes, possibilistic techniques are
attractive tools in image processing applications. In probabilistic fuzzy clustering, noise clustering
techniques are widely appreciated (see Section 1.4.1). In one of the noise handling approaches, the
objective function J; is modified such that a virtual noise cluster ““seizes” parts of the data point weight of
noise points and outliers. This leads to better detection of actual cluster structure in probabilistic models.

1.3 DISTANCE FUNCTION VARIANTS

In the previous section, we considered the case where the distance between cluster centers and data points
is computed using the Euclidean distance, leading to the standard versions of fuzzy C-means and
possibilistic C-means. This distance only makes it possible to identity spherical clusters. Several variants
have been proposed to relax this constraint, considering other distances between cluster centers and data
points. In this section, we review some of them, mentioning the fuzzy Gustafson—Kessel algorithm, fuzzy
shell clustering algorithms and kernel-based variants. All of them can be applied both in the fuzzy
probabilistic and possibilistic framework.

Please note that a more general algorithm is provided by the fuzzy relational clustering algorithm
(Hathaway and Bezdek, 1994) that takes as input a distance matrix. In this chapter, we consider the
variants that handle object data and do not present the relational approach.

DISTANCE FUNCTION VARIANTS 15
1.3.1 Gustafson-Kessel Algorithm

The Gustafson—Kessel algorithm (Gustafson and Kessel, 1979) replaces the Euclidean distance by a
cluster-specific Mahalanobis distance, so as to adapt to various sizes and forms of the clusters. For a
cluster i, its associated Mahalanobis distance is defined as

P (x;,C) = (x; — &) 27 (% — @), (1.19)

where ¥; is the covariance matrix of the cluster. Using the Euclidean distance as in the algorithms
presented in the previous section is equivalent to assuming that Vi, ¥; = I, i.e., all clusters have the same
covariance that equals the identity matrix. Thus it only makes it possible to detect spherical clusters, but it
cannot identify clusters having different forms or sizes.

The Gustafson—Kessel algorithm models each cluster I'; by both its center ¢; and its covariance matrix
3,i =1,...,c. Thus cluster prototypes are tuples C; = (¢;, ¥;) and both ¢; and ¥; are to be learned. The
eigenstructure of the positive definite p X p matrix ¥; represents the shape of cluster i. Specific constraints
can be taken into account, for instance restricting to axis-parallel cluster shapes, by considering only
diagonal matrices. This case is usually preferred when clustering is applied for the generation of fuzzy
rule systems (Hoppner, Klawonn, Kruse, and Runkler, 1999). The sizes of the clusters, if known in
advance, can be controlled using the constants g; > 0 demanding that det (X;) = ;. Usually the clusters
are assumed to be of equal size setting det(%;) = 1.

The objective function is then identical to the fuzzy C-means (see Equation (1.10)) or the possibilistic
one (see Equation (1.16)), using as distance the one represented above in Equation (1.19). The update
equations for the cluster centers ¢; are not modified and are identical to those indicated in Equation (1.14).
The update equations for the membership degrees are identical to those indicated in Equation (1.13) and
Equation (1.17) for the FCM and PCM variants respectively, replacing the Euclidean distance by the
cluster specific distance given above in Equation (1.19). The update equations for the covariance matrices
are

X L (- a) (-)
=, where 7= o .
Vdet()) D Wi

(1.20)

i

They are defined as the covariance of the data assigned to cluster i, modified to incorporate the fuzzy
assignment information.

The Gustafson—Kessel algorithm tries to extract much more information from the data than the
algorithms based on the Euclidean distance. It is more sensitive to initialization, therefore it is recom-
mended to initialize it using a few iterations of FCM or PCM depending on the considered partition type.
Compared with FCM or PCM, the Gustafson—Kessel algorithm exhibits higher computational demands
due to the matrix inversions. A restriction to axis-parallel cluster shapes reduces computational costs.

1.3.2 Fuzzy Shell Clustering

The clustering approaches mentioned up to now search for convex ‘““cloud-like” clusters. The corre-
sponding algorithms are called solid clustering algorithms. They are “‘specially useful” in data analysis
applications. Another area of application of fuzzy clustering algorithms is image recognition and
analysis. Variants of FCM and PCM have been proposed to detect lines, circles or ellipses on the data-set,
corresponding to more complex data substructures; the so-called shell clustering algorithms (Klawonn,
Kruse, and Timm, 1997) extract prototypes that have a different nature than the data points. They need to
modify the definition of the distance between a data point and the prototype and replace the Euclidean by
other distances. For instance the fuzzy c-varieties (FCV) algorithm was developed for the recognition of
lines, planes, or hyperplanes; each cluster is an affine subspace characterized by a point and a set of

16 FUNDAMENTALS OF FUZZY CLUSTERING

orthogonal unit vectors, C; = (c;, €1, ...,e;;) where g is the dimension of the affine subspace. The
distance between a data point X; and cluster i is then defined as

q
& (x;,C) = ||x; — ol - Z(Xj —c) e
I=1

The fuzzy c-varieties (FCV) algorithm is able to recognize lines, planes or hyperplanes (see Figure 1.5).
These algorithms can also be used for the construction of locally linear models of data with underlying
functional interrelations.

Other similar FCM and PCM variants include the adaptive fuzzy c-elliptotypes algorithm (AFCE) that
assigns disjoint line segments to different clusters (see Figure 1.6). Circle contours can be detected by the
fuzzy c-shells and the fuzzy c-spherical shells algorithm. Since objects with circle-shaped boundaries in are
projected into the picture plane the recognition of ellipses can be necessary. The fuzzy c-ellipsoidal shells
algorithm is able to solve this problem. The fuzzy c-quadric shells algorithm (FCQS) is furthermore able
to recognize hyperbolas, parabolas, or linear clusters. Its flexibility can be observed in Figures 1.7 and 1.8.
The shell clustering techniques have also been extended to non-smooth structures such as rectangles and
other polygons. Figures 1.9 and 1.10 illustrate results obtained with the fuzzy c-rectangular (FCRS) and
fuzzy c-2-rectangular shells (FC2RS) algorithm. The interested reader may be referred to Hoppner,
Klawonn, Kruse, and Runkler (1999) and Bezdek, Keller, Krishnapuram, and Pal (1999) for a complete
discussion of this branch of methods.

Figure 1.5 FCV analysis. Figure 1.6 AFCE analysis. Figure 1.7 FCQS analysis.

Figure 1.8 FCQS analysis. Figure 1.9 FCRS analysis. Figure 1.10 FC2RS analysis.

DISTANCE FUNCTION VARIANTS 17
1.3.3 Kernel-based Fuzzy Clustering

The kernel variants of fuzzy clustering algorithms further modify the distance function to handle
non-vectorial data, such as sequences, trees, or graphs, without needing to modify completely the
algorithms themselves. Generally speaking, kernel learning methods (see e.g., Scholkopf and Smola
(2002); Vapnik (1995)) constitute a set of machine learning algorithms that make it possible to extend, in a
formal framework, classic linear algorithms. This extension addresses a double aim: on the one hand, it
makes it possible to address tasks that require a richer framework than the linear one, while still
preserving this generally simple formalism. On the other hand, it makes it possible to apply algorithms
to data that are not described in a vectorial form, but as more complex objects, such as sequences, trees or
graphs. More generally, kernel methods can be applied independently of the data nature, without needing
to adapt the algorithm. In this section, data points can be vectorial or not, therefore we denote them x;
instead of x;.

1.3.3.1 Principle

Kernel methods are based on an implicit data representation transformation ¢ : X — F where X’ denotes
the input space and F is called the feature space. F is usually of high or even infinite dimension and is
only constrained to be a Hilbert space, i.e., to dispose of a scalar product. The second principle of kernel
methods is that data are not handled directly in the feature space, which could lead to expensive costs
given its dimension; they are only handled through their scalar products that are computed using the initial
representation. To that aim, the so-called kernel function is used: itis a functionk : X x & — R, such that
Vx,y € X, (¢(x), ¢(y)) = k(x,y) Thus the function ¢ is not needed to be known explicitly, scalar products
in the feature space only depend on the initial representation.

In order to apply this kernel trick, kernel methods are algorithms written only in terms of scalar
products between the data. The data representation enrichment then comes from using a scalar product
based on an implicit transformation of the data, instead of being only the Euclidean one. The possibility to
apply the algorithm to non-vectorial data only depends on the availability of a functionk : X x X — R
having the properties of a scalar product (Schélkopf and Smola, 2002).

1.3.3.2 Kernel Fuzzy Clustering

The kernel framework has been applied to fuzzy clustering and makes it possible to consider other distances
than the Euclidean one. It is to be underlined that fuzzy shell clustering, discussed in Section 1.3.2,
also takes into account other metrics, but it has an intrinsic difference: it aims at extracting prototypes that
have a different nature than the data points, and thus it modifies the distance between points and cluster
prototypes. In the kernel approach, the similarity is computed between pairs of data points and does not
involve cluster centers; the kernel function influences more directly that points are to be grouped in the same
clusters, and does not express a comparison with a cluster representative. Usually, cluster representatives
have no explicit representation as they belong to the feature space. Thus the kernel approach can be applied
independently of the data nature whereas fuzzy shell algorithms must be specified for each desired
prototype nature. On the other hand, kernel methods do not have an explicit representative of the cluster
and cannot be seen as prototype-based clustering methods.

The kernel variant of fuzzy clustering (Wu, Xie, and Yu, 2003) consists of transposing the objective
function to the feature space, i.e., applying it to the transformed data ¢(x). The cluster centers then belong
to the feature space, we therefore denote them c?, i=1,...,c (c;/' € F). They are looked for in the form
of linear combinations of the transformed data, as

¢ = iai,qﬁ(xr). (1.21)
r=1

18 FUNDAMENTALS OF FUZZY CLUSTERING

This formulation is coherent with the solution obtained with standard FCM. Optimization must then
provide the a;, values, together with the membership degrees. Due to the previous form of the centers, the
Euclidean distance between points and centers in the feature space can be computed as

A, = [|o(x) = {IP =kr =2 ik + Y aistticksr, (1.22)
s=1 st=1
where we denote k., = k(x,,x;) = (¢(x,), ¢(x;)). Thus, the objective function becomes
— Z Z uj, <k,, -2 Z aiskys + Z a,—sa,-,kst> . (1.23)
i=1 r=1 s=1 s,t=1

The minimization conditions then lead to the following update equations

| " > ()
Uiy :m, [277% :n—lr, i.e., Cf-b :rini (124)
> (%) DL DL

Thus the update equations, as well as the objective function, can be expressed solely in terms of the kernel
function, i.e., in terms of scalar products. Equation (1.24) shows that membership degrees have the same
form as in the standard FCM (see Equation (1.13)), replacing the Euclidean distance by the distance in the
feature space, as defined in Equation (1.22). The expression of the cluster centers is comparable to the
standard case (see Equation (1.14)), as the weighted mean of the data. The difference is that cluster centers
belong to the feature space and have no explicit representation, only the weighting coefficients are known.

There exist other variants for the kernelization of the fuzzy C-means, as for instance the one proposed
by Zhang and Chen (2003a,b). The latter is specific insofar as it only considers the Gaussian kernel
k(x,y) = exp(—d(x,y)*/o?) and exploits its properties to simplify the algorithm. More precisely it makes
the hypothesis that cluster centers can be looked for explicitly in the input space (c; € X), and considers
its transformation to the feature space ¢(c;). This differs from the general case, as presented above, where
cluster centers are only defined in the feature space. The objective function then becomes

J—ZZ "|é(ci _222 7(1 — e)/, (1.25)

exploiting the fact that the Gaussian kernel leads to d@?(x,y) = k(x,x) + k(y,y) — 2k(x,y) =
2(1 — k(x,y)). Thus this method constitutes a special case of the FCM kernelization and cannot be
applied to any type of data independently of their nature. It is to be noted that this objective function
(Equation (1.25)) is identical to the one proposed by Wu and Yang (2002) in the framework of robust
variants of FCM, as described in the next section.

It should be noticed that the application of a kernel method needs to select the kernel and its parameters,
which may be difficult. This task can be seen as similar to the problem of feature selection and data
representation choice in the case of non-kernel methods.

1.4 OBJECTIVE FUNCTION VARIANTS

The previous variants of fuzzy C-means are obtained when considering different distance functions that
lead to a rewrite of the objective functions and in some cases modify the update equations. In this section,
we consider other variants that are based on deeper modifications of the objective functions. The
modifications aim at improving the clustering results in specific cases, for instance when dealing with
noisy data. It is to be noticed that there exists a very high number of variants for fuzzy clustering
algorithms, we only mention some of them.

OBJECTIVE FUNCTION VARIANTS 19

We organized them in the following categories: some variants are explicitly aimed at handling noisy
data. Others study at a theoretical level the role of the fuzzifier m in the objective function (see notations in
Equation (1.10)) and propose some modifications. Other variants introduce new terms in the objective
function so as to optimize the cluster number instead of having it fixed at the beginning of the process.
Lastly, we mention some variants that are aimed at improving the possibilistic C-means, in particular with
respect to the coinciding cluster problem (see Section 1.2.4).

It is to be noted that the limits between these categories are not clear-cut and that for instance the
modification of the fuzzifier can influence the noise handling properties. We categorize the methods
according to their major characteristics and underline their other properties.

When giving update equations for cluster prototypes, we consider only the case where the Euclidean
distance is used and when prototypes are reduced to cluster centers. Most methods can be generalized to
other representations, in particular those including size and form parameters. The interested reader is
referred to the original papers.

1.4.1 Noise Handling Variants

The first variants of fuzzy C-means we consider aim at handling noisy data. It is to be noticed that PCM is a
solution to this problem, but it has difficulty of its own as mentioned in Section 1.2.4 (cluster coincidence
problem, sensitivity to initialization). Therefore other approaches take FCM as the starting point and
modify it so as to enable it to handle noisy data. When giving the considered objective functions, we do not
recall the constraints indicated in Equations (1.8) and (1.9) that apply in all cases.

The aim of these variants is then to define robust fuzzy clustering algorithmes, i.e., algorithms whose
results do not depend on the presence or absence of noisy data points or outliers' in the data-set. Three
approaches are mentioned here: the first one is based on the introduction of a specific cluster, the so-called
noise cluster that is used to represent noisy data points. The second method is based on the use of robust
estimators, and the third one reduces the influence of noisy data points by defining weights denoting the
point representativeness.

1.4.1.1 Noise Clustering

The noise clustering (NC) algorithm was initially proposed by Davé (1991) and was later extended (Davé
and Sen, 1997, 1998). It consists in adding, beside the ¢ clusters to be found in a data-set, the so-called
noise cluster; the latter aims at grouping points that are badly represented by normal clusters, such as
noisy data points or outliers. It is not explicitly associated to a prototype, but directly to the distance
between an implicit prototype and the data points: the center of the noise cluster is considered to be at a
constant distance, 6, from all data points. This means that all points have a priori the same ‘probability’ of
belonging to the noise cluster. During the optimization process, this ‘probability’ is then adapted as a
function of the probability according to which points belong to normal clusters. The noise cluster is then
introduced in the objective function, as any other cluster, leading to

C n n C m
JZZMZ’d,-zj—i-Z&z(l—Zuik) : (1.26)
i=1 j=1 k=1 i=1
The added term is similar to the terms in the first sum: the distance to the cluster prototype is replaced by §
and the membership degree to this cluster is defined as the complement to 1 of the sum of all membership
degrees to the standard clusters. This in particular implies that outliers can have low membership degrees to
the standard clusters and high degree to the noise cluster, which makes it possible to reduce their influence

'Outliers correspond to atypical data points, that are very different from all other data, for instance located at a high
distance from the major part of the data. More formally, according to Hawkins (1980), an outlier is ‘an observation
that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism’.

20 FUNDAMENTALS OF FUZZY CLUSTERING

on the standard cluster: as PCM, the noise clustering approach relaxes the FCM normalization constraint
expressed in Equation (1.9) according to which membership degrees to good clusters must sum to 1.

Further comparison between NC and PCM (see Equations (1.26) and (1.16) shows that the algorithms
are identical in the case of a single cluster, with 6% corresponding to n (Davé and Sen, 1997, 1998). In the
case ¢ > 1, the difference is that PCM considers one 7; per cluster, whereas a single parameter is defined
in the NC case. This means that PCM has the advantage of having one noise class per good cluster,
whereas NC has only one (the NC generalization described hereafter overcomes this drawback). As a
consequence, the membership degrees to the noise cluster differ for the two methods: in the PCM case,
they are, for each noise cluster, the complement to 1 to the membership to the associated good cluster. In
noise clustering, as there is a single noise cluster, the membership degree to it is the complement to the
sum of all other memberships.

Another difference between PCM and NC comes from the fact that the PCM cost function can be
decomposed into ¢ independent terms (one per cluster), whereas in the noise clustering approach such a
decomposition is not possible. This decomposition is one of the reasons why PCM leads to coinciding
clusters. Thus Davé and Krishnapuram (1997) interpret NC as a robustified FCM, whereas PCM behaves
like ¢ independent NC algorithms.

The objective function (1.26) requires the setting of parameter 6. In the initial NC algorithm, it was
set to

6 = ﬁ (Zzaﬁ) (1.27)

i.e., its squared value is a proportion of the mean of the squared distances between points and other cluster
prototypes, with 4 a user-defined parameter determining the proportion: the smaller the 4, the higher the
proportion of points that are considered as outliers.

Noise clustering has been generalized to allow the definition of several §, and to define a noise scale per
cluster. To that aim, each point is associated to a noise distance 6;,j = 1, ..., n, the latter being defined as
the size of the cluster the point maximally belongs to, as in PCM: §; = 7, for i+ = arg max; u;; (Davé and
Sen, 1997, 1998). In this case, the difference between PCM and NC about distance scale vanishes, the only
remaining difference is the independence of clusters in the PCM objective function that does not appear in
the noise clustering case.

1.4.1.2 Robust Estimators

Another approach to handle noisy data-sets is based on the exploitation of robust estimators: as indi-
cated in Section 1.2.2, the fuzzy C-means approach is based on a least square objective function. It is well
known that the least square approach is highly sensitive to aberrant points, which is why FCM gives
unsatisfactory results when applied to data-sets contaminated with noise and outliers. Therefore, it has
been proposed to introduce a robust estimator in the FCM classic objective function (see Equation (1.10)),
leading to consider

7=33 o), (1.28)

i=1 j=1

where p; are robust symmetric positive definite functions having their minimum in O (Frigui and
Krishnapuram, 1996). According to the robust M-estimator framework, p should be chosen such that
p(z) = log(J(z)~") represents the contribution of error z to the objective function and J the distribution of
these errors. Choosing p(z) = z? as it is usually the case is equivalent to assuming a normal distribution of
the errors z and leads to constant weighting functions. That is, big errors have the same weight as small
errors and play too important a role on the correction applied to the parameters, making the objective
function sensitive to outliers. Therefore it is proposed to use another p, whose weighting functions tend to
0 for big values of z. Frigui and Krishnapuram (1996) design their own robust estimator to adapt to the
desired behaviour, defining the robust c-prototypes (RCP) algorithm.

OBJECTIVE FUNCTION VARIANTS 21

In the case where clusters are represented only by centers and a probabilistic partition is looked for (i.e.,
with constraint (1.9)), the update equations for the membership degrees and cluster prototypes derived
from Equation (1.28) then become (Frigui and Krishnapuram, 1996)

,2 il 1
=l = (1.29)
Z d > ["("3‘)}
k=1 l’(dkj)

where f;; = f(d;;) and f = =1/cfor
all clusters. The difference and advantage as compared Wlth FCM comes from their mﬂuence on the
center, which is reduced through the f;; coefficient (see Frigui and Krishnapuram (1996) for the f;;
expression).

Other robust clustering algorithms include the method proposed by Wu and Yang (2002) that consider

the modified objective function
J= Z Z ul” <) (1.30)

i=1 j=

where f3 is a user-defined parameter that the authors propose to set to the inverse of the sample covariance
matrix. This function is first proposed as a replacement of the Euclidean distance by the more robust
exponential metric; yet, as pointed out by Zhang and Chen (2004), the mapping (x, y)— exp(—fd(x,y)) is
not a metric. Still, the analysis of the above objective function in the robust estimator framework holds and
shows that this function leads to a robust fuzzy clustering algorithm that can handle noisy data-sets Wu
and Yang (2002).

Davé and Krishnapuram (1996, 1997) show that PCM can be interpreted in this robust clustering
framework based on the M-estimator. They consider a slightly different formalization, where the
objective function for each cluster is written

w(dyj)x; Ldp

zdz’

IR

J= Z p(x; —¢), leadingto ¢="! , where w(z) =

(1.31)

1 w(dy)

.
I

Comparing with the update equations of PCM, this makes it possible to identify a weight function w and
by integration to deduce the associated estimator p. Davé and Krishnapuram (1996, 1997) show the
obtained p is indeed a robust function. This justifies at a formal level the qualities of PCM as regards noise
handling.

1.4.1.3 Weight Modeling

A third approach to handle outliers is exemplified by Keller (2000). It consists of associating each data
point a weight to control the influence it can have on the cluster parameters. The considered objective
function is

n
J= Z Z ul! —di, under constraint ij =w, (1.32)

i=1 j= j=1
where the factor w; represents the weight for data point j, g a parameter to control the influence of the
weighting factor and w a normalizing coefficient. The minimization conditions of this objective function

lead to the following update equations:

n o 1
LAY

q

1 =1 Wi

’ C =

o (&2 = z”: i (c 2)#
i uld:
lz:1<d2> J=1%j =1 l:zl i

\§§

hat 3
M= [—
-
<
<3
L
S}
N——

€
T

22 FUNDAMENTALS OF FUZZY CLUSTERING

Thus, the membership degrees are left unchanged, whereas the cluster centers take into account the
weights; points with high representativeness play a more important role than outliers. Representativeness
depends on the weighted average distance to cluster centers.

1.4.2 Fuzzifier Variants

Another class of FCM variants is based on the study of the fuzzifier, i.e., the exponent m in Equation
(1.10): as indicated in Section 1.2.2, FCM can be derived from the hard C-means algorithm by relaxing
the partition constraints, so that membership degrees belong to [0,1] and not {0,1}. To prevent member-
ship degrees from being restricted to the two values 0 and 1, the objective function must be modified and
the m fuzzifier is introduced.

Now as can be observed and proved (Klawonn and Hoppner, 2003b; Rousseeuw, Trauwaert, and
Kautman, 1995), actually membership degrees do not exactly cover the range [0,1]: they never equal 0 or
1 (except in the special case where a data point coincides with a cluster center), i.e., in fact they belong to
10,1[. In other words, membership functions have a core reduced to a single point (the cluster center) and
unbounded support. This is a drawback in the case of noisy data-sets, as in the case of clusters with
different densities (Klawonn and Hoppner, 2003b; Rousseeuw, Trauwaert and Kautman, 1995): high
density clusters tend to influence or completely attract other prototypes (note that this problem can be
handled by using other distances than the Euclidean one).

To overcome this problem, Rousseeuw, Trauwaert and Kaufman, (1995) proposed replacing the
objective function by

J= ZZ[W,, Juldy, (1.33)

i=1 j=

where o is a user-defined weight determining the influence of each component. When o = 1, the objective
function reduces to the hard C-means function (see Equation (1.1)), leading to a maximal contrast
partition (membership degrees take only values O or 1). On the contrary, o = 0 leads to the fuzzy C-means
with m = 2 and a low contrast partition (outliers for instance have the same membership degree as all
clusters). o makes it possible to obtain a compromise situation, where membership degrees in]0,1[are
reserved for points whose assignment is indeed unclear, whereas the others, and in particular outliers,
have degrees O or 1.

Klawonn and Hoppner, (2003a,b) also take as their starting point the observation that membership
degrees actually never take the values O and 1. They perform the analysis in a more formal framework that
allows more general solutions: they proposed considering as objective function

J—ZZg u;j)d (1.34)

i=1 j=

Note that robust approaches proposed applying a transformation to the distances, whereas here a
transformation is applied to the membership degrees. Taking into account the constraints on u;; normal-
ization (see Equation (1.9)), and setting the derivative to 0, the partial derivative of the associated
Lagrangian leads to

g'(u,-j)d?i —7; =0, (1.35)

where /; is the Lagrange multiplier associated with the normalization constraint concerning x;. As it is
1ndependent of i, this equation implies g (1,4,/)d2 =g (ukj)d,%j for all i, k. This explains why zero member-
ship degrees can never occur: the standard functlon g(u) = u™ yields g’(0) = 0. Thus, in order to balance
the two terms, no matter how large dl-zj and how small d,fj are, u;; cannot be 0.

Therefore, they proposed replaceing the standard g function with other ones. The conditions g must
satisfy are g(0) =0 and g(1) = 1, increasing and differentiable. Further, the derivative g’ must be

OBJECTIVE FUNCTION VARIANTS 23

increasing and must satisfy g’(0) # 0. Klawonn and Hoppner, (2003b) consider the same function as
Rousseeuw, Trauwaert, and Kautman (1995), i.e., g(u) = oau® + (1 — a)u. Gaussian functions
g(u) = (e™ —1)/(e* — 1) were also suggested, since the parameter o has a similar effect to the fuzzifier
m in the standard fuzzy clustering: the smaller the o, the crisper the partition tends to be (Klawonn and
Hoppner, 2003a). Klawonn (2004) proposesd dropping the differentiability condition and considering a
piecewise linear transformation to obtain more flexibility than with a single parameter o. For instance,
non-increasing functions that are flatter around 0.5 make it possible to avoid ambiguous membership
degrees forcing them to tend to O or 1.

1.4.3 Cluster Number Determination Variants

Partitioning clustering algorithms consist of searching for the optimal fuzzy partition of the data-set into ¢
clusters, where c is given as input to the algorithm. In most real data mining cases, this parameter is not
known in advance and must be determined. Due to the cluster merging phenomenon, the definition of an
appropriate ¢ value for PCM is not so important as for FCM. Yet, as mentioned earlier, at a theoretical
level, PCM relies on an ill-posed optimization problem and other approaches should be considered. They
usually consist of testing several ¢ values and comparing the quality of the obtained partition using
so-called validity criteria (see for instance Halkidi, Batistakis, and Vazirgiannis (2002); this solution is
computationally expensive. Other approaches, presented in this section, consist of considering the ¢ value
as a parameter to be optimized.

Now with this respect the FCM objective function is minimal when ¢ = n, i.e., each cluster contains a
single point as in this case d;; = 0. Thus a regularization term is added, that is minimal when all points
belong to the same cluster, so as to penalize high ¢ values. Then the combination of terms in the objective
function makes it possible to find the optimal partition in the smallest possible number of clusters.

Following this principle, Frigui and Krishnapuram (1997) proposed the competitive agglomeration
(CA) algorithm based on the objective function

C n C n 2
J_Zzugydé—aZ(Zui,) : (1.36)
i=1 j=1 i=1 \j=1
The additional term is the sum of squares of cardinalities of the clusters, which is indeed minimal when all
points are assigned to a single cluster and all others are empty. The optimization process for this function
does not exactly follow the AO scheme and involves competition between clusters, based on their sizes
and distances to the points. Small clusters are progressively eliminated. A robust extension to CA has been
proposed in Frigui and Krishnapuram (1999): the first term in Equation (1.36) is then replaced by the term
provided in Equation (1.28) to exploit the robust estimator properties.
Sahbi amd Boujemaa (2005) proposed using as regularizer an entropy term, leading to

C n n C
J= Z Z u;}7di2j — oc%z - Z u;j log, (u;7).
=1 j=1 =1 =l
To verify the constraints on the memberships u;; € [0, 1], they proposed considering Gaussian member-
ship functions in the form u; = exp(—p;) and estimating the p; parameters. o then intervenes in the
parameter of the exponential and is to be interpreted as a scaling factor: when it is underestimated, each
pointis a cluster; when it is overestimated, the membership functions are approximately constant, and one
gets a single big cluster. The number of clusters is then indirectly determined.

1.4.4 Possibilistic c-means Variants

As indicated in Section 1.24, the possibilistic C-means may lead to unsatisfactory results, insofar as the
obtained clusters may be coincident. This is due to the optimized objective function, whose global

24 FUNDAMENTALS OF FUZZY CLUSTERING

minimum is obtained when all clusters are identical (see Section 1.2.4). Hence the possibilistic C-means
can be improved by modifying its objective function. We mention here two PCM variants, based on the
adjunction of a penalization term in the objective function and the combination of PCM with FCM.

1.4.4.1 Cluster Repulsion

In order to hinder cluster merging, Timm and Kruse (2002) and Timm, Borgelt, Déreing, and Kruse
(2004) proposed including in the objective function a term expressing repulsion between clusters, so as to
force them to be distinct: the considered objective function is written

J= ZZ md2+277,217u,j +Zy Z # (1.37)

=1 j= =1 k= 1k¢zfd(cuc/)

The first two terms constitute the PCM objective function (see Equation (1.16)), the last one expresses the
repulsion between clusters: it is all the bigger as the distance between clusters is small. y; is a parameter
that controls the strength of the cluster repulsion: it balances the two clustering objectives, namely the fact
that clusters should be both compact and distinct. This coefficient depends on clusters so that repulsion
can get stronger when the number of points associated with cluster i increases (Timm, Borgelt, Doring,
and Kruse, 2004). Parameter £ makes repulsion independent of the normalization of data attributes. The
minimization conditions lead to the update equation

n c
¢ =" — 1 (1.38)
m __
/;1 AL k:lz,k#i dlere)”

(the update equation for the membership degrees is not modified and is identical to Equation (1.17)).
Equation (1.38) shows the effect of repulsion between clusters: a cluster is attracted by the data assigned
to it and it is simultaneously repelled by the other clusters.

1.4.4.2 PCM Variants Based on Combination with FCM

Pal, Pal, and Bezdek (1997) and Pal, Pal, Keller, and Bezdek (2004) proposed another approach to
overcome the problems encountered with the possibilistic C-means: they argued that both possibilistic
degrees and membership degrees are necessary to perform clustering. Indeed, possibilistic degrees make
it possible to reduce the influence of outliers whereas membership degrees are necessary to assign points.
Likewise, Davé and Sen (1998) underlined that a good clustering result requires both the partitioning
property of FCM and the modeseeking robust property of PCM.

In Pal, Pal, and Bezdek (1997) the combination of FCM and PCM is performed through the optimiza-
tion of the following objective function:

.
V] Z uij =1
J= Z Z (ujj + 1) di, under the constraints = . (1.39)
i=1 j= Vi Ztij =1
=1

This means that u;; is a membership degree, whereas t;; corresponds to a possibilistic coefficient. Indeed, it
is not submitted to the normalization constraint on the sum across the clusters. The normalization
constraint it must hold aims at preventing the trivial result where #; = 0 for all 7,j. As pointed out in
several papers (Davé and Sen, 1998; Pal, Pal, Keller, and Bezdek, 2004) the problem is that the relative
scales of probabilistic and possibilistic coefficients are then different and the membership degrees
dominate the equations. Moreover, the possibilistic coefficients take very small values in the case of
big data-sets.

UPDATE EQUATION VARIANTS: ALTERNATING CLUSTER ESTIMATION 25

Therefore Pal, Pal, Keller and Bezdek (2004) proposed another combination method, in the form

J= ZZau +bt”d2+zn,z —)", (1.40)

i=1 j=

which uses the same constraint for #; as in the standard PCM (second term in J), and combines
possibilistic and membership degrees. a and b are user-defined parameters that rule the importance the
two terms must play. In the case where the Euclidean distance is used, the update equations are then

> (auf + bt")
1 1 Jj=1

e T e T S

=) ()" s+

Thus u;; are similar to the membership degrees of FCM (see Equation (1.13)), and #; to the possibilistic
coefficients of PCM when replacing 7; with 7;/b (see Equation (1.17)). Cluster centers then depend on
both coefficients, parameters a, b, m, and n rule their relative influence. This shows that if b is higher than a
the centers will be more influenced by the possibilistic coefficients than the membership degrees. Thus, to
reduce the influence of outliers, a bigger value for b than a should be used. Still, it is to be noticed that
these four parameters are to be defined by the user and that their influence is correlated, making it
somewhat difficult to determine their optimal value. Furthermore the problem of this method is that it
loses the interpretation of the obtained coefficients; in particular, due to their interaction, ; cannot be
interpreted as typicality anymore.

1.5 UPDATE EQUATION VARIANTS: ALTERNATING CLUSTER
ESTIMATION

In this section, we study the fuzzy clustering variants that generalize the alternating optimization scheme
used by the methods presented up to now. The notion alternating cluster estimation (ACE) stands for a
distinguished methodology to approach clustering tasks with the aim of having the flexibility to tailor new
clustering algorithms that better satisfy application-specific needs. Instead of reformulating the clustering
task as a minimization problem by defining objective functions, the data analyst chooses cluster
prototypes that satisfy some desirable properties as well as cluster membership functions that have better
suited shapes for particular applications. This is possible, since the ACE framework generalizes the
iterative updating scheme for cluster models that stems from the alternating optimization approaches
(Equation (1.11 and 1.12)). However, the purpose of minimizing objective functions with expressions for
Ju and j¢ is abandoned. Instead, the user chooses heuristic equations to re-estimate partitions and cluster
parameters by which the resulting algorithm iteratively refines the cluster model. Thus the classification
task is directly described by the chosen update equations, which do not necessarily reflect the minimiza-
tion of some criterion anymore.

Alternating cluster estimation is justified by the observation that convergence is seldom a problem in
practical examples (local minima or saddle points can be avoided). The ACE framework is particularly
useful when cluster models become too complex to minimize them analytically or when the objective
function lacks differentiability (Hoppner, Klawonn, Kruse, and Runkler 1999). However, it is to be noted
that the ACE framework also encompasses all those algorithms that follow from the minimization of
objective functions as long as their respective update equations are chosen (which follow from the
necessary conditions for a minimum).

When clustering is applied to the construction of fuzzy rule-based systems, the flexibility of ACE
framework in choosing among different update equations is of particular interest. In such applications the
fuzzy sets carry semantic meaning, e.g., they are assigned linguistic labels like “low”, “approximately
zero” or “‘high”. Consequently the fuzzy sets, in fuzzy controllers for instance, are required to be convex,
or even monotonous (Zadeh, 1965). Furthermore, they have to have limited support, i.e., membership

26 FUNDAMENTALS OF FUZZY CLUSTERING

degrees different from zero are allowed only within a small interval of their universe. ACE provides the
flexibility to define fuzzy clustering algorithms that produce clusters I'; whose corresponding fuzzy sets
wr, fulfil these requirements. The clusters and membership degrees pur,(X;) = u;; obtained with the
objective function-based clustering techniques contrarily do not carry the desired properties. The u;
obtained by AO as in the previous section can be interpreted as discrete samples of continuous member-
ship functions g, : R” — [0, 1] for each cluster. The actual shape that is taken on by these membership
functions results from the respective update equations for the membership degrees. For the probabilistic
fuzzy AO algorithms the continuous membership function follows from Equation (1.13), with d;; being
the Euclidian distance || - ||:

2
m—1

lIx — cif

z (1.41)
> |x =«
=1

pi(x) =

2
m—1

Figure 1.11 shows the membership functions that would result from the probabilistic FCM algorithm for
two clusters. Obviously, the membership functions f; are not convex (i = {1,2}). The membership for
data points at first decreases the closer they are located to the other cluster center, but beyond the other
center membership to the first cluster increases again due to normalization constraint. Possibilistic
membership functions that result from a continuous extension according to Equation (1.17) are convex,
but they are not restricted to local environments around their centers (i.e., the memberships will never
reach zero for larger distances). Thus, if fuzzy sets with limited support as in fuzzy controllers are desired,
possibilistic membership functions are inadequate as well. The transformation of the membership
functions of the objective function-based techniques into the desired forms for the particular application
is possible, but often leads to approximation errors and less accurate models.

Therefore ACE allows you to choose other membership functions aside from those that stem from an
objective function-based AO scheme. Desired membership function properties can easily be incorporated
in ACE. The user can choose from parameterized Gaussian, trapezoidal, Cauchy, and triangular functions
(Hoppner, Klawonn, Kruse, and Runkler, 1999). We present the triangular shaped fuzzy set as an example
in Figure 1.12, since it has all the desired properties considered above:

- () i x el <
i(x) = ill <7 (1.42)

0 otherwise,

1'/%
OI T T T K
-3 -2 A 0 1 2 3

Figure 1.11 The membership functions obtained by probabilistic AO for two clusters at —0.5 and 0.5.

Rﬂngu!ar

u
1_

Triangular

0

X

Figure 1.12 The parameterized triangular fuzzy set.

CONCLUDING REMARKS 27

where r; are the radii of the clusters, o € R-. In an ACE algorithm using hypercone shaped clusters
(a = 1) the memberships of data to fixed clusters are estimated using the above equation, such that
wij = phi(X;).

Deviating from alternating optimization of objective functions the user can also choose between
alternative update equations for the cluster prototypes. In ACE, a large variety of parameterized equations
stemming from defuzzification methods are offered for the re-estimation of cluster centers for fixed
memberships. The reference to defuzzification techniques arises, since a ““crisp” center is computed from
fuzzily weighted data points. Also higher-order prototypes like lines, line segments, and elliptotypes have
been proposed for the ACE scheme (Hoppner, Klawonn, Kruse, and Runkler, 1999). In the simplest case,
however, when clusters are represented by their centers only, new centers vectors could be calculated as
the weighted mean of data points assigned to them (like in the FCM; see Equation (1.14)).

After the user has chosen the update equations for U and C, memberships and cluster parameters are
alternatingly estimated (or updated, but not necessarily optimized w.r.t. some criterion function) as
defined. This leads to a sequence {(Uy, Cy), (Ua, C,), .. .} that is terminated after a predefined number of
iterations fy,x or when the C,; have stabilized. Some instances of the ACE might be sensitive to the
initialization of the cluster centers. Thus determining C, with some iterations of the probabilistic FCM
might be recommended. Notice that all conventional objective function-based algorithms can be
represented as instances of the more general ACE framework by selecting their membership functions
as well as their prototype update equations. An experimental comparison between ‘real” ACE algorithms
that do not reflect the minimization of an objective function and classical AO algorithms as presented
above can be found in (Hoppner, Klawonn, Kruse, and Runkler, 1999).

1.6 CONCLUDING REMARKS

In this chapter we attempted to give a systematic overview of the fundamentals of fuzzy clustering,
starting from the basic algorithms and underlining the difference between the probabilistic and possibi-
listic paradigms. We then described variants of the basic algorithms, adapted to specific constraints or
expectations. We further pointed out major research directions associated with fuzzy clustering. The field
is so broad that it is not possible to mention all of them. In this conclusion we briefly point out further
research directions that we could not address in the main part of the chapter due to length constraints.

1.6.1 Clustering Evaluation

An important topic related to clustering is that of cluster evaluation, i.e., the assessment of the obtained
clusters quality: clustering is an unsupervised learning task, which means data points are not associated
with labels or targets that indicate the desired output. Thus no reference is provided to which the obtained
results can be compared. Major cluster validity approaches include the evaluation of the trade off between
cluster compactness and cluster separability (Dunn 1974a; Rezaee, Lehieveldt and Reiber, 1998; Xie and
Beni, 1991) and stability based approaches (see e.g., Ben-Hur, Elisseeff, and Guyon (2002)).

Some criteria are specifically dedicated to fuzzy clustering: the partition entropy criterion for instance
computes the entropy of the obtained membership degrees,

PE = — Z Ujj logu,-j,
i

and must be minimized (Bezdek, 1975). Indeed, it takes into account that the fuzzy membership degrees
are degrees of freedom that simplify the optimization of the objective function, but that the desired
clustering output is still a crisp partition. A data partition that is too fuzzy rather indicates a bad adequacy
between the cluster number and the considered data-set and it should be penalized. Other fuzzy clustering
dedicated criteria can be found in Bezder (1974) or Windham (1981).

Such criteria can be used to evaluate quantitatively the clustering quality and to compare algorithms
one with another. They can also be applied to compare the results obtained with a single algorithm, when

28 FUNDAMENTALS OF FUZZY CLUSTERING

the parameter values are changed. In particular they can be used in order to select the optimal number of
clusters: applying the algorithm for several ¢ values, the value ¢* leading to the optimal decomposition
according to the considered criterion is selected.

1.6.2 Shape and Size Regularization

As presented in Section 1.3.1, some fuzzy clustering algorithms make it possible to identify clusters of
ellipsoidal shapes and with various sizes. This flexibility implies that numerous cluster parameters are to
be adjusted by the algorithms. The more parameters are involved the more sensitive the methods get to
their initialization. Furthermore, the additional degrees of freedom lead to a lack of robustness.

Lately, a new approach has been proposed (Borgelt and Kruse, 2005) that relies on regularization to
introduce shape and size constraints to handle the higher degrees of freedom effectively. With a time-
dependent shape regularization parameter, this method makes it possible to perform a soft transition from
the fuzzy C-means (spherical clusters) to the Gustafson—Kessel algorithm (general ellipsoidal clusters).

1.6.3 Co-clustering

Co-clustering, also called bi-clustering, two mode clustering, two way clustering or subspace clustering,
has the specific aim of simultaneously identifying relevant subgroups in the data and relevant attributes
for each subgroup: it aims at performing both clustering and local attribute selection. It is in particular
applied in the bio-informatics domain, so as to detect groups of similar genes and simultaneously groups
of experimental conditions that justify the gene grouping. Other applications include text mining, e.g., for
the identification of both document clusters and their characteristic keywords (Kummamuru, Dhawale,
and Krishnapuram, 2003). Many dedicated clustering algorithms have been proposed, including fuzzy
clustering methods as for instance Frigui and Nasraoui (2000).

1.6.4 Relational Clustering

The methods described in this chapter apply to object data, i.e., consider the case where a description is
provided for each data point individually. In other cases, this information is not available, the algorithm
input takes the form of a pairwise dissimilarity matrix. The latter has size n x n, each of its elements
indicates the dissimilarity between point couples. Relational clustering aims at identifying clusters
exploiting this input. There exists a large variety of fuzzy clustering techniques for such settings (Bezdek,
Keller, Krishnapuram, and Pal, 1999; Hathaway and Bezdek, 1994) that are also based on objective
function optimization or the ACE scheme (runkler and Bezdek, 2003). The interested reader is also
referred to the respective chapter in Bezdek, Keller, Krishnapuram, and Pal (1999).

1.6.5 Semisupervised Clustering

Clustering is an unsupervised learning task. Yet it may be the case that the user has some a priori knowledge
about couples of points that should belong to the same cluster. Semisupervised clustering is concerned with
this learning framework, where some partial information is available : the clustering results must then
verify additional constraints, implied by these pieces of information. Specific clustering algorithms have
been proposed to handle these cases; the interested reader is referred to chapter 7 in this book.

ACKNOWLEDGEMENTS

Marie-Jeanne Lesot was supported by a Lavoisier grant from the French Ministere des Affaires
Etrangeres.

REFERENCES 29
REFERENCES

Ball, G. and Hall, D. (1966) ‘Isodata an iterative method of multivariate data analysis and pattern classification’.
IEEE Int. Comm. Conf. (Philadelphia, PA), vol. 2715 (2003) of Lecture Notes in Artifical Intelligence. IEEE Press,
Piscataway, NJ, USA,

Barni, M. Cappellini, V. and Mecocci, A. (1996) ‘Comments on a possibilistic approach to clustering’. IEEE
Transactions on Fuzzy Systems 4, 393-396.

Ben-Hur, A., Elisseeff, A. and Guyon, 1. (2002) ‘A stability based method for discovering structure in clustered data’ In
Pacific Symposium on Biocomputing (ed. Scientific W), vol. 7, pp. 6-17.

Bezdek, J. (1973) Fuzzy Mathematics in Pattern Classification PhD thesis Applied Math. Center, Cornell University,
Ithaca, USA.

Bezdek, J. (1974) ‘Cluster validity with fuzzy sets’. Journal of Cybernetics 3(3), 58-73.

Bezdek, J. (1975) ‘Mathematical models for systematics and taxonomy’ Proc. of the 8th Int. Conf. on Numerical
Taxonomy, pp. 143—166. Freeman.

Bezdek, J. (1981) Pattern Recognition With Fuzzy Objective Function Algorithms. Plenum Press, New York.

Bezdek,J.C., Keller, J., Krishnapuram, R. and Pal, NR. (1999) Fuzzy Models and Algorithms for Pattern Recognition and
Image Processing Kluwer Boston, London chapter 3. Cluster Analysis for Relational Data, pp. 137-182.

Blake, CL. and Merz, C. J. (1998) UCI repository of machine learning databases.

Bock, H. H. 1974 Automatische Klassifikation. Vadenhoeck & Ruprecht, Géttingen, Ziirich.

Borgelt, C. and Kruse, R. (2005) ‘Fuzzy and probabilistic clustering with shape and size constraints’ Proc. 11th Int.
Fuzzy Systems Association World Congress (IFSA’05, Beijing, China), pp. 945-950. Tsinghua University Press and
Springer-Verlag, Beijing, China, and Heidelberg, Germany.

Davé, R. (1991) ‘Characterization and detection of noise in clustering’. Pattern Recognition Letters 12, 657-664.

Davé, R. and Krishnapuram, R. (1996) ‘M-estimators and robust fuzzy clustering’ In Proc. of the Int. Conf. of the North
Americam Fuzzy Information Processing Society, NAFIPS’96 (ed. Smith M, Lee M, Keller J and Yen J), pp. 400-404.
IEEE.

Davé, R. and Krishnapuram, R. (1997) ‘Robust clustering methods: a unified view’. IEEE Transactions on Fuzzy
Systems 5, 270-293.

Davé, R. and Sen, S. (1997) ‘On generalising the noise clustering algorithms’ Proc. of the 7th IFSA World Congress,
IFSA’97, pp. 205-210.

Davé, R. and Sen, S. (1998) ‘Generalized noise clustering as a robust fuzzy c-m-estimators model’ Proc. of the 17th Int.
Conference of the North American Fuzzy Information Processing Society: NAFIPS’98, pp. 256-260.

Drineas, P, et al. (2004) ‘Clustering large graphs via the singular value decomposition’. Machine Learning 56, 933.

Dubois, D. and Prade, H. (1988) Possibility Theory. Plenum Press, New York, NY, USA.

Duda, R. and Hart, P. (1973) Pattern Classification and Scene Analysis. J. Wiley & Sons, Inc., New York, NY, USA.

Dunn, J. (1974a) ‘Well separated clusters and optimal fuzzy partitions’. Journal of Cybernetics 4, 95-104.

Dunn, J. C. (1974b) ‘A fuzzy relative of the isodata process and its use in detecting compact, well separated clusters’.
Journal of Cybernetics 3, 95-104.

Fisher, R. A. (1936) ‘The use of multiple measurements in taxonomic problems’. Annals of Eugenics 7(2), 179-188.

Frigui, H. and Krishnapuram, R. (1996) ‘A robust algorithm for automatic extraction of an unknown number of clusters
from noisy data’. Pattern Recognition Letters 17, 1223-1232.

Frigui, H. and Krishnapuram, R. (1997) ‘Clustering by competitive agglomeration’. Pattern Recognition 30(7), 1109—
1119.

Frigui, H. and Krishnapuram, R. (1999) ‘A robust competitive clustering algorithm with applications in computer
vision’. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 450—465.

Frigui, H. and Nasraoui, O. (2000) ‘Simultaneous clustering and attribute discrimination’ Proc. of the 9th IEEE Int.
Conf. on Fuzzy Systems, Fuzz-IEEE’00, pp. 158—163.

Gustafson, E. E. and Kessel , W. C. (1979) ‘Fuzzy clustering with a fuzzy covariance matrix’ Proc. of the IEEE
Conference on Decision and Control, San Diego, Californien, pp. 761-766. IEEE Press, Piscataway, NJ.

Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2002) ‘Cluster validity methods: Part I and part II'. SIGMOD Record
31(2), 19-27 and 40-45.

Hathaway, R. and Bezdek, J. (1994) ‘Nerf c-means: Non-euclidean relational fuzzy clustering’. Pattern Recognition
27(3), 429-437.

Hawkins, D. (1980) Identification of Outliers. Chapman and Hall, London.

Hoppner, F., Klawonn, E,, Kruse, R, and Runkler, T. (1999) Fuzzy Cluster Analysis. J. Wiley & Sons, Ltd, Chichester,
United Kingdom.

30 FUNDAMENTALS OF FUZZY CLUSTERING

Keller, A. (2000) ‘Fuzzy clustering with outliers’ In Proc. of the 19th Int. Conf. of the North American Fuzzy Information
Processing Society, NAFIPS’00 (ed. Whalen T), pp. 143-147.

Klawonn, F. (2004) ‘Fuzzy clustering: Insights and a new approach’. Mathware and soft computing 11, 125-142.

Klawonn, F. (2006) ‘Understanding the membership degrees in fuzzy clustering’. In Proc. of the 29th Annual Con-
ference of the German Classification Society, GfKI 2005 (ed. Spiliopoulou M, Kruse R, Borgelt C, Nrnberger A and
Gaul W), pp. 446-454 Studies in Classification, Data Analysis, and Knowledge Organization. Springer.

Klawonn, F. and Hoppner, F. (2003a) ‘An alternative approach to the fuzzifier in fuzzy clustering to obtain better
clustering results’ Proceedings 3rd Eusflat, pp. 730-734.

Klawonn, F. and Hoppner, F. (2003b) ‘What is fuzzy about fuzzy clustering? —understanding and improving the concept
of the fuzzifier’ In Advances in Intelligent Data Analysis V (ed. Berthold M, Lenz HJ, Bradley E, Kruse R and
Borgelt C), pp. 254-264. Springer.

Klawonn, F., Kruse, R. and Timm, H. (1997) ‘Fuzzy shell cluster analysis’ In Learning, networks and statistics (ed. della
Riccia, G., Lenz, H. and Kruse, R.) Springer pp. 105-120.

Krishnapuram, R. and Keller, J. (1993) ‘A possibilistic approach to clustering’. IEEE Transactions on Fuzzy Sys-
tems 1, 98—-110.

Krishnapuram, R. and Keller, J. (1996) ‘The possibilistic c-means algorithm: insights and recommendations’. I[EEE
Trans. Fuzzy Systems 4, 385-393.

Kummamuru, K., Dhawale, A. K. and Krishnapuram, R. (2003) ‘Fuzzy co-clustering of documents and keywords’
Proc. of the IEEE Int. Conf. on Fuzzy Systems, Fuzz-IEEE’03.

McKay, M. D , Beckman, R. J. and Conover, W. J. (1979) ‘A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code’. Technometrics 21(2), 239-245.

Pal, N., Pal, K. and Bezdek, J. (1997) ‘A mixed c-means clustering model’ Proc. of FUZZ’IEEE 97, pp. 11-21.

Pal, N, Pal, K., Keller, J. and Bezdek, J. (2004) ‘A new hybrid c-means clustering model’ Proc. of FUZZ IEEE’04,
pp. 179-184.

Pedrycz, W. (2005) Knowledge-Based Clustering: From Data to Information Granules.J. Wiley & Son Inc., Holboken,
USA.

Rezaee, M., Lelieveldt, B. and Reiber, J. (1998) ‘A new cluster validity index for the fuzzy C-means’. Pattern Recognition
Letters 19, 237-246.

Rousseeuw, P., Trauwaert, E. and Kaufman, L. (1995) ‘Fuzzy clustering with high contrast’. Journal of Computational
and Applied Mathematics 64, 81-90.

Runkler, T. A. and Bezdek, J. C. (2003) ‘“Web mining with relational clustering’. Int. Jo. Approx. Reasoning 32(2-3),
217-236.

Sahbi, H. and Boujemaa, N. (2005) ‘Validity of fuzzy clustering using entropy regularization’ Proc. of the IEEE Int. Conf.
on Fuzzy Systems.

Scholkopf, B. and Smola, A. (2002) Learning with Kernels. MIT Press.

Timm, H. and Kruse, R. (2002) ‘A modification to improve possibilistic fuzzy cluster analysis’ Proc. of FUZZ-IEEE’02.

Timm, H., Borgelt, C., Doring, C. and Kruse, R. (2004) ‘An extension to possibilistic fuzzy cluster analysis’. Fuzzy Sets
and Systems 147, 3-16.

Vapnik, V. (1995) The Nature of Statistical Learning Theory. Springer, New York, USA.

Windham, M. P. (1981) ‘Cluster validity for fuzzy clustering algorithm’. Fuzzy Sets and Systems 5, 177-185.

Wu, K. and Yang, M. (2002) ‘Alternating c-means clustering algorithms’. Pattern Recognition 35, 2267-2278.

Wu, Z., Xie, W. and Yu, J. (2003) ‘Fuzzy c-means clustering algorithm based on kernel method’ Proc. of ICCIMA’03,
pp. 1-6.

Xie, X. and Beni, G. (1991) ‘A validity measure for fuzzy clustering’. IEEE Transactions on pattern analysis and
machine intelligence 13(4), 841-846.

Zadeh, L. A. (1965) ‘Fuzzy sets’. Information Control 8, 338-353.

Zhang, D. and Chen, S. (2003a) ‘Clustering incomplete data using kernel-based fuzzy c-means algorithm’. Neural
Processing Letters 18(3), 155-162.

Zhang, D. and Chen, S. (2003b) ‘Kernel-based fuzzy and possibilistic c-means’ Proc. of ICANN’03, pp. 122-125.

Zhang, D. and Chen, S. (2004) ‘A comment on ‘alternative c-means clustering algorithms”. Pattern Recognition 37(2),
179-174.

2

Relational Fuzzy Clustering

Thomas A. Runkler

Siemens AG, Miinchen, Germany

2.1 INTRODUCTION

Clustering is a method used to partition a set of objects into subsets, the so-called clusters. We consider
the case that the set of objects is specified by data. We distinguish between object data and relational
data. Object data contain a numerical vector of features for each object, for example, the length, width,
height, and weight of an object. Relational data quantify the relation between each pair of objects, for
example, the similarity of the two objects. For some sets of objects the object data representation is more
appropriate, for other sets of objects the relational data representation is more appropriate. In general,
object data can be transformed into relational data by applying a (pairwise) relational operator. For
example, the Euclidean distances between pairs of feature vectors can be interpreted as relations
between the corresponding objects. In the same way, each relational data-set can at least approximately
be represented by object data. For example, objects can be placed on a two-dimensional diagram, so that
more similar pairs of objects are placed closer together than less similar pairs of objects. Most chapters of
this book exclusively deal with object data. In this chapter we will explicitly focus on relational data and
how to find clusters in relational data. This chapter is organized as follows. In Section 2.2 we introduce
object and relational data in a more formalized way. In Section 2.3 we briefly review object clustering
models. In Section 2.4 we introduce the relational duals of these object clustering models and their
extensions. In Section 2.5 we consider relational clustering with non-spherical, higher-order prototypes.
In Section 2.6 we show that relational data can be clustered by just interpreting them as object data. In
Section 2.7 we present some illustrative application examples. Finally, in Section 2.8 we give some
conclusions.

2.2 OBJECT AND RELATIONAL DATA

A set of objects O = {o0y,...,0,},n € NT, can be numerically specified by an object data-set
X = {x1,...,x,} CRP,p € NT. In this object data-set each of the n objects is numerically described
by p real-valued features. Notice that features on any subset of R are included here, in particular (discrete)
features on (subsets of) N. Each object is represented as a point in the p-dimensional feature space, so an

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
© 2007 John Wiley & Sons, Ltd

32 RELATIONAL FUZZY CLUSTERING

object data-set X can be visualized by plotting the feature vectors. If p € {1,2,3} then the vectors in X
can be directly plotted. If p > 3, then linear or nonlinear projection methods can be applied to produce
a visualization of X.

A set of objects O = {01, ...,0,}, n € NT, can also be numerically specified by a relational dataset
R C R™". In this relational data-set each pair of objects is numerically described by a real-valued
relation. Again, relations on any subset of R are included here, in particular (discrete) relations on
(subsets of) N. For convenience we do not distinguish between data-sets and matrices. For example, we
denote the ith component of the element x; from the set X as the element x;; of the matrix X. Each entry
rie,J,k € {1,...,n} inthe n x nrelation matrix R then quantifies the relation between the pair of objects
(0, o). Since arelational data-set R is equivalent to a square matrix, it can be easily visualized by a three-
dimensional plot on a rectangular n x n grid, where the third dimension is given by the elements of the
matrix R.

Often we consider positive relations where rj > 0 for all j,k = 1,...,n, and symmetric relations
where rj, = ry; forall j,k = 1,..., n. We distinguish between similarity and dissimilarity relations, and
require similarity relations to be reflexive, rj; = 1 for all j = 1, ..., n, and dissimilarity relations to be
irreflexive, rj = O forallj=1,... n.

A popular example for a relational dataset was given by Johnson and Wichern (1992). Consider the
words for the numbers 1 (‘one’) to 10 (‘ten’) in the 11 languages O = { English, Norwegian, Danish,
Dutch, German, French, Spanish, Italian, Polish, Hungarian, Finnish}. The words for the same number in
two different languages are called concordant, if they have the same first letter. For example, the English
word ‘seven’ and the German ‘sieben’ are concordant, while the English ‘eight’ and the German ‘acht’ are
not. English and German have four concordant words for numbers between 1 and 10: 5, 6,7, and 9 —so the
concordance between English and German is four. Since the concordances between two languages are
integers between 0 and 10, the distance between two languages is defined as 10 minus the concordance.
For O we obtain the distance matrix

022 7 6 6 6 6 7 9 9
201 5 46 6 6 7 8 9
2106 56 5 5 6 8 9
756 05 9 9 9 10 8 9
6 45507 7 7 8 9 9
p=|6 66 9 7 0 2 1 5 109 (2.1)
6 6597 2 0 1 3 1009
665 97 1 1 0 4 109
776 10 8 5 3 4 0 10 9
98 8 8 9 10 10 10 10 0 8
9999 99 9 9 9 9 8 0

Notice that D is positive, symmetric, and irreflexive. In Johnson and Wichern (1992) the following crisp
clusters were reported:

cluster structure

[

{{E,N,Da,Fr,1,Sp,P},{Du,G},{H,Fi}}
{{E,N,Da,Fr,1,Sp,P},{Du,G},{H},{Fi}}
{{E,N,Da},{Fr,1,Sp,P},{Du,G},{H},{Fi}}
{{E>N7Da}> {Fr,], Sp}, {P}7 {D”}7 {G}> {H}7 {Fi}}
{{E} AN, Da}, {Fr,1},{Sp},{P}, {Du},{G}, {H}, {Fi}}

O N N W

OBJECT AND RELATIONAL DATA 33

Notice that these cluster structures are intuitively reasonable, even if they are only based on the very
simple concordance measure.

In general, relational data-sets can be manually or automatically generated. If the relational data-set is
manually generated, then a human expert has to rate (quantify) the relation between each pair of objects
based on some more or less subjective criteria. This is only feasible for a small number of objects. For a
larger number of objects this process is too expensive, because for n objects we have to quantify n x n
relation values. If the relational dataset is automatically generated, some (numerical) features have to be
identified to provide the necessary information about the relation between each pair of objects. These
features may be relational, but they may also be object features. To compute relational data from object
feature data, any norm ||.|| : R” — R can be used, for example,

rik = [l — x| (2.2)

In this case the relational data are dissimilarities. If we use a similarity measure (like cosine) instead, then
the relational data are similarities. The concordance measure presented above is an example of a
dissimilarity measure based on the character representation of the objects. In the following we will focus
on dissimilarities on numerical data, but dissimilarities on other data or similarities can be handled in a
similar way.

If we add constant vectors to each element of X, and/or rotate the vectors around an arbitrary center in
R?”, then the resulting relational dataset R produced by (2.2) will stay the same. Therefore, even if a
relational data-set R is generated from an object data-set X, then the original data-set X can in general not
be reconstructed from R. Moreover, in the general case, for a given data-set R there might not even exist an
object data-set X and a norm ||.|| that produces R using (2.2). It is, however, possible to at least
approximately produce a corresponding object data-set X from a given relational data-set R and a
norm ||.|| by Sammon mapping (Sammon, 1969). Sammon mapping produces an object data-set
Y ={y1,...,yn} C R? so that the distances

dic = |ly; — yxll, (2.3)

Jyk=1,...,n, are as close as possible to the corresponding relational data ry, i.e., dj ~ ry for all
Jj,k=1,...,n.If Riscomputed from an object data-set X, then this implies that X ~ Y. Sammon mapping
is done by minimizing the error functional

3o)’

1
TR , (2.4)
SN i
k=1

Esammon =

Minimization of Egymmon can be done by gradient descent or Newton’s algorithm. The derivatives of
Esammon that are needed for these numerical optimization algorithms are
OEs; 2 di — rig Yk — i
Sammon = = Z ik Gk Yk — Yj (25)
8)Cj T I'jk djk
2o 2 T itk

j=1k=j+1
and
O?Eg, 2 ! 1 -y
anrznmon == Z(5= — 7 + (yk yfg > (26)
x; SS oA ()™ Tiedie (i)
j=1k=j+1

Notice that with each update of each object data vector x;,j =1,...,n, all the distances djy =
I X — x|,k =1,...,n, also have to be updated. In principle, Sammon mapping allows any object

data processing algorithm to be extended to relational data. In particular, we can apply Sammon
mapping to R and then apply a clustering algorithm to the resulting X. This approach was presented
in (Pal, Eluri, and Mandal, 2002) for the case of fuzzy clustering. This indirect approach will not

34 RELATIONAL FUZZY CLUSTERING

be pursued further here; instead we will focus on methods that explicitly process relational data in
Section 2.4. Before that, however, we will give a brief review of object clustering methods.

2.3 OBJECT DATA CLUSTERING MODELS

Clustering partitions a set of objects O = {01,...,0,} into ¢ € {2,...,n — 1} non-empty and pairwise
disjoint subsets Cy, ..., C. C 0,50 C; # @foralli € {1,...,c},C;UC; = Oforalli,j e {1,...,c},and
CiU...UC, = 0. The sets Cy,...,C, can equivalently be described by a (hard) partition matrix

U € My, where

c n
My, = {U {0, 7Y Jug =1k=1,...,n,> uy>0,i= 1,...,c}. (2.7)
k=1

i=1

2.3.1 Sequential Agglomerative Hierarchical Clustering

For object datasets X = {xy,...,x,} C R? finding good cluster partitions is guided by the similarities
between feature vectors. Objects with similar feature vectors should belong to the same cluster, and
objects with different feature vectors should belong to different clusters. A simple clustering algorithm is
sequential agglomerative hierarchical nonoverlapping (SAHN) clustering (Sneath and Sokal, 1973). The
SAHN algorithm starts with n clusters, each with one data point, so C; = {x;},...,C, = {x,}. In each
step SAHN merges the pair of clusters with the lowest distance from each other, until the desired number
of clusters is achieved, or until finally all points are agglomerated in one single cluster. Depending on the
measure to compute the distances between pairs of clusters we distinguish three variants: single linkage
uses the minimum distance between all pairs of points from different clusters, complete linkage uses the
maximum distance, and average linkage uses the average distance.

2.3.2 (Hard) c-means

The drawback of all SAHN variants is their complexity that grows quadratically with the number of
objects. Hence, SAHN is not efficient for large data-sets. The complexity of SAHN can be significantly
reduced, if we do not compute all distances between pairs of points but if we represent each cluster by a
cluster center and only compute the distances between pairs of these points and centers. In this case, the
cluster structure is additionally specified by aset V.= {v;,...,v.} C R?, where v; is the center of cluster
i,i € {1,...,c}.Foragood cluster partition each data point should be as close as possible to the center of
the cluster it belongs to. This is the idea of the (hard) c-means (HCM) clustering model (Ball and Hall,
1965) that minimizes the objective function

C n
JHCM(UaVSX):Zzuik”xk_vi"z- (2.8)
=1 k=1

Optimization of the HCM clustering model can be done by alternating optimization (AO) through the
necessary conditions for extrema of Jycm (U, V; X).

{ 1 if|xe — vil| = min{]Jxe — wi], o | — vel|}
Uj = .
0 otherwise,

n
D UikXx
k=l

Vv = 7
Z Uik
k=1

: (2.10)

OBJECT DATA CLUSTERING MODELS 35

i=1,...,c,k=1,...,n There exist two versions of AO. The first version randomly initializes V and
then repeatedly updates U and V until some termination criterion on V holds, and the second version
randomly initializes U and then repeatedly updates V and U until some termination criterion on U holds.
If p < nthen the first version is more efficient and if n < p then the second version is more efficient. Some
alternative ways to optimize clustering models are genetic algorithms (Bezdek and Hataway, 1994),
artificial life techniques (Runkler and Bezdek, 1997), ant colony optimization (ACO) (Runkler, 2005a),
and particle swarm optimization (PSO) (Runkler and Katz, 2006).

2.3.3 Fuzzy c-means

The main disadvantage of HCM is that it has to assign each point to exactly one cluster, also points that
partially belong to several overlapping clusters. This disadvantage is overcome by fuzzy clustering. In
analogy to (2.7) the set of fuzzy partitions is defined as

c n
Meey = {U €07 up=1k=1,...n> uy>0,i= 1,...,c}. (2.11)
i=1 k=1
In analogy to (2.8) the fuzzy c-means (FCM) clustering model (Bezdek, 1981) is defined by the objective

function

c
Jeem (U, V; X) Zzu,kuxk—v,u (2.12)
i=1 k=

with a fuzziness parameter m € (1, 0o) with a typical value of m = 2. Optimization of the FCM clustering
model can be done by AO through the necessary conditions for extrema of Jrcm (U, V; X).

— ml
U = 1 Z('x" V”) , (2.13)

[k — il
1;1 ulixy
v =51 . (2.14)

Notice the similarity between Equations (2.10) and (2.14), and notice the difference between Equations
(2.9) and (2.13)!

2.3.4 Possibilistic c-means and Noise Clustering

A drawback of fuzzy partitions is that the some of memberships in all clusters has to be one for each data
point, also for noise points or remote outliers. This drawback is overcome by possibilistic partitions

Mpcn: {U€[07 I]wan|zuik>07i:17'-~7C}- (215)

k=1

Two clustering models that produce possibilistic partitions are possibilistic c-means (PCM) (Krishnapuram
and Keller, 1993) and noise clustering (NC) (Davé, 1991). The PCM objective function is

Jeem(U, V; X) ZZu,kak—v,H —Zn,z 1 —uy)™, (2.16)

i=1 k=

36 RELATIONAL FUZZY CLUSTERING

with the cluster radii 7, . ..,n. € R*. The necessary conditions for optima of PCM are Equation (2.14)

and (the Cauchy function)
2\ mT
wi =1/ 14 (=2l) (2.17)
T
The NC objective function is

Ine(U,ViX) =" u;';||xk—v,-||2+252<1 —Zu,.k> ; (2.18)
k=1 Jj=1

i=1 k=1

[
=

with the parameter § € R" that represents the distance between each point and the center of a “noise”
cluster. The necessary conditions for optima of NC are Equation (2.14) and

. 2 2

(L=l
a =1 + . 2.19
g /(Zj.<||xk—v,-|| 5 2-19)

2.3.5 Alternating Cluster Estimation

The AO algorithms of all four (HCM, FCM, PCM, and NC) and many other clustering models are special
cases of the alternating cluster extimation (ACE) (Runkler and Bezdek, 1999a). There exist two versions
of ACE, corresponding to the two versions of AO introduced before. The first version initializes V and
then alternatingly updates U and V. The second version initializes U and then alternatingly updates V and
U. Both ACE versions are defined by the update equations for U and V. The update equations for U may
be Equations (2.9), (2.13), (2.17), and (2.19) or, for example, exponential functions

_ H"k"'iH)
U =€ (A (2.20)
O1,...,0c0 > 0, or hyperconic functions (dancing cones)
(vl _ ,
= 4 1= (B7) " forlbe —will < 221)
0 otherwise,

Fly... re;o0 >0 (Runkler and Bezdek, 1999b). For X C [-2,2],V ={-1,1},m € {1.1,1.5,2,3},
o€ {0.5,1,2,4},m = =01 = 02 = r; = r, = 1, the four classes of membership functions (2.13),
(2.17), (2.20), and (2.21) are displayed in Figure 2.1. Notice that these membership function families
share many similarities. For example, for m — 1 and for o — 0, they all become equal to the HCM
partitions uj; = 1 and uy; = 0 for x < 0 and uj; = 0 and uy = 1 for x > 0, and for m — oo and for
o — 00, they all have single peaks at v; and v,. The update equations for V may be Equations (2.10),
(2.14) (which corresponds to a basic defuzzification distribution (BADD) (Filev and Yager, 1991)), or
other defuzzification operators like semi-linear defuzzification (SLIDE) (Yager and Filev, 1993) or
extended center of area (XCOA) (Runkler and Glesner, 1993). For a more extensive overview on
defuzzification see (Runkler, 1997). Notice that ACE is a family of generalized clustering algorithms
that may or may not optimize any clustering models. Depending on the choice of the update equations for
U and V, ACE may obtain different characteristics. For example, hyperconic membership functions lead
to a low sensitivity to noise and outliers.

2.3.6 Non-spherical Profotypes

All of the clustering models presented up to here are based on distances ||xx — v;|| between data points and
cluster centers. If ||.|| is the Euclidean distance, then hyperspherical clusters are found. To extend a

OBJECT DATA CLUSTERING MODELS 37

(a) FCM (b) PCM

(c) Exponential (d) Hyperconic

Figure 2.1 Some membership function families for alternating clustering estimation.

(hyperspherical) clustering model to other cluster shapes, the Euclidean distance between data points and
cluster centers has to be replaced by a different distance measure. For example, instead of the Euclidean
distance we can use the local Mahalanobis distance. This means that for each cluster i = 1,...,¢c we
compute the local (fuzzy) covariance matrix

n

Si = ZM:Z (v — Xk)T ~(vi = xx), (2.22)
k=1

compute the corresponding norm inducing matrix
A; = (p;detS)'/P . (ST .5;) - 8T (2.23)

with the cluster volumes p,, ..., p, > 0, and set ||x; — v;|| as the matrix norm (v; — x;) - A; - (v; — xz)".
This distance measure leads to clustering models that find hyperellipsoidal clusters. If we use this distance
measure in the FCM model, then we call the resulting model the Gustafson—Kessel (GK) model
(Gustafson and Kessel, 1979). However, the same distance measure can be used in all of the clustering
models presented so far.

38 RELATIONAL FUZZY CLUSTERING

In the GK model, each cluster i = 1, ..., c is represented by a cluster center v; and a norm inducing
matrix A;. More generally, we can allow arbitrary geometrical parameters and the corresponding distance
measures. This leads to more complicated cluster prototypes. As examples for these more complicated
prototypes we briefly present linear varieties, so-called elliptotypes and circles. A linear variety can be
represented by an anchor point and one or more direction vectors. So, the prototypes of a c-varieties
model are (vi,d;1,...,diq) € R¥GH) =1 .. ¢ q€ {1,...,p — 1}. The distance between data
point x; and the ith variety is

q

e = vil* = > (0o = vi) ' dy)?, (2.24)

j=1

where the direction vectors d;; are the largest eigenvectors of the local covariance matrices S; (2.22). If
these prototypes are used in the FCM model, then we obtain the fuzzy c-varieties (FCV) model (Bezdek,
Coray, Gunderson, and Watson, 1981a).

An elliptotype is a fuzzy set whose o cuts are (hyper-)ellipsoidals. An elliptotype is specified by
the same parameters as a variety, (vi,di1,...,dig),i=1,...,¢c,q € {1,...,p— 1}, but the distance
between x; and the ith elliptotype is

o = vl = o D (e = vi) " dly)?, (2.25)

Jj=1

o € [0,1], which is a linear combination of the Euclidean distance between x; and v; and the distance
between x; and the variety according to (2.24). If these prototypes are used in the FCM model, then we
obtain the fuzzy c-elliptotypes (FCE) model (Bezdek, Coray, Gunderson, and Watson, 1981b).

As the last example for more complicated (object data) prototypes we present circles. A circle

is represented by a center and a radius, which yields to circle prototypes (v;,r;),i=1,...,c,
v; € RP r; € R. The distance between x; and the ith circle is
[[lxe = vil| = ril (2.26)
and the radii can be updated by
o b — vl o2
D k=1 U

i=1,...,c.Ifthese prototypes are used in the FCM model, then we obtain the fuzzy c-shells (FCS) model
(Davé, 1990).

In accordance with the fuzzy clustering models for these three cluster prototypes (FCV, FCE, and
FCS), we can define possibilistic clustering models, noise clustering models, and alternating cluster
estimation: PCV, PCE, PCS, NC-V, NC-E, NC-S, ACE-V, ACE-E, and ACE-S. The three prototype
families (varieties, elliptotypes, and shells) are only examples for possible prototypes. Clustering
algorithms for many other geometric forms can be obtained by just specifying the geometric cluster
prototype, the distance between data points and prototypes, and an algorithm to compute the free cluster
prototypes.

2.4 RELATIONAL CLUSTERING

The clustering models reviewed in the previous section are tailored to find clusters in object data. For all of
them, similar clustering models for relational data can be developed. In this section we review some of
these clustering models for relational data.

Let us first restrict ourselves to relational data clustering models specified by objective functions. The
relational data-set is denoted as R C R™*", and the goal is to compute a partition matrix U that minimizes

RELATIONAL CLUSTERING 39

the objective function J(U;R). Notice that neither object data X nor cluster centers V are available in
relational clustering. Hence, the distances ||x; — v;|| between data points and cluster prototypes that
appear in each of the clustering models from the previous section can in general not explicitly be
computed. There are (at least) three ways to overcome this problem: the restriction of the solution space,
the implicit computation of object data, and the explicit computation of object data. In the following we
present (at least) one representative for each of these three ways.

2.4.1 Relational Fuzzy c-medoids

The relational matrix R can be interpreted to contain distances between pairs of data points from X. In the
clustering models from the previous section we need to compute distances between points from X and
cluster centers from V. Hence, if we require V C X, i.e., each cluster center has to be on one of the data
points, then we can immediately use the information in R for the required distances. The cluster centers
V C X are called medoids. Therefore, the corresponding clustering model is called the (relational) fuzzy
c-medoids (R)FCMdd) model (Krishnapuram, Joshi, Nasraoui, and Yi, 2001). (R)FCMdd has the same
objective function as FCM (2.12), but the additional restriction V C X. (R)FCMdd can be optimized by
alternating optimization. For simplicity we present the object data version FCMdd here, which can be
easily converted into the relational data version RFCMdd. The partition matrix U is computed according to
FCM using Equation (2.13), but the choice of V C X is adiscrete optimization problem that has to be solved
using exhaustive search. The contribution of the ith cluster to the objective function Jrcmaa = Jrem 18

n
TE=> uplle — vl (2.28)
k=1
soJ = >, Ji. If say v; = x;, then we have ||v; — x¢|| = ry, and so
n
Tr=Ty =Y ulr. (2.29)
k=1
So the best choice for each cluster center is v; = x,,,i = 1,...,n, with
w; = argmin{J;;, ..., Jix }. (2.30)

The exhaustive search is computationally expensive, so (R)FCMdd has a relatively high computational
complexity.

2.4.2 Relational Fuzzy c-means

The second approach to transform an objective function for object clustering into an objective function for
relational data clustering is to compute implicitly the cluster prototypes. This can be done by inserting the
equation to compute the cluster prototypes in AO into the objective function (for object data). This
process, called reformulation (Hathaway and Bezdek, 1995), yields an objective function for relational
data. For example, a reformulation of the FCM model is obtained by inserting Equation (2.14) into (2.12),
which leads to the relational fuzzy c-means (RFCM) (Bezdek and Hathaway, 1987) model with the
objective function
¢ > Z uj uzkr/k
Jeeem(UsR) =Y (2.31)
Py Soul

J=1

40 RELATIONAL FUZZY CLUSTERING

Optimization of Jrrem can be done by randomly initializing and then iteratively updating U using the
necessary conditions for extrema of RFCM:

n
S = 30 3
s=1 i s=11=1 n
Rt 2(2u¢:)
r=1
ik = ! T ulrg “ wWhr, (232)
Z . o,
DI D I D
s=1 um s=11t=1 n
= 2(Zu7:)

r=1

i=1,...,c,k=1,...,n, until some termination criterion holds. Notice that the optimization of the
RFCM is no alternating optimization (AQO), but simply optimization, since the family V of optimization
variables has disappeared, so there remains only one family of optimization variables: U. Relational duals
for other object clustering models can be found in Hathaway, Davenport, and Bezdek (1989).

2.4.3 Non-Euclidean Relational Fuzzy c-means

If the relational data-set R is explicitly computed from object data X using the same norm ||.|| that is used
in the clustering model, then minimizing Jrcmaa (U, V; X) will produce the same partition matrix U as
minimizing Jrremaa (U; R), and minimizing Jeem (U, V; X) will produce the same partition matrix U as
minimizing Jrrem (U; R). However, different norms might have been used in the computation of R and in
clustering. Or the relational data-set may be obtained without any underlying object data-set, for example,
by manual rating. In these cases, we cannot match the object data versions with the relational data versions
of these algorithms any more. The RFCM model might even yield partition matrices U & My, in
particular we can have some u; < 0 or u; > 1, for non-Euclidean relational data-sets. To fix this
problem, Hathaway and Bezdek (1994) transformed the non-Euclidean distance matrix D into a
Euclidean distance matrix Dg by applying a so-called f-spread transform

Dy=D+p-B, (2.33)

with a suitable B € R", where B €[0,1]"”" is the off-diagonal matrix with b; =1 for all
i,j=1,...,n,i#j, and b; =0 for all i =1,...,n. In the non-Euclidean relational fuzzy c-means
(NERFCM) algorithm (Hathaway and Bezdek, 1994) the value of f is sucessively increased, i.e., higher
values of are added to the off-diagonal elements of R, until the Euclidean case is achieved, and we finally
have U € My,.

2.4.4 Relational Alternating Cluster Estimation

In the same way as we extended AO of object clustering models to ACE, we can also extend the
optimization of relational data clustering models to relational alternating cluster estimation (RACE)
(Runkler and Bezdek, 1998). With the relational clustering methods presented above, the partitions were
computed from the relational data using the necessary conditions for extrema of an objective function (for
clustering relational data). For example, in RFCM we minimize Jrrem (U; R) (2.31) by subsequently
computing U(R) by (2.32), where (2.32) is derived from (2.31). In RACE, we abandon the objective
function and define a (relational) clustering algorithm by simply specifying a function U(R) to compute
the partition. The partition function used in (Runkler and Bezdek, 1998) was the Cauchy (or RPCM)
membership function

2\
o /[(E)) -~
1

RELATIONAL CLUSTERING WITH NON-SPHERICAL PROTOTYPES 41

This model uses a medoid approach again. To find out which distance rj corresponds to the membership
Ui, i.e., which point x; is equal to which cluster center v;, an exhaustive search is applied again. Here, we
choose x; = v}, so that the sum of the memberships of oy in all the other clusters is as low as possible.

n

k= argmin{ Z ujk}, (2.35)
i=1,i#f

k=1,...,n. Notice the similarity between Equations (2.34) and (2.17) and the similarity between

Equations (2.35) and (2.30) with (2.29). The choice of this partition function is just one out of infinitely

many possible RACE instances. Just as ACE, RACE may or may not optimize any clustering model,

depending on the choice of U(R).

2.5 RELATIONAL CLUSTERING WITH NON-SPHERICAL
PROTOTYPES

The relational clustering models presented in the previous section are derived from object clustering
models that find spherical clusters. Therefore, they will find clusters that correspond to spherical clusters
in the associated object data. Notice that we assume that we can (at least approximately) associate any
relational data-set to an object data-set. If the (object) data-set contains clusters with more complicated
shapes, then the relational clustering models from the previous section will probably fail. In order to find
clusters in relational data that correspond to non-spherical prototypes in the associated object data we
present three approaches in this section: kernelization, projection, and local estimation of object data.

2.5.1 Kernelized Relational Clustering

Kernelization has gained a lot of interest in pattern recognition as an efficient way to transform a data-set
X ={x1,...,%} € R to a higher dimensional data-set Y = {y1,...,y,} € R? g > p, so that the data
structure in Y is simpler than in X. For example, in support vector machines (SVM) (Miiller et al., 2001),
the transformation theoretically maps not linearly separable data X to linearly separable data Y. The idea
in kernelized clustering is to map X to Y, so that the clusters can be better found in Y than in X. More
particularly, if X contains non-spherical clusters, then X can be mapped to Y, so that Y (theoretically)
contains spherical clusters. In this way, non-spherical clusters in X can be found by applying a spherical
clustering algorithm to Y.

According to Mercer’s theorem (Mercer, 1909; Scholkopf and Smola, 2002) there is a mapping
¢ : R? — R? such that

k(xj, x) = {o(x7), (i) (2.36)
with the generalized dot product
q
(s &) = Zyjfyki~ (2.37)
i=1

This means that a dot product in Y can be simply computed by evaluating a kernel function in X. Hence,
replacing dot products with kernels is generally called the kernel trick. Some common kernel functions
are Gaussian kernels

=l
k(x;,x1) = e ok (2.38)

o € RT, hyperbolic tangent function kernels

2
k(x;,) = 1 — tanh <w> : (2.39)

42 RELATIONAL FUZZY CLUSTERING

polynomial kernels

k(xj, xi) = (x5, x)", (2.40)
o € N, and radial basis function (RBF) (Powell, 1985) kernels
k(xj,x¢) = ([l — xel])- (2.41)

Notice that Gaussian and hyperbolic tangent function kernels are special cases of RBF kernels. A
comparison between Equations (2.38) and (2.20) shows that kernel functions can be used as prototype
functions in ACE and vice versa.

Kernelization of a clustering model can be done by replacing dot products by kernels. This has been
done for HCM (Girolami, Smola, and Miiller, 2002; Scholkopf, 1998; Zhang and Rudnicky, 2002), FCM
(Wu, Xie, and Yu, 2003; Zhang and Chen, 2002, 2003a), PCM (Zhang and Chen, 2003b), and NERFCM
(Hathaway, Huband, and Bezdek, 2005). Each entry in a relational data-set is a distance between a pair of
points. Following Mercer’s theorem this distance can be computed in Y by a kernel in X:

i = o), ()l (2.42)
= (%), ()" (0 (x7), p(xe)) (2.43)
= o) () — 20(x) () + p(xe) o () (2.44)
= k(xj,x;) — 2 - k(xj,x) + k(xp, x) (2.45)
=2—2k(xj,x), (2.46)

where we assume that k(x, x) = 0 for all x € IR”. This means that kernelization of a relational clustering
algorithm is equivalent to transforming the relational data-set R into a relational data-set R’ by Equation
(2.46) and then simply applying the (unchanged) relational clustering algorithm to R'. In particular, for
Gaussian kernels (2.38) we obtain

re=\2-2e7, (2.47)

(2.48)

These two functions are visualized in Figure 2.2 for the parameters o € {0.5,1,2,4}. Notice the close
similarity between the Gaussian and the hyperbolic tangent function kernels. Apparently, the effect of
kernelization in relational clustering is that large distances are clipped at the threshold of v/2, and that
smaller distances are scaled by an almost constant factor. We assume that the relational clustering
algorithm is invariant against scaling of the relational data by a constant factor ¢ € R*. This means that
we obtain the same results whether we cluster the original data-set R or a scaled data-set R* with rj. = ¢ - rjg
forallj,k = 1,...,n. Inthis case we can scale each of the transformation curves in Figures 2.2(a) and (b)
by a constant (o), so that the slope in the origin becomes equal to one, i.e., small distances remain (almost)
unchanged. This scaling yields the curves shown in Figures 2.2(c) and (d), which indicate that the effect of
the kernelization is essentially a clipping of the large distances at the threshold o.

2.5.2 Fuzzy Nonlinear Projection

At the end of Section 2.2 we presented an indirect relational clustering approach that first explicitly
produces a complete (approximate) object data-set by Sammon mapping and then applies object
clustering. We will not pursue this approach further here, but consider relational clustering methods
than either implicitly or locally construct approximate object data.

RELATIONAL CLUSTERING WITH NON-SPHERICAL PROTOTYPES 43

15 15

1 1
w k.

05 05

0 0

0 2 4 6 8 10 0 2 4 6 8 10
r r
(a) Gaussian kernel (b) tanh kernel

4 4

35 35

3 3
. ~

.25 .25

O O
G S

15 15

1 1

05 05

0 0

0 2 4 6 8 10 0 2 4 6 8 10
r r
(c) Gaussian kernel (scaled) (d) tanh kernel (scaled)

Figure 2.2 Transformation of relational data by kernel functions.

An approach to implicitly construct approximate object data in clustering is fuzzy nonlinear projection
(FNP) (Runkler, 2003). The idea in FNP is to combine the objective functions of Sammon mapping (2.4)
and FCM (2.12). This yields the FNP objective function

1 c n n (dk _ r_k)Z
Jenp(U, YiR) = 5———> Y >t~ (2.49)
SN i A Tik
J=1 k=it

where U € My, (2.11) and dj as in (2.3). FNP maps the relational data-set R to an object data-set Y so that
objects belonging to the same cluster approximately have the same distance in X as in Y. Minimization of
Jenp (U, Y; R) can be done by alternatingly performing one step of Newton optimization with respect to Y

aJFNP) (3ZJFNP>
- , 2.50
Yk = Yk (e / ayi ()

h .
where OJrnp 2 < mom ik — Tk Y —Yj

5 = > = (2.51)

TS "k "
j=1k=j+1

62]FNP 2 d m 1 1 (yk — y~)2

2 & ZZ”U”ZZ 3ot 5 (2.52)
eSS A (ri)™ Tiedie ri(dic)

J=1 k=j+1

44 RELATIONAL FUZZY CLUSTERING

and finding the corresponding optimal U by solving

OJenp/Ouy. = 0, (2.53)
where U € My, which leads to the update equation
1
§ (d/ —)2 m=l
u:}n Lik ‘rk

ol L
uyp =1 AR . 2.54
ik ; Z uZl (djk_r/‘k)z ()
iZk

Tik

Notice that in FNP, both Y and U have to be initialized, even if the order of the computation of ¥ and U is
reversed.

2.5.3 Relational Gustafson-Kessel Clustering

FNP performs an implicit construction of approximate object data. In this section we present an approach
to explicitly construct approximate object data, but only in a local environment: relational Gustafson—
Kessel clustering with medoids (RGKMdd) (Runkler, 2005b). For simplicity we present this algorithm
only for the two-dimensional case g = 2. Just as FCMdd, RGKMdd requires that only data points can be
cluster centers, V C X. Therefore, the Euclidean distances between points and cluster centers

||xk - ViH = \/(xkl - Vil) : (Xkl - Vi]) + (sz - Viz) : (sz - Viz) (255)

can be simply taken from R. If we want to use local Mahalanobis distances as in the GK model, however,
then the computation of the local covariance matrices S; (2.22) needs to compute

((Xkl - Vil) : (Xkl - Vil) (Xkl - Vil) . (xkz - Viz))’ (2.56)

(sz - Viz) : (Xkl - Vil) (sz - Vi2) . (sz - Vi2)

and the entries of this matrix cannot be directly taken from R. They can, however, be locally computed by
a triangulation approach (Lee, Slagle, and Blum, 1977). In addition to x; and v; we then consider another
data point x; € X, where x; # v; and x; # xi, and form a triangle (Figure 2.3), so we have
Pt — vi| =ra - cos o, (2.57)
‘xkz — V,'2| =ik * sin ik 2.58)
where, following the cosine theorem,

dﬁ(+ diz- — 2
ij Jk
cosot = ————————. (2.59)
2 - di - djj
To determine the signs of the distance vectors another data point x; € X is chosen, where x; # v;, x; # xi,
and x; # x;. Now the sign of (xx1 — vi1) - (xx2 — vio) is positive, if and only if

o+ B — 7| >, (2.60)
X X
v A I\ x

Figure 2.3 Triangulation for the (R)GKMdd model.

RELATIONAL DATA INTERPRETED AS OBJECT DATA 45

where the angles f# and y can be computed using the cosine theorem again,

2, 2 p
ry+dy—dy
R S e 2.61
cos f§ 21 dy (2.61)
24k —r
cosy =L M (2.62)

21y

2.6 RELATIONAL DATA INTERPRETED AS OBJECT DATA

In the previous sections we have presented clustering algorithms for object and for relational data. We
assumed that object data are clustered by object clustering, and relational data are clustered by relational
clustering. In this section, however, we follow the idea introduced in Katz, Runkler, and Heesche (2005)
and apply object clustering models to relational data. This approach is illustrated for a simple example
here. The suitability of this approach to real world data is proven in the orginal paper (Katz, Runkler, and
Heesche, 2005). Consider a data-set with five objects, where objects 01, 05, and 04 have distance zero to
each other, objects 03 and o5 also have distance zero, and the distances between all the other pairs of
objects are equal to one. This yields the following (crisp) relational data-set:

00 1 01
001 01
R=|11 010 (2.63)
001 01
1 1010
Let us now interpret R as an object dataset
X ={(0,0,1,0,1)",
0,0,1,0,1)",
(1,1,0,1,0)", (2.64)
(0,0,1,0,1)",
(1,1,0,1,0)"}.
Obviously, for ¢ = 2 we expect any object clustering algorithm to find the cluster centers
v ={(0,0,1,0,1)7,
{) (2.65)

(1,1,0,1,0)"}.

Notice that V = X! This result corresponds to the partition matrix

11010
~"*(0 01 0 1)’ (2.66)

which corresponds to the natural clusters {01, 02,04} and {03, 04}. Notice the correspondence between
the rows of U and the cluster centers that always occurs when binary relational data-sets are clustered!
This example shows that clusters in relational data cannot only be found by relational clustering but also
by object clustering. If object clustering is applied to relational data, then each row (or column) of the
relational dataset is interpreted as a “relation pattern” that indicates the correspondence to all other
objects. This leads to the correlation between the rows of the partition matrix and the cluster centers.
Notice that there is no straightforward approach to apply relational clustering to object data!

46 RELATIONAL FUZZY CLUSTERING

[Jnon—kernelized O kernelized (k)
[J Euclidean O non—Euclidean (NE)
[J object Orelational (R)

OF OopP ON OACE
OCM [OCMdd [OGK OGKMdd[JCV OCE acs [other
[J non—projection [projection (P)

Figure 2.4 A clustering form: check one box in each row to specify a clustering algorithm!

2.7 SUMMARY

In this chapter we have provided a survey of existing approaches for relational clustering. The various
relational clustering models can be distinguished using the following six criteria:

e The partition function used might be derived from a given clustering model and the corresponding set
of admissible partitions, or it might be specified by the user. The fuzzy, possibilistic, and noise
clustering models lead to the fuzzy (RF), possibilistic (RP), and noise (RN) partition functions. In
general, the alternating cluster estimation (RACE) scheme allows arbitrary functions such as Gaussian
or triangular functions to be used as partition functions.

e Non-Euclidean relational data might lead to problems in relational clustering. These problems can be
avoided by applying a f-spread transformation to the relational data until they become Euclidean.

o Kernelization corresponds to another transformation of the relational data that can be interpreted as a
transformation of the corresponding object data to a (much) higher-imensional space.

e Nonlinear projection combines clustering with projection. Objects that belong to the same cluster have
the same distance in the original as in the projected space. Nonlinear projection not only provides a
cluster partition but also object data that correspond to the original relational data.

e Various cluster prototypes can be used in relational clustering, for example, points or C-means (CM),
c-medoids (CMdd), points with local covariance matrices or Gustafson—Kessel (GK) prototypes,
Gustafson—Kessel medoids (GKMdd), c-varieties (CV), c-elliptotypes (CE), or c-shells (CS).

e Relational clustering models were designed for relational data, but even object clustering algorithms
may be used for clustering relational data.

Using this taxonomy, a clustering algorithm can be simply specified using the check box form shown in
Figure 2.4. For example, if you tick the second box in rows 1 through 3, and the first box in row 4 through
6, then you obtain kNERFCM. This check box form allows you to specify 2-2-2-4.7-2 =448
different relational clustering algorithms, and most of them may be useful. Notice that using this
taxonomy the RFNP algorithm should actually be called RFCMP, but for convenience we keep the
original name RENP here.

2.8 EXPERIMENTS

In order to illustrate the different algorithms for relational fuzzy clustering described in this chapter we
select 10 out of the 448 algorithms whose taxonomy was presented in the previous section and apply these
10 algorithms to the language concordance data introduced in Section 2.2. In particular, we consider the
RACE, NERFCM, RFNP, RGKMdd, and FCM algorithms and their kernelized variants kRACE,
kNERFCM, kRFNP, kRGKMdd, and kFCM. Kernelization was done using Gaussian kernels (2.47)
using o = 10. This maps the relational data from [0, 10] to [0, V2 — 2 - e~!] = [0, 1.124], so the effect is
similar to a normalization. In each experiment the algorithm searched for ¢ = 3 clusters. Remember that
in the original paper by Johnson and Wichern (1992) the optimal crisp solution was given as
{{E,N,Da,Fr,1,Sp,P},{Du,G},{H,Fi}}. Each algorithm was started with random initialization
and then run for r = 100 steps. A quick analysis of the objective functions showed that for the language

EXPERIMENTS 47

0.8f

0.6

0.4

o2f L

0 0
E N Da Du G Fr Sp | P H Fi E N Da Du G Fr Sp | P H Fi
(a) RACE (b) KRACE

Figure 2.5 RACE and kRACE membership functions obtained for the language concordance data.

concordance data-set all of the considered algorithms had come close to convergence after 100 steps.
Notice that this analysis could not be performed for (k)RACE, since the ACE algorithms usually do not
possess an objective function to be minimized. Fuzziness was always set to m = 2, and the projection
methods (k)FNP and (k)RGKMdd used two-dimensional projections.

Figure 2.5 shows the results for RACE and kRACE. The three membership functions are shown as
solid, dashed, and dotted curves over the 11 objects (languages). RACE produces one cluster that is
dominated by Du and has the second largest membership for G, one cluster that is dominated by P and has
relatively large memberships for Fr, Sp, and I, and one cluster that is dominated by Fi and has the second
largest membership for H. Notice that this correlates quite well with the originally proposed crisp partion
above. Also notice that this is obviously not a fuzzy partition in the sense that the sum of memberships is
equal to one for each datum, U & Mg, with Mg, as in (2.11). The kRACE memberships in Figure 2.5(b)
are very similar to the RACE memberships in Figure 2.5(a), but the memberships are almost linearly
transformed from [0, 1] to [0.5, 1]. This effect is caused by the normalization of the memberships due to
kernelization.

Figure 2.6 shows the results for NERFCM and kNERFCM. NERFCM produces one cluster that mainly
includes E, N, and Da and one cluster that mainly includes Fr, Sp, I, and P, so these two clusters
correspond to the big crisp cluster reported above. The third cluster basically contains the remaining
objects (language) and thus corresponds to the two small crisp clusters. The KNERFCM membership

E N Da Du G Fr Sp | P H Fi E N Da Du G Fr Sp | P H Fi
(a) NERFCM (b) kNERFCM

Figure 2.6 NERFCM and kNERFCM membership functions obtained for the language concordance data.

48 RELATIONAL FUZZY CLUSTERING

1 : 1 : T
: |\ \
0.8 0.8 M \
| \
508 15060 1 \[1
i
0.4 0.4 :'\ \ 1
.) \
0.2 | 0.2F | \1
. ; : \ \
0 T~ _ e 0 N " N 1l
E N Da Du G Fr Sp | P H Fi E N Da Du G Fr Sp I P H Fi
(a) RFNP membership functions (b) KRFNP membership functions
6 Da P Sp
4 N Du o2st Fi
2F Fr 02
> ° I 8p 5.
-2 G 0.15
4 P H
6 0.1 E
8 H 0.05 NDU
-10 G
—12 =))) of.))))))) Da.
5 10 15 20 -0.65 —0.6 —0.55 —0.5 —0.45 -0.4 -0.35 -0.3 -0.25
X X
(c) RFNP projections (d) kRFNP projections

Figure 2.7 RFNP and kRFNP results obtained for the language concordance data.

functions are almost the same as the NERFCM membership functions, so for o = 10, kernelization does
not change the NERFCM results much.

Figure 2.7 shows the results for RFNP and kRFNP. The RFNP and kRFENP partitions in Figure 2.7(a)
and (b), respectively, are almost crisp and do not match the crisp clusters presented in the original work.
However, if we look at the projections produced by RFNP in Figure 2.7(c), then we can observe a
meaningful arrangement of the objects E, N, and Da at the top left corner, Fr, I, Sp, and P at the top-right
corner, and the remaining objects distributed around these, with Fi and H furthest away. This correlates
well with the (K)NERFCM results. In the projections produced by kRENP in Figure 2.7(d) the objects are
moved much closer together, so apparently the effect of kernelization is a higher concentration of the
RFNP object projections.

Figure 2.8 shows the results for RGKMdd and kRGKMdd. The RGKMdd partition is crisp and does not
match our expectations. The reason is that one of the local covariance matrices becomes degenerate
because it is not covered by sufficient data points. This is a general problem with all members of the GK
family when applied to very small data-sets. However, the kRGKMdd partition looks much more
reasonable, so kernelization seems to be able to overcome this GK problem.

Figure 2.9 finally shows the results for the object—data algorithms FCM and kFCM. The partitions are
very similar to the partitions that were obtained by RFCM and kRFCM which corroborates the claim in

T
|
o8} 0.8} |
06f <08}
04f - 0.4}
02t 02t

CONCLUSIONS 49

0 : 0 —
E N Da Du G Fr Sp | P H Fi E N Da Du G Fr Sp | P H Fi
(a) RGKMdd (b) KRGKMdd

Figure 2.8 RGKMdd and kRGKMdd membership functions obtained for the language concordance data.

0 n A . .
E N Da Du G
(a) FCM (b) KFCM

Figure 2.9 FCM and kFCM membership functions obtained for the language concordance data.

Katz, Runkler, and Heesche (2005) that object data clustering can produce reasonable results even in
relational clustering.

2.9 CONCLUSIONS

In this chapter we have presented a multitude of different algorithms for clustering relational data and
discussed the specific characteristics of some of these. Which of these algorithms is most appropriate for a
given application is usually a highly application-specific question. Here are some general guidelines for
selecting a clustering model:

o In general itis useful to start with a simple clustering model and then successively try more complicated
clustering models. This means that in the beginning the checks in Figure 2.4 should be as far left as
possible, and only after some experiments should be moved to the right.

o If the data are very noisy, then possibilistic (P), noise (N), or other ACE models should be preferred.

o Ifthe data contain outliers, possibilistic (P), noise (N), or other ACE models might be more suitable that
fuzzy (F) models. Moreover, kernelization is recommendable, since it clips high distances.

50 RELATIONAL FUZZY CLUSTERING

e If the data come from a non-Euclidean process, then the f transform should be used, i.e., a non-
Euclidean (NE) version.

o If the clusters in the data are assumed to be non-hyperspherical, then there are several ways to exploit
this information: if the geometrical cluster shape is explicitly known, then the corresponding cluster
prototypes should be used, such as c-varieties (CV), c-elliptotypes (CE), or c-shells (CS). If the clusters
are roughly (but not exactly) hyperspherical, then local covariance matrices as in the Gustafson—Kessel
(GK) model are recommendable. If no information about the cluster shape is available, then kerneliza-
tion or projection might be a good choice.

REFERENCES

Ball, G.B. and Hall, D.J. (1965) Isodata, an iterative method of multivariate analysis and pattern classification IFIPS
Congress.

Bezdek, J.C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

Bezdek, J.C. and Hathaway, R.J. (1987) ‘Clustering with relational C-means partitions from pairwise distance data’.
International Journal of Mathematical Modelling 8, 435-439.

Bezdek, J.C. and Hathaway, R.J. (1994) ‘Optimization of fuzzy clustering criteria using genetic algorithms’ IEEE
Conference on Evolutionary Computation, Orlando, vol. 2, pp. 589-594.

Bezdek,J.C., Coray, C., Gunderson, R. and Watson, J. (1981a) ‘Detection and characterization of cluster substructure’, I.
Linear structure: Fuzzy c-lines. SIAM Journal on Applied Mathematics 40(2), 339-357.

Bezdek,J.C.,Coray, C.,Gunderson, R. and Watson, J. (1981b) ‘Detection and characterization of cluster substructure’, II.
Fuzzy c-varieties and convex combinations thereof. SIAM Journal on Applied Mathematics 40(2), 358-372.

Davé, R.N. (1990) ‘Fuzzy shell clustering and application to circle detection in digital images’. International Journal on
General Systems 16, 343-355.

Davé, R.N. (1991) ‘Characterization and detection of noise in clustering’. Pattern Recognition Letters 12, 657-664.

Filev,D.P.and Yager,R.R.(1991) ‘A generalized defuzzification method viaBAD distributions’. International Journal of
Intelligent Systems 6, 687—-697.

Girolami, M. (2002) ‘Mercer kernel-based clustering in feature space’. I[EEE Transactions on Neural Networks 13, 780—
784.

Gustafson, E.E. and Kessel, W.C. (1979) ‘Fuzzy clustering with a covariance matrix’ I[EEE International Conference on
Decision and Control, San Diego, pp. 761-766.

Hathaway, R.J. and Bezdek, J.C. (1994) ‘NERF C-means: Non-Euclidean relational fuzzy clustering’. Pattern
Recognition 27, 429—437.

Hathaway, R.J. and Bezdek, J.C. (1995) ‘Optimization of clustering criteria by reformulation’. IEEE Transactions on
Fuzzy Systems 3(2), 241-245.

Hathaway, R.J., Davenport, J.W. and Bezdek, J.C. (1989) ‘Relational duals of the C-means algorithms’. Pattern
Recognition 22, 205-212.

Hathaway, R.J., Huband, J.M. and Bezdek, J.C. (2005) ‘Kernelized non-Euclidean relational fuzzy C-means algorithm’
IEEE International Conference on Fuzzy Systems, pp. 414-419, Reno.

Johnson, R.A. and Wichern, D.W. (1992) Applied Multivariate Statistical Analysis Prentice Hall, Englewood Cliffs,
NJ, USA, pp. 582-589.

Katz C, Runkler, T.A. and Heesche, K. (2005) ‘Fuzzy clustering using similarity measures: Clustering relational data
by object data methods” GMA/GI Workshop Fuzzy Systems and Computational Intelligence, Dortmund, Germany,
pp. 46-58.

Krishnapuram, R. and Keller, J.M. (1993) ‘A possibilistic approach to clustering’. IEEE Transactions on Fuzzy Systems
1(2), 98-110.

KrishnapuramR, Joshi A, Nasraoui, O. and Yi, L. (2001) ‘Low-complexity fuzzy relational clustering algorithms for web
mining’. /[EEE Transactions on Fuzzy Systems 9(4), 595-607.

Lee,R.C.T.,Slagle,J.R.and Blum, H. (1977) ‘A triangulation method for the sequential mapping of points fromn-space to
two-space’. IEEE Transactions on Computers 26(3), 288-292.

Merecer, J. (1909) ‘Functions of positive and negative type and their connection with the theory of integral equations’.
Philosophical Transactions of the Royal Society A 209, 415-446.

Miiller, K.R. etal. (2001) ‘Anintroduction to kernel-based learning algorithms’. IEEE Transactions on Neural Networks
12, 181-201.

REFERENCES 51

Pal,N.R.,Eluri, V.K.and Mandal, G.K. (2002) ‘Fuzzy logic approaches to structure preserving dimensionality reduction’.
IEEE Transactions on Fuzzy Systems 10(3), 277-286.

Powell, M.J.D. (1985) ‘Radial basis functions for multi—variable interpolation: areview’ IMA Conference on Algorithms
for Approximation of Functions and Data, pp. 143—167, Shrivenham, UK.

Runkler, T.A. (1997) ‘Selection of appropriate defuzzification methods using application specific properties’. IEEE
Transactions on Fuzzy Systems 5(1), 72-79.

Runkler, T.A. (2003) ‘Fuzzy nonlinear projection’ IEEE International Conference on Fuzzy Systems, St. Louis, USA.

Runkler, T.A. (2005a) ‘Ant colony optimization of clustering models’. International Journal of Intelligent Systems
20(12), 1233-1261.

Runkler, T.A. (2005b) ‘Relational Gustafson Kessel clustering using medoids and triangulation’ IEEE International
Conference on Fuzzy Systems, pp. 73-78, Reno.

Runkler, T.A. and Bezdek, J.C. (1997) ‘Living clusters: An application of the El Farol algorithm to the fuzzy C-means
model’ European Congress on Intelligent Techniques and Soft Computing, pp. 1678—1682, Aachen, Germany.

Runkler, T.A.andBezdek,J.C.(1998) ‘RACE: Relational alternating clusterestimation and the wedding table problem’ In
Fuzzy-Neuro-Systems '98, Miinchen (ed. Brauer W), vol. 7 of Proceedings in Artificial Intelligence, pp. 330-337.

Runkler, T.A. and Bezdek, J.C. (1999a) ‘Alternating cluster estimation: A new tool for clustering and function
approximation’. IEEE Transactions on Fuzzy Systems 7(4), 377-393.

Runkler, T.A. and Bezdek, J.C. (1999b) ‘Function approximation with polynomial membership functions and alternating
cluster estimation’. Fuzzy Sets and Systems 101(2), 207-218.

Runkler, T.A. and Glesner, M. (1993) ‘Defuzzification with improved static and dynamic behavior: Extended center of
area’ European Congress on Intelligent Techniques and Soft Computing, pp. 845-851, Aachen, Germany.

Runkler, T.A. and Katz, C. (2006) ‘Fuzzy clustering by particle swarm optimization’ IEEE International Conference on
Fuzzy Systems, Vancouver, Canada.

Sammon, J.W. (1969) ‘A nonlinear mapping for data structure analysis’. IEEE Transactions on Computers C-18(5),
401-4009.

Scholkopf, B. and Smola, A. (2002) Learning with Kernels. MIT Press, Cambridge, USA.

Scholkopf, B., Smola, A. and Miiller, K.R. (1998) ‘Nonlinear component analysis as a kernel eigenvalue problem’.
Neural Computation 10, 1299-1319.

Sneath, P. and Sokal, R. (1973) Numerical Taxonomy. Freeman, San Francisco, USA.

Wu, Z.D., Xie, W.X. and Yu, J.P. (2003) ‘Fuzzy C-means clustering algorithm based on kernel method’ International
Conference on Computational Intelligence and Multimedia Applications, pp. 49-54, Xi’an, China.

Yager, R.R. and Filev, D.P. (1993) SLIDE: ‘A simple adaptive defuzzification method’. I[EEE Transactions on Fuzzy
Systems 1(1), 69-78.

Zhang, D.Q. and Chen, S.C. (2002) ‘Fuzzy clustering using kernel method’ International Conference on Control and
Automation, pp. 123-127.

Zhang,D.Q. and Chen, S.C. (2003a) ‘Clustering incomplete data using kernel-based fuzzy C-means algorithm’. Neural
Processing Letters 18, 155-162.

Zhang,D.Q.and Chen, S.C.(2003b) ‘Kernel-based fuzzy and possibilistic C-means clustering’ International Conference
on Artificial Neural Networks, pp. 122—125, Istanbul, Turkey.

Zhang, R. and Rudnicky, A. (2002) ‘A large scale clustering scheme for kernel k-means’ International Conference on
Pattern Recognition, pp. 289-292, Quebec, Canada.

3

Fuzzy Clustering with
Minkowski Distance
Functions

Patrick J.F. Groenen, Uzay Kaymak, and Joost van Rosmalen

Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands

3.1 INTRODUCTION

Since Ruspini (1969) first proposed the idea of fuzzy partitions, fuzzy clustering has grown to be an
important tool for data analysis and modeling. Especially after the introduction of the fuzzy c-means
algorithm (Bezdek, 1973; Dunn, 1973), objective function-based fuzzy clustering has received much
attention from the scientific community as well as the practitioners of fuzzy set theory (Baraldi and
Blonda, 1999a,b; Bezdek and Pal, 1992; Hoppner, Klawonn, Kruse and Runkler, 1999; Yang, 1993).
Consequently, fuzzy clustering has been applied extensively for diverse tasks such as pattern recognition
(Santoro, Prevete, Cavallo, and Catanzariti, 2006), data analysis (D’Urso, 2005), data mining (Crespo
and Weber, 2005), image processing (Yang, Zheng and Lin, 2005), and engineering systems design
(Sheu, 2005). Objective function-based fuzzy clustering has also become one of the key techniques in
fuzzy modeling, where it is used for partitioning the feature space from which the rules of a fuzzy system
can be derived (Babuska, 1998).

In general, objective function-based fuzzy clustering algorithms partition a data-set into overlapping
groups by minimizing an objective function derived from the distance between the cluster prototypes and
the data points (or objects). The clustering results are largely influenced by how this distance is computed,
since it determines the shape of the clusters. The success of fuzzy clustering in various applications may
depend very much on the shape of the clusters. As a result, there is a significant amount of literature on
fuzzy clustering, which is aimed at investigating the use of different distance functions in fuzzy
clustering, leading to different cluster shapes.

One way of influencing the shape of the clusters is to consider prototypes with a geometric structure.
The fuzzy c-varieties (FCV) algorithm uses linear subspaces of the clustering space as prototypes
(Bezdek, Coray, Gunderson, and Watson, 1981a), which is useful for detecting lines and other linear
structures in the data. The fuzzy c-elliptotypes (FCE) algorithm takes convex combinations of fuzzy

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
© 2007 John Wiley & Sons, Ltd

54 FUZZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS

c-varieties prototypes with fuzzy c-means prototypes to obtain localized clusters (Bezdek, Coray,
Gunderson, and Watson, 1981b). Kaymak amd Setnes (2002) proposed using volumes in the clustering
space as the cluster prototypes. Liang, Chou, and Han (2005) introduced a fuzzy clustering algorithm that
can also deal with fuzzy data.

Another way for influencing the shape of the clusters is modifying the distance measure that is used in the
objective function. Distances in the well known fuzzy c-means algorithm of Bezdek (1973) are measured
by the squared Euclidean distance. Gustafson and Kessel (1979) use the quadratic Mahanalobis norm to
measure the distance. Jajuga (1991) proposed using the L;-distance and Bobrowski and Bezdek (1991) also
used the L. -distance. Bargiela and Pedrycz (2005) applied the L..-distance to model granular data.
Further, Hathaway, Bezdek, and Hu (2000) studied the Minkowski semi-norm as the dissimilarity function.

In this chapter, we consider fuzzy clustering with the more general case of the Minkowski distance and
the case of using a root of the squared Minkowski distance. The Minkowski norm provides a concise,
parametric distance function that generalizes many of the distance functions used in the literature. The
advantage is that mathematical results can be shown for a whole class of distance functions, and the user
can adapt the distance function to suit the needs of the application by modifying the Minkowski
parameter. By considering the additional case of the roots of the squared Minkowski distance, we
introduce an extra parameter that can be used to control the behavior of the clustering algorithm with
respect to outliers. This root provides an additional way of dealing with outliers, which is different from
the “‘noise cluster” approach proposed in Dave (1991).

Our analysis follows the approach that Groenen and Jajuga (2001) introduced previously. Minimiza-
tion of the objective function is partly done by iterative majorization. One of the advantages of iterative
majorization is that it is a guaranteed descent algorithm, so that every iteration reduces the objective
function until convergence is reached. The algorithm in Groenen and Jajuga (2001) was limited to the case
of a Minkowski parameter between 1 and 2, that is, between the L,-distance and the Euclidean distance.
Here, we extend their majorization algorithm to any Minkowski distance with Minkowski parameter
greater than (or equal to) 1. This extension also includes the case of the L.,-distance. We also explore the
behaviour of our algorithm with an illustrative example using real-world data.

The outline of the chapter is as follows. We expose the formalization of the clustering problem in
Section 3.2. The majorizing algorithm for fuzzy c-means with Minkowski distances is given in Section
3.3, while the influence of a robustness parameter is considered in Section 3.4. We discuss in Section 3.5
the behavior of our algorithm by using an illustrative example based on empirical data concerning
attitudes about the Internet. Finally, conclusions are given in Section 3.6.

3.2 FORMALIZATION

In this chapter, we focus on the fuzzy clustering problem that uses a root of the squared Minkowski
distance. This problem can be formalized by minimizing the objective (or loss) function

n K
LEV) =D) fadi (V) (3.1)
i=1 k=1
under the constraints
0<fx <1, i=1,....n k=1,...,K
ZszlfikZ 1, i=1,...;n

where 7 is the number of objects, K is the number of fuzzy clusters, f is the membership grade of object i
in fuzzy cluster k, s is the weighting exponent larger than 1. The distance between object i given by the ith
row of the n x m data matrix X and fuzzy cluster k of the K x m cluster coordinate matrix V is given by

(32)

m 22/p
(V) = (Z b — vkj|"> , 1<p<oo, 0<i<1, (3.3)
j=1

where 4 is the root of the squared Minkowski distance d%(V) with 1 < p < oo.

FORMALIZATION 55

0.8

o
3

1

0.4

Root of normalized g2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized d/i

0 L L L

Figure 3.1 Root of the normalized squared Minkowski distance for different values of 4.

The introduction of the root 4 allows the control of the loss function against outliers. Figure 3.1 shows
how the root of the (normalized) squared Minkowski distance varies for different values of 4. For large 4,
e.g., 4 = 1, the difference between the large distance values and the small distance values is emphasized.
Hence, outliers may dominate the loss function, whereas the loss function will be more robust if 4 is small,
because the relative difference between the large distance values and small distance values is reduced.

The use of Minkowski distances allows you to vary the assumptions of the shape of the clusters by
varying p. The most often used value is p = 2, which assumes a circular cluster shape. Using p = 1 assumes
that the clusters are in the shape of a (rotated) square in two dimensions or a diamond like shape in three or
more dimensions. For p = oo, the clusters are assumed to be in the form of a box with sides parallel to the
axes. Both p = 1 and p = oo can be used in cases where the data structures have “boxy’’ shapes, that is,
shapes with sharp “edges” (Bobrowski and Bezdek, 1991). A summary of combinations of 4 and p and
some properties of the distances are presented in Table 3.1 (taken from Groenen and Jajuga, 2001).

Groenen and Jajuga (2001) note that (3.1) has several known fuzzy clustering models as a special
case. For example, for p = 2 and 4 = 1, the important member of fuzzy 150 DATA, a well-known family
of fuzzy clustering, is obtained that corresponds to squared Euclidean distances (while assuming the
identity metric). A fuzzy clustering objective function that is robust against outliers can be obtained by
choosing 2 = 1/2 and p = 1 so that the L;-norm is used. Note that this choice implicitly assumes a
“boxy”’ shape of the clusters. A robust version of fuzzy clustering with a circular shape can be specified by
2 =1/2 and p = 2, which implies the unsquared Euclidean distance. Thus, A takes care of robustness

Table 3.1 Special distances obtained by specific choice of /4 and p and some of their properties.

5

p A Distance Assumed cluster shape Robust
1 1.0 Squared L, Box/diamond No
1 0.5 L Box/diamond Yes
2 1.0 Squared Euclidean Circular No
2 0.5 Unsquared Euclidean Circular Yes
00 1.0 Squared dominance Box No
00 0.5 Dominance Box Yes

56 FUZZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS

issues and p of the shape of the clusters. Dodge and Rousson (1998) named the cluster centroids
for A=1/2 and p=1 “L;-medians,” for 2=1 and p =1 “L;-means,” for A=1/2 and p=2
“Lp-medians,” and for 4 = 1 and p = 2 the well known ‘“‘L,-means.”

3.3 THE MAJORIZING ALGORITHM FOR FUZZY C-MEANS
WITH MINKOWSKI DISTANCES

Depending on the particular function, the minimization method of iterative majorization has some nice
properties. The most important one is that in each iteration of the iterative majorization the loss function is
decreased until this value converges. Such guaranteed descent methods are useful because no step in the
wrong direction can be taken. Note that this property does not imply that a global minimum is found
unless the function exhibits a special property such as convexity. Some general papers on iterative
majorization are De Leeuw (1994), Heiser (1995), Lange, Hunter and Yang (2000), Kiers (2002), and
Hunter and Lange (2004). An introduction can be found in Borg and Groenen (2005).

The majorization algorithm of Groenen and Jajuga (2001) worked forall 1 < p < 2. Below we expand
their majorization algorithm to the situation of all p > 1. Each iteration of their algorithm consists of two
steps: (1) update the cluster memberships F for fixed centers Vand (2) update V for fixed F. For Step (2)
we use majorization. Below, we start by explaining some basic ideas of iterative majorization. Then, the
update of the cluster memberships is given. This is followed by some derivations for the update of the
cluster centers Vin the case of 1 < p < 2. Then, the update is derived for 2 < p < oo and a special update
for the case of p = oco.

3.3.1 lterative Majorization

Iterative majorization can be seen as a gradient method with a fixed step size. However, iterative
majorization can also be applied to functions that are at some points nondifferentiable. Central to iterative
majorization is the use of an auxiliary function similar to the first-order Taylor expansion used as an
auxiliary function in a gradient method and second-order expansion for Newton’s method. The unique
feature of the auxiliary function in iterative majorization — the so-called majorizing function — is that it
touches the original function or is located above it. In contrast, the auxiliary functions of the gradient
method or Newton’s method can be partially below and above the original function.

Let the original function be presented by ¢(X), the majorizing function by ¢(X,Y), where Y is the
current known estimate. Then, a majorizing function has to fulfil the following three requirements: (1)
#(X,Y) is a more simple function in X than ¢ (X), (2) it touches ¢ (X) at the known supporting point Y so
that p(Y) = ¢(Y,Y), and (3) ¢(X,Y) is never smaller than ¢(X), that is, ¢(X) < ¢(X,Y) for all X.
Often, the majorizing function is either linear or quadratic.

To see how a single iteration reduces ¢ (X), consider the following. Let Y be some known point and let
the minimum of the majorizing function ¢(X, Y) be given by X*. Note that for a majorizing algorithm to
be sufficiently fast, it should be easy to compute X . Because the $(X, Y) is always larger than or equal to
the (X), we must have p(X*) < @(X",Y). This property is essential for the so-called sandwich
inequality, that is, the chain

P(XT) < G(XT,Y) < (Y, Y) = o(Y), (3.4)

which proves that the update X never increases the original function. For the next iteration, we simply
set Yequal to X' and compute a new majorizing function. For functions that are bounded from below or
are sufficiently constrained, the majorization algorithm always gives a convergent sequence of non-
increasing function values, see, for example, Borg and Groenen (2005).

One property that we use here is that if a function consists of a sum of functions and each of
these functions can be majorized, then the sum of the majorizing functions also majorizes the
original functions. For example, suppose that ¢(X) =3, ¢;(X) and ¢;(X) < ¢;(X,Y) then
P(X) < 3 (X, Y).

THE MAJORIZING ALGORITHM FOR FUZZY C-MEANS WITH MINKOWSKI DISTANCES 57
3.3.2 Updating the Cluster Membership

For fixed cluster centers V, Groenen and Jajuga (2001) derive the update of the cluster memberships F as

(d;)kz(v))*l/(&fl)
S (@(v)) e

for fixed Vand s > 1, see also Bezdek (1973). These memberships are derived by taking the Lagrangian
function, setting the derivatives equal to zero, and solving the equations.

There are two special cases. The first one occurs if s is large. The larger s, the closer —1/(s — 1)
approaches zero. As a consequence [d%(V)]~ /=1 & 1 for all ik so that update (3.5) will yield
fi = 1/K. Numerical accuracy can produce equal cluster memberships, even for not too large s, such
as s = 10. If this happens for all fi, then all cluster centers collapse into the same point and the algorithm
gets stuck. Therefore, in practical applications s should be chosen quite small, say s < 2. The second
special case occurs if s approaches 1 from above. In that case, update (3.5) approaches the update for hard
clustering, that is, setting

fix =

(3.5)

S 1 if dik = minl dﬂ
fie = {0 if dy # min, dj, (3.6)

where it is assumed that min, d; is unique.

3.3.3 Updating the Cluster Coordinates

We follow the majorization approach of Groenen and Jajuga (2001) for finding an update of the cluster
coordinates V for fixed F. Our loss function L(F, V) may be seen as a weighted sum of the Ath root of
squared Minkowski distances. Because the weights f}; are nonnegative, it is enough for now to consider
d?(V), the root of squared Minkowski distances. Let us focus on the root for a moment. Groenen and
Heiser (1996) proved that for root A of a, with 0 < 2 < 1,a > 0 and b > 0, the following majorization
inequality holds:

< (1= A)b* + b a, (3.7)

with equality if @ = b. Using (3.7), we can obtain the majorizing inequality
) J 2(5—1
d2 (V) < (1= D)dH (W) + 2dy D (W)d2(V), (3.8)

where W is the estimate of V from the previous iteration and we assume for the moment that d (W) > 0.
Thus, the root A of a squared Minkowski distance can be majorized by a constant plus a positive weight
times the squared Minkowski distance.
The next step is to majorize the squared Minkowski distance. To do so, we distinguish three cases: (a)
1<p<2,(b)2<p<oo,and (c) p= 0.
For the case of 1 < p <2, Groenen and Jajuga (2001) use Holder’s inequality to prove that
S (i — vig) e — wigl”
)
di~(V)

1<p<2 2
72 : l]k x’/ - ij))

1< <2]<7<2]< <2
Z ’Jkp 2 Zzbukl -)7 (3:9)

dz(V) <

58 FUZzZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS
where

(1<p<2) _ g — wyl

ijk dp_z v)
ik ()
(1<p<2) _ (1<p<2)
bl_]k ajk Xij

m
(1<p=<2) _ (1<p<2) 2
Cy E Ay X
=

For p > 2, (3.9) is reversed, so that it cannot be used for majorization. However, Groenen, Heiser,
and Meulman (1999) have developed majorizing inequalities for squared Minkowski distances
with 2 < p < oo and p = oo. We first look at 2 < p < oo. They proved that the Hessian of the squared
Minkowski distance always has the largest eigenvalue smaller than 2(p — 1). By numerical experimenta-
tion they even found a smaller maximum eigenvalue of (p — 1)21/ ? but they were unable to prove this.
Knowing an upper bound of the largest eigenvalue of the Hessian is enough to derive a majorizing
inequality if it is combined with the requirement of touching at the supporting point (that is, at this point
the gradients of the squared Minkowski distance and the majorizing function must be equal and the same
must hold for their function values).

This majorizing inequality can be derived as follows. For notational simplicity, we express the squared
Minkowski distance as d*(t) = (3, [4]") 2P The first derivative dd*(t)/0%; can be expressed as
24| ~2/dr=2(t). Knowing that the largest eigenvalue of the Hessian of d?(t) is bounded by 2(p — 1),
a quadratic majorizing function can be found (Groenen, Heiser, and Meulman, 1999) of the form

d*(<4(p—li2 2izjbj+c,
=1

Jj=1
with

2(u u,p—2

d*(u) +4(p—1zu —iu, o’ —4(p—l)iuf—d2(u)
J j=1

and u the known current estimate of t. Substituting #; = x;; — vy; and u; = x;; — wy; gives the majorizing
inequality

m

Az (V) < 4(p—1)> (x5 — vy)*
Jj=1
Z xij = vig) (x5 — wi)[4(p — 1) — | — w2 /i3 (W)

+4p = 1) (x5 — wy)? — di(W).

J=1

Some rewriting yields

BOV) <0135 =23y 35 @10

THE MAJORIZING ALGORITHM FOR FUZZY C-MEANS WITH MINKOWSKI DISTANCES 59
where

a(2<p<oo) _ 4(]7 _ 1)7

2 J _ _
D) = PPy (g)y — il (W),
m m
2 _ _
) = gl E wi — die(W) +2> iy — wig) e — wigl” > /iy > (W).

J=1

If p gets larger, a®><P<>) also becomes larger, thereby making the majorizing function steeper. As a result,
the steps taken per iteration will be smaller. For the special case of p = oo, Groenen, Heiser, and Meulman
(1999) also provided a majorizing inequality. This one can be (much) faster than using (3.10) with a large
p. It depends on the difference between the two largest values of |x; — wy;| over the different j.

Let us for the moment focus on d?(t) again. And let ¢; be an index that orders the values |t;|
decreasingly, . < |ty |. The majorizing function for p = oo becomes

)<ad £-2> tb+c,
j=1 j=1

with

|M’¢1‘

|u801 | - |u¢2|

- ‘”wz| > &

e 1f|u~ﬂ|‘ - |u»92| <e,

a|u¢2|uj lf]:SOh

Il

Juil
auj 1f]7é P1,

c:dz(u)—l—ZZujbj—aZu_?.
J J

Note that the definition of a for |u, | — |u,| < € takes care of ill conditioning, that is, values of a getting
too large. Strictly speaking, majorization is not valid anymore, but for small enough € the monotone
convergence is retained.

Backsubstitution of #; = x;; — vy and u; = x;; — wy; gives the majorizing inequality

GV) S ™D v =23 (o~ v e

2 : o0)
- alk ij -2 Z Vk] Ijk + Clk ’

(3.11)

where
Xip, — Wi .
| = »01‘ if |xiw - Wl«pn‘ - |xiwz - Wk#?z‘ > g,
a{f:m) _ iy — Wiy | — iy — Wi |
1
€+ |xip, — Wi .
w]f%‘ if |Xig, — Wi, | — iy — Wi | < 6,
(p=00) |xi’\02 - Wk’sﬁzl(xiw — Wkp,):| P
3 a X — if j = ¢
bf';;(_OO) = * { Y [Xigy — Wi, | '
af{:“)wkj if j # 1,

cfk ®) — =d2 (W) -2 Z buk x,J —wy) — Z agfzoc)wij +2 Z agf:w)xfj.
J

J

60 FUZZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS

Recapitulating, the loss function is a weighted sum of the root of the squared Minkowski distance. The
root can be majorized by (3.8) that yields a function of squared Minkowski distances. For the case
1 <p <2,(3.9) shows how the squared Minkowski distance can be majorized by a quadratic function in
V (see Figure (3.2), (3.10) shows how this can be done for2 < p < ocoand (3.11) for p = co. These results
can be combined to obtain the following majorizing function for L(F, V), that is,

m K n m K n n K
L(F,V) <)LZ szj Za,»jk -2 Z kaj Zbijk +c+ Z Zcika (3.12)

j=1 k=1 i=1 j=1 k=1 i=1 i=1 k=1
where

fidy TV (W)al == it 1<p <2,

ae =9 frdi "V (W)a2<r<=) if 2 < p < o,
LAV W)al™) i p = oo,
adi (Wb i1 <p <2,

bie =S frdi "V (Wb if 2 < p < o,

fidy V(Wb if p = o,

BT W) T it r<p <2,

ci =3 i V(W) if 2 < p < oo,

1

o 2(A— =00 .
ﬁ}cdiku 1)(W)C§1,: " ifp=oo,

It is easily recognized that (3.12) is a quadratic function in the cluster coordinate matrix V that reaches
its minimum for

" b
Vi = @ (3.13)
T i

3.3.4 The Majorization Algorithm

The majorization algorithm can be summarized as follows.

—_

. Given a data-set X. Set 0 < A < 1,1 < p < 00, and s > 1. Choose ¢, a small positive constant.

. Set the membership grades F = F® with 0 <f3 <1 and >_p_, 79 = 1 and the cluster coordinate
matrix V = V,. Compute Ly, = L(F, V).

. Update F by (3.5)if s > 1 or by (3.6) if s = 1.

Set W = V. Update V by (3.13).

. Stop if (Lyrey — L(F, V))/L(F,V)) < e.

. Set Lyey = L(F, V) and go to Step 3.

[\

ok w

3.4 THE EFFECTS OF THE ROBUSTNESS PARAMETER .

The parameter A in the fuzzy clustering algorithm determines how robust the algorithm is with respect to
outliers. To show the effects of 4 on the solution, we generated a two-dimensional artificial data-set of 21

THE EFFECTS OF THE ROBUSTNESS PARAMETER 4 61

(b) t -4 -4 t

Figure 3.2 The original function d?(t) and the majorizing functions for p = 1, p = 3, and p = oo using supporting
pointu = 2, —3]".

62

FUZZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS

15 15 15
* X +
10 10} 10t
5 5 5t 1
X X X
><>< X ><>< X ><>< X
++-1++ x ¥ +++°'-+ x &% ><X>§<x x %
X X X ® X
+ +++ X < + +++ ><>§< % X ><>§<
0 0 - - 0 -
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

(a) (b) (c)

Figure 3.3 Results of fuzzy clustering algorithm in artificial data-set. (a) shows the original data-set. (b) and (c) show
the results for 2 = 0.8 and A = 1.0, respectively. The cluster centers are marked using dots and the data points using +
and x signs, depending on which cluster they belong to.

observations as follows. Two clusters of 10 observations each have their cluster centers at coordinates
(2,2) and (6,2), respectively. The coordinates of the observations in these clusters are normally distributed
with a variance of 1 and mean equal to their cluster centers. The final observation is an outlier and is
located at (4,13). The resulting configuration of observations is shown in Figure 3.3(a).

Any robust clustering algorithm with K = 2 should find the two clusters that were used to generate this
data-set. However, if the clustering algorithm is not robust, one cluster may have its center at the outlying
observation and the other cluster may contain the remaining data points. To study for what values of A our
algorithm is robust, we ran our fuzzy clustering algorithm for 4 = 0.01,0.02,...,0.99,1.00 using p = 2
and s = 1.2.

For values of 1 < 0.87, we find that the cluster centers found by the algorithm are close to the centers
used to construct the data, see Figure 3.3(b) for the solution of 4 = .8. For 4 > 0.87, we found one cluster
center at the coordinates of the outlier, and the other cluster was located at the center of the remaining
observations, see Figure 3.3(c) for the solution of 2 = 1. As expected, we find that the clustering
algorithm is more robust with respect to outliers if the parameter 4 is set to a low value.

3.5 INTERNET ATTITUDES

To show how fuzzy clustering can be used in practice, we apply it to an empirical data-set. Our data-set is
based on a questionnaire on attitudes toward the Internet." It consists of evaluations of 22 statements about
the Internet by respondents gathered around 2002 before the wide availability of broadband Internet
access. The statements were evaluated using a seven-point Likert scale, ranging from 1 (completely
disagree) to 7 (completely agree). Respondents who had a missing value on at least one of the statements
were removed from the analysis yielding 193 respondents in our analysis.

The respondents are clustered using the fuzzy clustering algorithm to study their attitudes toward the
Internet. We use K = 3. The convergence criterion ¢ of the majorization algorithm was set to 1078, The

'We would like to thank Peter Verhoef for making these data available. The data can be found at http://people.
few.eur.nl/groenen/Data.

INTERNET ATTITUDES 63

Table 3.2 Results of fuzzy clustering for Internet data-set using K = 3.

Cluster volumes

A s p L(F,V) Cluster 1 Cluster 2 Cluster 3
0.5 1.2 1 4087 1.315 1.411 1.267
0.5 1.2 2 1075 1.227 1.326 1.268
0.5 1.2 00 421 1.355 1.408 1.341
0.5 1.5 1 2983 0.965 0.965 0.979
0.5 1.5 2 773 0.920 0.920 0.920
0.5 1.5 o0 310 0.973 0.973 0.973
1 1.2 1 103115 1.281 1.363 1.236
1 1.2 2 7358 1.177 1.328 1.173
1 1.2 00 1123 1.257 1.588 1.284
1 1.5 1 83101 0.965 0.997 0.979
1 1.5 2 5587 0.920 0.920 0.920
1 1.5 o0 878 0.977 0.977 0.977

monotone convergence of the majorization algorithm generally leads to a local minimum. However,
depending on the data and the different settings of p, s, and 4, several local minima may exist. Therefore,
in every analysis, we applied 10 random starts and report the best one. We tried three different values of p
(1,2, 00) to examine the cluster shape, two values of s (1.2, 1.5) to study the sensitivity for the fuzziness
parameter s, and two values for 4 (0.5, 1.0) to check the sensitivity for outliers.

Table 3.2 shows some results for this data-set using different values for 4, s, and p. The final value of the
loss function and the volumes of the three clusters are calculated in every instance. As there is no natural
standardization for L(F, V), the values can only be used to check for local minima within a particular
choice of 4, s, and p.

The labeling problem of clusters refers to possible permutations of the clusters among different runs. To
avoid this problem, we took the Vobtainedby 2 = 1,p = 1, and s = 1.2 as a target solution V* and tried
all permutation matrices P of the rows of V (with V™) = PV) for other combinations of /, p, and s and
chose the one that minimizes the sum of the squared residuals

* P *
DD g™ =V PV (3.14)
ko

The permutation P that minimizes (3.14) is also applied to the cluster memberships, so that FPerm) — Fp’.
By using this strategy, we assume that the clusters are the same among the different analyses.

To compare the size of the clusters in solutions for different settings of 4, s, and p, we do not want to use
L(F, V) as it depends on these settings. Therefore, we define a volume measure for the size of a cluster. To
do so, we need the cluster covariance matrix with elements

G — 2 i fa (i - vi)' (% = Vi)

>iz1fi /
where x; isthe 1 x j row vector of row i of X and v row i of V. Then, as a measure of the volume of cluster
k one can use det(Gy). However, we take det(Gk)l/ ™ which can be interpreted as the geometric mean of
the eigenvalues of Gy and has the advantage that it is not sensitive to m. Note that Gy still depends on s so
thatitis only fair to compare cluster volumes for fixed s. If outliers are a problem in this data-set, we expect
that the cluster volumes will be larger for the nonrobust case of 4 = 1 than for the robust case of A = 0.
Table 3.2 shows that for s = 1.5 the cluster volumes are nearly all the same with a slight difference
among the clusters of p = 1. Fors = 1.2, Cluster 2 is generally the largest and the other two have about the
same size. The more robust setting of 4 = 0.5 generally shows slightly larger clusters, but the effect does

not seem large. Therefore, outliers do not seem to be a problem in this data-set.

To interpret the clusters, we have to look at V. As it is impossible to show the clusters in a
22-dimensional space, they are represented by parallel coordinates (Inselberg, 1981, 1997). Every cluster

64 FUZZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS

Paying using Internet is safe

Surfing the Internet is easy

Internet is unreliable

Internet is slow

Internet is user-friendly

Internet is the future’s means of communication
Internet is addictive

Internet is fast

9. Sending personal data using the Internet is unsafe
10. The prices of Internet subscriptions are high
11. Internet offers many possibilities for abuse

12. The costs of surfing are high

13. Internet offers unbounded opportunities

14. Internet phone costs are high

15. The content of web sites should be regulated
16. Internet is easy to use

17. 1 like surfing

18. | often speak with friends about the Internet

19. | like to be informed of important new things
20. | always attempt new things on the Internet first
21. | regularly visit websites recommended by others
22. 1 know much about the Internet

ONOOTAWN

Disagree Neutral Agree Disagree Neutral Agree Disagree Neutral ~Agree
strongly strongly strongly strongly strongly strongly

(@) (b) (©

Figure 3.4 Parallel coordinates representation of clusters with 4 = 1, p = 1, and s = 1.2. The lines correspond to
Cluster 1 (solid line), Cluster 2 (dashed line), and Cluster 3 (dotted line).

k defines a line through the cluster centers vy, see Figure 3.4 for s = 1.2 and 4 = 1. Note that the order of
the variables is unimportant. This figure can be interpreted by considering the variables that have different
scores for the clusters. The patterns for p = 1,2 and oo are similar and p = 1 shows them the clearest.

Forp = 1and A = 1, each cluster center is a (weighted) median of a cluster. Because all elements of the
Internet data-set are integers, the cluster centers necessarily have integer values. Figure 3.4 shows the
parallel coordinates for p = 1. The solid line represents Cluster 1 and is characterized by respondents
saying that the Internet is easy, safe, addictive and who seem to form an active user community (positive
answers to variables 16 to 22). However, the strongest difference of Cluster 1 to the others is given by their
total rejection of regulation of content on the Internet. We call this cluster the experts. Cluster 2 (the
dashed line) refers to respondents that are not active users (negative answers to variables 18 to 22), find
the Internet not user-friendly, unsafe to pay, not addictive, and they are neutral on the issue of regulation
of, the content of Web sites. This cluster is called the novices. Cluster 3 looks in some respects like Cluster
1 (surfing is easy, paying is not so safe) but those respondents do not find the Internet addictive, are neutral
on the issue of the speed of the Internet connection, and seem to be not such active users as those of Cluster
1. They are mostly characterized by finding the costs of Internet high and allowing for some content
regulation. This cluster represents the cost-aware Internet user.

As we are dealing with three clusters and the cluster memberships sum to one, they can be plotted in a
triangular two-dimensional scatterplot — called a triplot—as in Figure 3.5. To reconstruct the fuzzy
memberships from this plot, the following should be done. For Cluster 1, one has to project a point along
a line parallel to the axis of Cluster 3 onto the axis of Cluster 1. We have done this with dotted lines for
respondent 112 for the case of p = 1, s = 1.2, and 4 = 1. We can read from the plot that this respondent
has fuzzy memberships f;; of about 0.20. Similarly, for Cluster 2, we have to draw a line horizontally
(parallel to the axis of Cluster 1) and project it onto the axis of Cluster 2 showing f;, of about 0.65. Finally,
f3 is obtained by projecting onto the axis of Cluster 3 along a line parallel to Cluster 2, yielding fi3 of about
0.15. In four decimals, these values are 0.2079, 0.6457, and 0.1464. Thus, a point located close to a corner
implies that this respondent has been almost solely assigned to this cluster. Also, a point exactly in the
middle of the triangle implies an equal memberships of 1/3 to all three clusters. Finally, points that are on a
straight line from a corner orthogonal to a cluster axis have equal cluster memberships of two clusters. For

CONCLUSIONS 65

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Cluster 1 Cluster 1 Cluster 1
p=1,8=12 p=2,8=12 p=o,5=12
(ST o Q-

N/ % N) N &
> . Q] Q - Q
z?é’\ N @ /‘m, o?g} < % 60} g}&?‘ % 6«;,

S 1 X S CX & N

o/ N, o * o, o o PR
S/ e ﬂ! . ' S & S S
.!l- L) ™ .
) el . o B o , o
</ S :&. S Q; 2 N <)
*¢'
~, o ~ o ~]
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Cluster 1 Cluster 1 Cluster 1
p=1,s=15 p=2,s=15 p=e,5=15

Figure 3.5 Triplot showing the cluster membership in F for each respondent fors = 1.2,1.5,4 = l,andp = 1, 2, cc.

the case of p = oo, Figure 3.5 shows a vertical line (starting in Cluster 2 and orthogonal to the Cluster 1
axis), implying that the memberships for Clusters 1 and 3 are the same for those respondents.

For the choice s = 1.5 and p = 2 or o0, all clusters centers are in close proximity to each other in the
center. In other words, all fuzzy memberships are about 1/3 and consequently the three cluster centers are
the same. Therefore, s = 1.5 is too large for p = 2 or oo. This finding is an indication of overlapping
clusters. For a value of s = 1.2, the triplot for p = 1 shows more pronounced clusters because most of the
respondents are in the corners. For p = 2 and s = 1.2, the memberships are more evenly distributed over
the triangle although many respondents are still located in the corners. For p = oo and s = 1.2, some
respondents are on the vertical line (combining equal memberships to Clusters 1 and 3 for varying
membership of Cluster 2). The points that are located close to the Cluster 1 axis at 0.5 have a membership
of 0.5 for Clusters 1 and 3, those close to 0.5 at the Cluster 2 axis have 0.5 for Clusters 1 and 2, those close
to the Cluster 3 axis at 0.5 have 0.5 for Clusters 2 and 3.

For the robust case of A = 1/2, the triplots of the fuzzy memberships are given in Figure 3.6. One of the
effects of setting 4 = 1/2 seems to be that the f; are more attracted to the center and, hence, respondents
are less attracted to a single cluster than in the case of 4 = 1. Again, for s = 1.5 and p = 2 and o0, all
clusters merge into one cluster and the parallel coordinates plots of the clusters would show a single line.
For s = 1.2, the parallel coordinates plots of the clusters resemble Figure 3.5 reasonably well. Fors = 1.2
and p = 2, the lines in the parallel coordinates plot are closer together than for 4 = 1.

For this data-set, the clusters cannot be well separated because for a relatively small s of 1.5, the clusters
coincide (except for p = 1). The cluster centers seem to be better separated when p is small, especially for
p = 1. The fuzziness parameter s needs to be chosen small in this data-set to avoid clusters collapsing into
a single cluster. The effect of varying 4 seems to be that the cluster memberships are less extreme for
A=1/2thanfor A = 1.

3.6 CONCLUSIONS

We have considered objective function based fuzzy clustering algorithms using a generalized distance
function. In particular, we have studied the extension of the fuzzy c-means algorithm to the case of the

66 FUZZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Cluster 1 Cluster 1 Cluster 1
p=1,s=12 p=2,s=12 p=o,5=12

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Cluster 1 Cluster 1 Cluster 1
p=1,s=15 p=2,s=15 p=c,5=15

Figure 3.6 Triplot showing the cluster membership in F for each respondent for s =1.2,1.5, 2 =0.5, and
p=1200.

parametric Minkowski distance function and to the case of the root of the squared Minkowski distance
function. We have derived the optimality conditions for the membership values from the Lagrangian
function. For cluster centers, however, we have used iterative majorization to derive the optimality
conditions. One of the advantages of iterative majorization is that it is a guaranteed descent algorithm, so
that every iteration reduces the objective function until convergence is reached. We have derived suitable
majorization functions for the distance function that we studied. Extending results from Groenen and
Jajuga (2001), we have given a majorization algorithm for any Minkowski distance with Minkowski
parameter greater than (or equal to) 1. This extension also included the case of the L,,-distance and the
roots of the squared Minkowski distance.

By adapting the Minkowski parameter p, the user influences the distance function to take specific
cluster shapes into account. We have also introduced an additional parameter A for computing the roots of
the squared Minkowski distance. This parameter can be used to protect the clustering algorithm against
outliers. Hence, more robust clustering results can be obtained.

We have illustrated some key aspects of the behavior of our algorithm using empirical data regarding
attitudes about the Internet. With this particular data-set, we have observed extremely overlapping
clusters, already with a fuzziness parameter of s = 1.5. This finding deviates from the general practice
in fuzzy clustering, where this parameter is often selected equal to 2. Apparently, the choice of s and p has
to be done with some care for a given data-set.

REFERENCES

Babuska, R. (1998) Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston, MA.
Baraldi, A. and Blonda, P. (1999a) ‘A survey of fuzzy clustering algorithms for pattern recognition” — part I. [EEE
Transactions on Systems, Man and Cybernetics, Part B 29(6), 778-785.

REFERENCES 67

Baraldi, A. and Blonda, P. (1999b) ‘A survey of fuzzy clustering algorithms for pattern recognition’ — part II. JEEE
Transactions on Systems, Man and Cybernetics, Part B 29(6), 786-801.

Bargiela, A. and Pedrycz, W. (2005) ‘A model of granular data: a design problem with the Tchebyschev FCM’. Soft
Computing 9(3), 155-163.

Bezdek, J.C. (1973) Fuzzy mathematics in pattern classification PhD thesis Cornell University Ithaca.

Bezdek, J.C. and Pal, S.K. (1992) Fuzzy Models for Pattern Recognition. IEEE Press, New York.

Bezdek, J.C., Coray, C., Gunderson, R. and Watson, J. (1981a) ‘Detection and characterization of cluster substructure,
I. linear structure: fuzzy c-lines’. SIAM Journal of Applied Mathematics 40(2), 339-357.

Bezdek, J.C., Coray, C., Gunderson, R. and Watson, J. (1981b) ‘Detection and characterization of cluster
substructure, II. fuzzy c-varieties and convex combinations thereof’. SIAM Journal of Applied Mathematics 40(2),
358-372.

Bobrowski, L. and Bezdek, J.C. (1991) ‘c-Means clustering with the /; and /., norms’. IEEE Transactions on Systems,
Man and Cybernetics 21, 545-554.

Borg, I. and Groenen, P.J.F. (2005) Modern Multidimensional Scaling: Theory and Applications 2nd edn. Springer,
New York.

Crespo, F. and Weber, R. (2005) ‘A methodology for dynamic data mining based on fuzzy clustering’. Fuzzy Sets and
Systems 150(2), 267-284.

Dave, R.N. (1991) ‘Characterization and detection of noise in clustering’. Pattern Recognition Letters 12(11),
657-664.

De Leeuw, J. (1994) ‘Block relaxation algorithms in statistics’ In Information Systems and Data Analysis (ed.
H.-H. Bock, Lenski, W. and Richter MM) pp. 308-324. Springer Berlin.

Dodge, Y. and Rousson, V. (1998) ‘Multivariate L; mean’ In Advances in Data Science and Classification (ed. Rizzi A,
Vichi, M. and Bock H), pp. 539-546. Springer, Berlin.

Dunn, J. (1973) ‘A fuzzy relative of the 1sopATA process and its use in detecting compact, well-separated clusters’.
Journal of Cybernetics 3(3), 32-57.

D’Urso, P. (2005) ‘Fuzzy clustering for data time arrays with inlier and outlier time trajectories’. I[EEE Transactions on
Fuzzy Systems 13(5), 583-604.

Groenen, PJ.F. and Heiser, W.J. (1996) ‘The tunneling method for global optimization in multidimensional scaling’.
Psychometrika 61, 529-550.

Groenen, PJ.F. and Jajuga, K. (2001) ‘Fuzzy clustering with squared Minkowski distances’. Fuzzy Sets and Systems
120, 227-237.

Groenen, P.J.F., Heiser, W.J. and Meulman, J.J. (1999) ‘Global optimization in least-squares multidimensional
scaling by distance smoothing’. Journal of Classification 16, 225-254.

Gustafson, D.E. and Kessel, W.C. (1979) ‘Fuzzy clustering with a fuzzy covariance matrix’ Proc. IEEE CDC,
pp. 761-766, San Diego, USA.

Hathaway, R.J., Bezdek, J.C. and Hu, Y. (2000) ‘Generalized fuzzy c-means clustering strategies using /, norm
distances’. IEEE Transactions on Fuzzy Systems 8(5), 576-582.

Heiser, WJ. (1995) Convergent Computation by Iterative Majorization: Theory and Applications in Multi-
dimensional Data Analysis pp. 157-189. Oxford University Press, Oxford, UK.

Hoppner, F.,, Klawonn, F.,, Kruse, R. and Runkler, T. (1999) Fuzzy Cluster Analysis: Methods for Classification, Data
Analysis and Image Recognition. John Wiley & Sons, Inc., New York, USA.

Hunter, D.R. and Lange, K. (2004) ‘A tutorial on MM algorithms’. The American Statistician 39, 30-37.

Inselberg, A. (1981) ‘N-dimensional graphics, part I: Lines and hyperplanes. Technical Report G320-2711°, IBM Los
Angeles Scientific Center, Los Angeles (CA).

Inselberg, A. (1997) ‘Multidimensional detective’ Proc. IEEE Symp. Information Visualization, pp. 100-107.

Jajuga, K. (1991) ‘L;-norm based fuzzy clustering’. Fuzzy Sets and Systems 39, 43-50.

Kaymak, U. and Setnes, M. (2002) ‘Fuzzy clustering with volume prototypes and adaptive cluster merging’. [EEE
Transactions on Fuzzy Systems 10(6), 705-712.

Kiers, H.A.L. (2002) ‘Setting up alternating least squares and iterative majorization algorithms for solving various
matrix optimization problems’. Computational Statistics and Data Analysis 41, 157-170.

Lange, K., Hunter, D.R. and Yang, 1. (2000) ‘Optimization transfer using surrogate objective functions’. Journal of
Computational and Graphical Statistics 9, 1-20.

Liang, G., Chou, T. and Han, T. (2005) ‘Cluster analysis based on fuzzy equivalence relation’. European Journal of
Operational Research 166(1), 160-171.

Ruspini, E. (1969) ‘A new approach to clustering’. Information and Control 15, 22-32.

68 FUZZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS

Santoro, M., Prevete, R., Cavallo, L. and Catanzariti, E. (2006) ‘Mass detection in mammograms using Gabor filters
and fuzzy clustering’. Lecture Notes in Artificial Intelligence 3849, 334-343.

Sheu, H.B. (2005) ‘A fuzzy clustering approach to real-time demand-responsive bus dispatching control’. Fuzzy Sets
and Systems 150(3), 437-455.

Yang, M.S. (1993) ‘A survey of fuzzy clustering’. Mathematical and Computer Modelling 18(11), 1-16.

Yang, Y, Zheng, C.X. and Lin, P. (2005) ‘Fuzzy clustering with spatial constraints for image thresholding’. Optica
Applicata 35(4), 943-954.x

4

Soft Cluster Ensembles

Kunal Punera and Joydeep Ghosh

Department of Electrical and Computer Engineering, University
of Texas at Austin, Texas, USA

4.1 INTRODUCTION

Cluster ensembles is a ‘knowledge reuse’ framework for combining multiple clusterings of a set of
objects without accessing the original features of the objects. This problem was first proposed in Strehl
and Ghosh (2002) where the authors applied it for improving the quality and robustness of clustering, and
in distributed clustering. A related problem of consensus clustering also exists in the marketing literature
(Kreiger and Green, 1999) where often a set of individuals is segmented in multiple ways based on
different criteria (needs-based, demographics, etc.) and one is interested in obtaining a single, unified
segmentation.

The idea of combining multiple models is well established in the classification and regression scenarios
where it has led to impressive improvements in a wide variety of domains (Breiman, 1999; Freund and
Schapire, 1996; Ghosh, 2002). Combining clusterings is, however, a more difficult problem than
combining the results of multiple classifiers, since clusterings are invariant to cluster label permutations.
In other words, all partitions of a set of objects that differ only in the cluster labeling are identical. As a
result, before combining the clusterings one has to identify which clusters from different clusterings
correspond to each other. This sub-problem of identifying cluster correspondences is further complicated
by the fact that the number of clusters in the individual solutions might vary significantly. These
differences, along with wide variations in the clustering algorithms and features of data used for
underlying clustering algorithms, make solving cluster ensembles a very challenging problem. Even
so, the ability to combine clusterings in an ensemble is very useful.

Cluster ensembles have been shown to be useful in many application scenarios. Some of the principal
ones are

o Knowledge reuse. An important application of cluster ensembles is combining knowledge encoded in
multiple clusterings. An example of this is exploiting the knowledge in legacy clusterings while re-
clustering the data. We might not have access to the features that were originally used while creating the
legacy clusterings; they might even have been created manually by a domain expert. Also, in many
cases the number of clusters in the original data might have changed or new features might now be

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
© 2007 John Wiley & Sons, Ltd

70 SOFT CLUSTER ENSEMBLES

available. In these cases, re-clustering all the data with the new features may not be possible. Cluster
ensembles can be employed to combine multiple clusterings in these feature/object distributed
scenarios (Ghosh, Strehl, and Merugu, 2002; Strehl and Ghosh, 2002).

o Multi-view clustering. A set of objects can be clustered multiple times using different attributes/
criteria. For example, in marketing applications, customers can be segmented based on their needs,
psychographic or demographic profiles, brand choices, etc.. Consensus clustering can be used to
combine all such partitions into one, which is often easier to act on (Kreiger and Green, 1999).

o Distributed computing. In many applications, the data to be clustered is distributed over many sites, and
data sharing is prohibited. In the case of distributed computing, communication costs make sharing all
the data with a central site prohibitively expensive, but communicating clustering results is cheaper. In
other cases, while sharing actual features of data might be prohibited because of privacy reasons, the
sharing of clustering results might be permissible, as in Merugu and Ghosh (2003). Both these
scenarios can be handled by locally clustering data present at each site, and then transferring only
the clustering solutions to a central site. Cluster ensemble algorithms can then be used to combine these
clusterings into a composite clustering at the central site.

e Improved quality of results. Each clustering algorithm has its own search biases and uses different
types of features. Combining the results of multiple different clusterings algorithms could give
improvements over their individual solutions, as the combined solution would take into account all
their biases. It has been seen that using cluster ensembles to combine diverse clustering solutions leads
to more accurate results on average (Hadjitodorov, Kuncheva, and Todorova, 2006; Kuncheva and
Hadjitodorov, 2004).

e Robust solutions. Many clustering algorithms suffer from initialization problems, often finding local
minima of their objective functions. The cluster ensembles framework can be used to alleviate these
problems of unstable clustering results. Multiple runs of a clustering algorithm, obtained with different
initializations or with different sets of features, can be combined in order to obtain a robust final
solution (Fern and Brodley, 2003; Fred and Jain, 2002).

There have been several attempts to solve cluster ensembles in the recent past. Strehl and Ghosh (2002)
proposed three graph-theoretic approaches for finding the consensus clustering. A bipartite graph
partitioning based approach has been proposed by Fern and Brodley (2004). Topchy, Jain, and Punch
(2004) proposed the use of a mixture of multinomial distributions to model the ensemble of labels along
the lines of classical latent class analysis in marketing literature. Some of these approaches will be
described in detail in Section 4.2. While these techniques are very varied in the algorithms they employ,
there is acommon thread that they only work with hard constituent clusterings. It is the goal of this chapter
to investigate soft cluster ensembles.

4.1.1 Ensembles of Soft Clusterings

There are several clustering algorithms, such as EM (Dempster, Laird, and Rubin, 1977) and fuzzy
c-means (Bezdek and Pal, 1992; Dunn, 1973), that naturally output soft partitions of data. A soft partition
assigns a value for the degree of association of each instance to each output cluster. So instead of a label
vector for all the instances, we have a matrix of values in which each instance is associated with every
cluster with some membership value; often these values are the posterior probabilities and add up to one.
In order to solve an ensemble formed of soft clusterings using one of the existing algorithms mentioned
above, we would have to ‘harden’ the clusterings. This process involves completely assigning each
instance to the cluster to which it is most associated. This results in the loss of the information
contained in the uncertainties of the cluster assignments. This is especially true for application settings
where underlying clustering algorithms access partial views of the data, such as in distributed data
mining. A landmark work on ‘collaborative’ fuzzy clustering was done by Pedrycz (2002). The author
considered a vertical partitioning scenario, and captured the collaboration between multiple partitionings
via pairwise interaction coefficients. This resulted in an extended cost function to accommodate the

CLUSTER ENSEMBLES 71

collaboration effect in the optimization process. This approach is restricted in scope in many ways: each
partition needs to have the same number of clusters; the difficult cluster correspondence problem is
assumed to be already solved; and the distances between each point and its representative in each of the
solutions need to be known. Despite these constraints, it was illustrated that, at least for simple two and
three cluster problems, collaboration had a positive effect on cluster quality. This further motivates the
present study, where we propose flexible frameworks for combining multiple soft clusterings directly
without ‘hardening’ the individual solutions first. We introduce a new consensus function (ITK) based on
the information-theoretic k-means algorithm (Dhillon, Mallela, and Kumar, 2003b) that is more efficient
and effective than existing approaches. For evaluation purposes, we create a large number of ensembles of
varying degrees of difficulty, and report clustering results achieved by the various existing and new
algorithms on them. In order to objectively evaluate ITK we extend existing algorithms to operate on soft
cluster ensembles as well.

4.1.2 Organization of this Chapter

In Section 4.2 we first define the hard cluster ensemble problem formally, and then go on to describe the
various consensus functions that have been proposed in literature. The soft cluster ensembles are then
formally introduced in Section 4.3 followed by several new consensus functions that operate on them. The
experimental setup for our extensive evaluation of these algorithms and the empirical results then follow
in Section 4.4 and Section 4.5, respectively. Finally, in Section 4.6 we conclude the chapter and briefly
mention possible directions for future research.

4.2 CLUSTER ENSEMBLES

In this section, we will first define the hard cluster ensemble problem formally, and then present graph-
theoretic solutions proposed by Strehl and Ghosh (2002) and Fern and Brodley (2004). We will also
present some related work on robust clustering by Fred and Jain (2002), and on generative models for
ensembles by Topchy, Jain, and Punch (2004). Other methods such as Voting-Merging (Dimitriadou,
Weingessel, and Hornik, 2001) and GA-Search (Gablentz, Koppen, and Dimitriadou, 2000) are not
presented as they are either not competitive or too restrictive in their scope. We will end the section with a
brief discussion on past work on the role of diversity in the cluster ensembles problem.

4.2.1 The Hard Cluster Ensemble Problem

Let X = {x1,x2,...,x,} denote a set of instances/objects. Each partitioning of the data (called
a clustering) is represented as a vector of labels over the data. Let 29 e {1,2,.. ‘k(")}" denote the label
vector of the gth constituent clustering of X; i.e., /lf-q) is the label of x; in the gth partitioning. A set of r
such clusterings 2121 s called a cluster ensemble (for an example, see Table 4.1). The goal is to
find a consensus function I' that would combine the r clusterings A2 into a single clustering/labeling
A

It is instructive, for presentation later in this section, to consider that every hard clustering can be
mapped to a hypergraph. A hypergraph consists of vertices and hyperedges. While an edge connects two
vertices of a graph, a hyperedge can connect any number of vertices. For each clustering vector 29 a
binary indicator matrix H@ can be defined with # rows and k@) columns. Hi(dq-) is 1 if x; was placed in
cluster j in clustering 219 The entire ensemble of clusterings can hence be represented by a concatenation
of individual indicator matrices as H = (H("), ... H")). The matrix H, now, defines a hypergraph with n
vertices and Z;zl k@) hyperedges. Each hyperedge connects all the vertices that have a value 1 in the
corresponding column. This transformation of 4121 1o H is shown in Tables 4.1 and 4.2.

72 SOFT CLUSTER ENSEMBLES

Table 4.1 A set of three clusterings.

2 2@ 23
X1 1 2 1
X2 1 2 1
X3 1 3 2
X4 2 3 2
X5 2 3 3
X6 3 1 3
X7 3 1 3

4.2.2 Graph-theoretic Approaches

Upon formulating the cluster ensemble problem, Strehl and Ghosh (2002) proposed three graph-theoretic
approaches (CSPA, HGPA, and MCLA) for finding the consensus clustering. Later Fern and Brodley
(2004) proposed the HBGF algorithm that is based on bipartite graph partitioning. All these approaches
use the efficient graph partitioning algorithm METIS by Karypis and Kumar (1998) to partition graphs
induced by the cluster ensemble and find the consensus clustering. Note that there is implicitly an
additional constraint in these solutions, namely that the consensus clusters obtained should be of
comparable size. We describe these and other algorithms in the following subsections.

4.2.2.1 Cluster-based Similarity Partitioning Algorithm (CSPA)

In CSPA the similarity between two data points is defined to be directly proportional to the number of
constituent clusterings of the ensemble in which they are clustered together. The intuition is that the more
similar two data points are the higher is the chance that constituent clusterings will place them in the same
cluster. Hence, in this approach an n x n similarity matrix is computed as W = %HHT. This similarity
matrix (graph) can be clustered using any reasonable pairwise similarity based clustering algorithm to
obtain the final clustering. In CSPA the authors chose METIS to partition the similarity graph to obtain the
desired number of clusters. Because CSPA constructs a fully connected graph its computational and
storage complexity are (/(n?). Hence it is more expensive in terms of resources than algorithms that will
be introduced below.

4.2.2.2 Hypergraph Partitioning Algorithm (HGPA)

The HGPA algorithm seeks directly to partition the hypergraph defined by the matrix H in Table 4.2.
Hypergraph partitioning seeks to cluster the data by eliminating the minimal number of hyperedges. This

Table 4.2 Hypergraph representation of clusterings.

HD H® HO®

]’ll hz hg /’l4 h5 /’l(, h7 hg hg
Vi 1 0 0 0 1 0 1 0 0
123 1 0 0 0 1 0 1 0 0
V3 1 0 0 0 0 1 0 1 0
V4 0 1 0 0 0 1 0 1 0
Vs 0 1 0 0 0 1 0 0 1
Ve 0 0 1 1 0 0 0 0 1
V7 0 0 1 1 0 0 0 0 1

CLUSTER ENSEMBLES 73

partitioning is performed by the package HMETIS by Karypis, Aggarwal, Kumar, and Shekhar (1997).
In the HGPA algorithm all the vertices and hyperedges are weighted equally. In our experiments,
HGPA displayed a lack of robustness and routinely performed worse than the CSPA and MCLA
algorithms. Hence, we will not discuss this algorithm or report any results for it in the remainder of
this chapter.

4.2.2.3 Meta-clustering Algorithm (MCLA)

The MCLA algorithm takes a slightly different approach to finding the consensus clustering than the
previous two methods. First, it tries to solve the cluster correspondence problem and then uses voting to
place data points into the final consensus clusters. The cluster correspondence problem is solved by
grouping the clusters identified in the individual clusterings of the ensemble.

As we have seen earlier, the matrix H represents each cluster as n-length binary vectors. In MCLA,
the similarity of cluster ¢; and ¢; is computed based on the number of data points that are clustered into
both of them, using the Jaccard measure W; ; = }Z:Dg} This similarity matrix (graph), with clusters as
nodes, is partitioned into meta-clusters using METIS.

The final clustering of instances is produced in the following fashion. All the clusters in each meta-
cluster are collapsed to yield an association vector for the meta-cluster. This association vector for a meta-
cluster is computed by averaging the association of instances to each of the constituent clusters of that
meta-cluster. The instance is then clustered into the meta-cluster that it is most associated to.

Computing the cluster similarity matrix exhibits a quadratic time complexity on the number of clusters
in the ensemble. This is often significantly less than n?. Furthermore, the averaging and voting operations
are linear in n. This makes MCLA computationally very efficient.

4.2.2.4 Hybrid Bipartite Graph Formulation (HBGF)

This method was introduced by Fern and Brodley (2004) with an aim to model the instances and clusters
simultaneously in a graph. The CSPA algorithm models the ensemble as a graph with the vertices
representing instances in the data, while the MCLA algorithm models the ensemble as a graph of clusters.
The HBGF technique combines these two ideas and represents the ensemble by a bipartite graph in which
the individual data points and the clusters of the constituent clusterings are both vertices. The graph is
bipartite because there are no edges between vertices that are both either instances or clusters. The
complete set of rules to assign the weights on the edges is as follows:

e W(i,j) = 0if i,j are both clusters or both instances;
e W(i,j) = 0 if instance i doesn’t belong to cluster j;
e W(i,j) = 1 if instance i belongs to cluster j.

This bipartite graph is partitioned into k parts yielding the consensus clustering. The clustering
is performed using METIS and spectral clustering (Ng, Jordan, and Weiss, 2001). The clusters in the
consensus clustering contain both instances and the original clusters. Hence, the method yields a co-
clustering solution. This method has also been previously used to simultaneously cluster words and
documents by Dhillon (2001).

The computational complexity of HBGF is ((n x t), where ¢ is the total number of clusters
in the ensemble. While this is significantly less than quadratic in the number of instances (as in
CSPA), in practice we observe the algorithm to be fairly resource hungry both in terms of CPU time
and storage.

4.2.2.5 Evidence Accumulation Framework

Evidence accumulation (Fred and Jain, 2001, 2002) is a simple framework, very similar to the cluster
ensemble framework, for combining the results of multiple weak clusterings in order to increase

74 SOFT CLUSTER ENSEMBLES

robustness of the final solution. The framework uses a k-means type algorithm to produce several
clusterings each with a random initialization. The number of clusters specified in each k-means clustering
is typically much larger than the true number of clusters desired. The data instances are then mapped into
the similarity space where the similarity between two instances i and j is the fraction of clusterings in
which they ended up in the same cluster. A minimum spanning-tree based clustering algorithm is then
used to obtain the final clustering. In practice any appropriate clustering technique could be employed.
This framework and the consensus function that it uses are very similar to the cluster ensemble framework
and the CSPA algorithm (Strehl and Ghosh, 2002).

A similar framework for obtaining robust clustering solutions has been proposed by Frossyniotis,
Pertselakis, and Stafylopatis (2002). The actual consensus function used in this algorithm only works on
heavily restricted type of ensembles; each constituent clustering has the same number of clusters. Also,
Fern and Brodley (2003) extended this approach to accept soft clusterings as input. The details of this
approach are presented in Section 4.3.4.

4.2.3 Ensemble as a Mixture of Multinomials

Topchy, Jain, and Punch (2004) modeled the ensemble, AU ’), using a generative model and used EM to
estimate the parameters of the model. The EM procedure along with the parameters provides us with a soft
final clustering.

In this approach, it is assumed that the ensemble has been generated from a mixture of multidimensional
multinomial distributions. Each data point is generated by first picking a multinomial distribution according to
the priors. After picking a component of the mixture, the cluster label in each clustering is picked from a
multinomial distribution over the cluster labels. The cluster labels of different constituent clusterings are
assumed to be i.i.d..

The number of parameters to be estimated increases with both the number of constituent
clusterings as well as with the number of clusters in them. Experiments in Topchy, Jain, and
Punch (2004) did not include experiments on data-sets that have more than three clusters. In this
chapter we will evaluate the performance of this consensus function on more complex real-life
data-sets.

One advantage of this approach is that it is easy to model final clusters of different sizes using this
method. Graph partitioning methods tend to yield roughly balanced clusters. This is a disadvantage in
situations where the data distribution is not uniform. Using the priors in the mixture model the distribution
of data can be accommodated conveniently.

4.2.4 Diversity in Cluster Ensembles

Diversity among the classifiers in an ensemble has been shown to improve its accuracy (Hansen and
Salamon, 1990; Melville and Mooney, 2003). Here, we recount some research on the impact of diversity
on cluster ensembles.

Ghosh, Strehl, and Merugu (2002) examined the problem of combining multiple clusters of varying
resolution and showed that it is possible to obtain robust consensus even when the number of clusters
in each of the individual clusterings is different. They also described a simple scheme for selecting a
‘good’ number of clusters k for the consensus clustering by observing the variation in average normalized
mutual information with different k. Fern and Brodley (2003) reported on some experiments on
diversity of ensembles. They found that the consensus function’s accuracy increased as the ensemble
is made more diverse. Kuncheva and Hadjitodorov (2004) studied the diversity of ensembles using
multiple measures like the Rand Index, Jaccard measure, etc.. Based on this study they proposed a variant
of the Evidence Accumulation framework where the number of over-produced clusters is randomly

SOFT CLUSTER ENSEMBLES 75

chosen. This randomization in ensemble generation is shown to increase the diversity of the ensembles
thereby leading to better consensus clustering. In a recent follow-up work Hadjitodorov, Kuncheva, and
Todorova (2006) reported that selecting constituent clusterings based on median diversity leads to better
ensembles.

4.3 SOFT CLUSTER ENSEMBLES

In this section we will formally define the soft cluster ensemble problem and provide intuition on
why we expect soft cluster ensembles to yield better results than their corresponding hard versions. We
will then introduce a new algorithm based on Information Theoretic k-means (Dhillon, Mallela and
Kumar, 2003b) to solve ensembles of soft clusterings. In order to evaluate our new approach
objectively, we will describe changes to existing techniques mentioned in Section 4.2 to enable
them to handle soft ensembles.

4.3.1 The Soft Cluster Ensemble Problem

In order to facilitate the explanation of various algorithms later in this section, we now define the soft
cluster ensemble problem formally.

As in the case of hard ensembles, let X = {x;,x2,...,x,} denote a set of instances/objects.
Also, let A ¢ {1,2,.. .k(‘J)}" denote the label vector of the gth clustering of X; i.e., A'l(q) is the label
of x; in the gth clustering. This is the hard labeling defined in Section 4.2.1. In cases where
the underlying clustering algorithm outputs soft cluster labels,),Eq) is defined as argmax;P(C;|x;),
where P(Cj|x;) is the posterior probability of instance x; belonging to cluster C;. A soft cluster
ensemble is shown in Table 4.3, and its corresponding hard version in Table 4.1.

Instead of hardening the posterior probabilities into cluster labels, we construct a matrix S
representing the solution of the g™ soft clustering algorithm. S has a column for each cluster
generated in the clustering and the rows denote the instances of data with Sf;f) being the probability
of x; belonging to cluster j of the gth clustering. Hence, the values in each row of $¢ sum up to 1.
There are such clusterings (S"")) each with k@) clusters. Just as in the hard ensemble problem,
our goal is to find a consensus function I' that combines these clusterings into a combined
labeling, /, of the data. It should be noted that the cluster ensemble framework does not specify
whether the final clusterings should be hard or soft. In this chapter we only work with algorithms
that output hard final clusterings.

Table 4.3 Ensemble of soft clusterings.

s e NE)

S1 52 53 S4 S5 S6 57 S8 S9
X1 07 02 0.1 0.1 07 02 06 03 0.1
X2 09 01 00 0.0 0.8 02 08 02 00
X3 09 00 0.1 0.1 04 05 05 05 00
X4 02 06 02 0.1 02 07 02 07 0.1
X5 01 09 00 0.0 0.1 09 00 05 05
X6 00 02 038 0.8 0.1 0.1 01 02 07

X7 01 02 07 0.7 0.1 02 0.1 03 06

76 SOFT CLUSTER ENSEMBLES

4.3.2 Intuition behind Soft Ensembles

It is fairly obvious from the above definition that hardening a soft cluster ensemble entails a loss of
information. However, it is not at all obvious that this additional information is useful. The goal of this
study is to show empirically that algorithms designed for soft ensembles improve upon the accuracy of
those that operate on the hardened versions of the ensembles. Here, we will try to explain intuitively why
we expect this.

For the sake of discussion consider a cluster ensemble where individual clusterings are working on
vertically partitioned data. In such a scenario, the underlying clustering algorithms have access to
different and often incomplete sets of features. Incomplete data could result from distributed computing
constraints (Ghosh, Strehl and Merugu, 2002), random projections in order to facilitate high-dimensional
clustering (Fern and Brodley, 2003), or multi-view data-sets as used in (Kreiger and Green, 1999). Under
such circumstances there is an increased chance that the underlying clustering algorithms will not be able
to assign some objects into clusters with much certainty. If the combining procedure were to accept only
hard clusterings, these objects would have to be assigned to the cluster they most belong to (one with the
highest posterior probability).

Consider the soft ensemble depicted in Table 4.3. The solution S @ assigns x3 to clusters sy, 55, and sg
with probabilities 0.1, 0.4, and 0.5, respectively. If the consensus function were to only accept hard
clusterings it would be provided with a vector where }ng) is s¢. The combining algorithm would have no
evidence that the second underlying clustering algorithm was unsure about the assignment of x3. It would
accept this observation with the same amount of certainty as any other observation that assigns a data
point x; to a cluster s5; with 0.9 probability. If, however, the combining function were to accept soft
clusterings, it could potentially use this information to make appropriate cluster assignment of x3 in the
combined clustering. Since it is more likely that clustering algorithms are unsure of their assignments
while operating with an incomplete set of features, it is important that the combining function has access
to the cluster assignment probabilities, and not just the hard assignments themselves.

4.3.3 Solving Soft Ensembles with Information-Theoretic
k-means (ITK)

Information-Theoretic k-means was introduced by Dhillon, Mallela, and Kumar (2003b) as a way to
cluster words in order to reduce dimensionality in the document clustering problem. This algorithm is
very similar to the k-means algorithm, differing only in the fact that as a measure of distance it uses the
KL-divergence (Kullback and Leibler, 1951) instead of the Euclidean distance. The reader is referred to
the original paper for more details. Here we just describe the mapping of the soft cluster ensemble
problem to the Information-Theoretic k-means problem.

Each instance in a soft ensemble is represented by a concatenation of r posterior membership
probability distributions obtained from the constituent clustering algorithms (see matrix S in Table 4.3).
Hence, we can define a distance measure between two instances using the Kullback—Leibler (KL)
divergence (Kullback and Leibler, 1951), which calculates the ‘distance’ between two probability
distributions. The distance between two instances x, and x; can be calculated as

r k@) @ S(‘l)
KLy, = 2 w(@ 21: 5\ log <ﬁ> (4.1)
q= i=

Xpl
-
where, w9 are clustering specific weights, such that > w@ = 1.
g=1

Equation (4.1) computes the pairwise distance by taking an average of the KL divergence between the
two instances in individual constituent clusterings. Here we note that this is equivalent to computing the
KL divergence between instances represented by a matrix S in which each row adds up to one. This
normalization can be performed by multiplying each value in @ by w(®) / 22:1 w(9). Now that we have a

SOFT CLUSTER ENSEMBLES 77

distance measure between instances based on KL-divergence, we can use existing information-theoretic
k-means software mentioned above to solve the soft ensemble.

Computing Equation (4.1) with w9 = 1/r assumes that all the clusterings are equally important. We
can, however, imagine a scenario where we have different importance values for the constituent
clusterings. These values could, for instance, be our confidence in the accuracy of these clusterings,
possibly based on the number of features they access. These confidence values can easily be integrated
into the cost function using the weights w9,

4.3.4 Soft Version of CSPA (sCSPA)

The CSPA algorithm proposed by Strehl and Ghosh (2002) works by first creating a co-association matrix
of all objects, and then using METIS (Karypis and Kumar, 1998) to partition this similarity space to
produce the desired number of clusters. This algorithm is described in Section 4.2.

sCSPA extends CSPA by using values in S to calculate the similarity matrix. If we visualize each object
as a point in Z 4)_dimensional space, with each dimension corresponding to the probability of its
belonging to a cluster then SS” is the same as finding the dot product in this new space. Thus the
technique first transforms the objects into a label-space and then interprets the dot product between
the vectors representing the objects as their similarity. In our experiments we use Euclidean distance in the
label space to obtain our similarity measure. The dot product is highly co-related with the Euclidean
measure, but Euclidean distance provides for cleaner semantics. Euclidean distance between x, and x;, is
calculated as

dxu Xy Z Z(Xal x;,l) .

q=1 i=

This can be interpreted as a measure of the difference in the membership of the objects for each cluster.
This dissimilarity metric is converted into a similarity measure using sy, ,, = e o,

Another distance measure can be defined on the instances in a soft ensemble using KL, divergence
(Kullback and Leibler, 1951) as in Section 4.3.3. In our results we observed that all versions of the sSCSPA
(with Euclidean distance, KL divergence and cosine similarity) gave very similar results. The results
obtained while using Euclidean distance were sometimes better, so here we will report results based on
only that version of the SCSPA. sCSPA (like CSPA) is impractical for large data-sets, and hence we will
only report results for data-sets with less than 2000 data points.

Fern and Brodley (2003) proposed a variant of the evidence accumulation framework that accepts soft
clusterings. In this scenario, the similarity of two instances is calculated as the average dot product of the
probability distributions describing them. Hence,

Sim(xq, Xp) E Xﬂ, w

The similarity matrix that results is then clustered using a complete-link agglomerative algorithm. The
input matrix used by this framework is essentially equivalent to the one used by sCSPA (using cosine
similarity). The only difference is in the combining function. Hence, we will not experiment with this
technique further in this chapter.

4.3.5 Soft Version of MCLA (sMCLA)

In MCLA each cluster is represented by an n-length binary association vector. The idea is to group and
collapse related clusters into meta-clusters, and then assign each object to the meta-cluster in which it
belongs most strongly. The clusters are grouped by graph partitioning based clustering.

78 SOFT CLUSTER ENSEMBLES

SMCLA extends MCLA by accepting soft clusterings as input. SMCLA’s working can be divided into
the following steps (similar steps are followed in MCLA too):

Construct soft meta-graph of clusters. All the Z;=1 k@ clusters or indicator vectors s; (with weights),
the hyperedges of S, can be viewed as vertices of another regular undirected graph. The edge weights
between two clusters s, and s,, is set as W, , = Euclidean_dist(s,, s). The Euclidean distance is a
measure of the difference of membership of all objects to these two clusters. As in the sCSPA
algorithm, the Euclidean distance is converted into a similarity value.

Group the clusters into meta-clusters. The meta-graph constructed in the previous step is partitioned
using METIS to produce k balanced meta-clusters. Since each vertex in the meta-graph represents a
distinct cluster label, a meta-cluster represents a group of corresponding cluster labels.

Collapse meta-clusters using weighting. We now collapse all the clusters contained in each meta-
cluster to form its association vector. Each meta-cluster’s association vector contains a value for
every object’s association to it. This association vector is computed as the mean of the association
vectors for each cluster that is grouped into the meta-cluster. This is a weighted form of the step
performed in MCLA.

Compete for objects. Each object is assigned to the meta-cluster to which it is most associated. This
can potentially lead to a soft final clustering, since the ratio of the winning meta-cluster’s association
value to the sum of association values of all final meta-clusters can be the confidence of assignment
of an object to the meta-cluster.

There is, however, one problem with this approach. Because we are using soft clusterings as inputs, the
co-association graph of the clusters (meta-graph) is almost complete. More specifically, even clusters
from the same clusterings have non-zero similarity to each other. This is not the case with MCLA since it
uses a binary Jaccard measure, and for hard clusterings Jaccard similarity between clusters in the same
clusterings is necessarily zero. We obtain better consensus clustering results after making the co-
association matrix r-partite. Hence, SMCLA forces the similarity of hyperedges coming from the same
clustering to be zero. This is, however, only done when the number of clusters in all the constituent
clusterings is equal to the desired final number of clusters. In ensembles where the number of clusters in
each underlying clustering vary the algorithm does not force the co-association matrix to be r-partite.

4.3.6 Soft Version of HBGF (sHBGF)

HBGF represents the ensemble as a bipartite graph with clusters and instances as nodes, and edges
between the instances and the clusters they belong to. This approach can be trivially adapted to consider
soft ensembles since the graph partitioning algorithm METIS accepts weights on the edges of the graph to
be partitioned. In sHBGF, the graph has n + ¢ vertices, where ¢ is the total number of underlying clusters.
The weights on the edges are set as follows:

e W(i,j) = 0if i,j are both clusters or both instances;
e W;j = S, otherwise, where i is the instance and j is the cluster.

4.4 EXPERIMENTAL SETUP

We empirically evaluate the various algorithms presented in Sections 4.2 and 4.3 on soft cluster
ensembles generated from various data-sets. In this section we describe the experimental setup in detail.

EXPERIMENTAL SETUP 79

Table 4.4 Data-sets used in experiments.

Name Type of features #features #classes #instances
8D5K Real 8 5 1000
Vowel Real 10 11 990
Pendigits Real 16 10 10992
Glass Real 9 6 214
HyperSpectral Real 30 13 5211
Yeast Real 8 10 1484
Vehicle Real 18 4 846

4.4.1 Data-sets Used

We perform the experimental analysis using the six real-life data-sets and one artificial data-set. Some
basic properties of these data-sets are summarized in Table 4.4. These data-sets were selected so as to
present our algorithms with problems of varying degrees of difficulty — in terms of the number of desired
clusters, the number of attributes, and the number of instances. All these data-sets, with the exception of
8D5K and HyperSpectral, are publicly accessible from the UCI data repository (Black and Merz, 1998).

8D5K. Thisisan artificially generated data-set containing 1000 points. It was generated from five multivariate
Gaussian distributions (200 points each) in eight-dimensional space. The clusters all have the same
variance but different means. The means were drawn from a uniform distribution within the unit hypercube.
This data-set was used in (Strehl and Ghosh, 2002) and can be obtained from http://www.strehl.com.
Vowel. This data-set contains data on the pronunciation of vowels. We removed some nominal features
that corresponded to the context like sex, name, etc., and only retained the 10 real valued features.
There are 11 classes in the data and an average of 93 instances per class.

Pendigits. This data-set was generated for the problem of pen-based recognition of handwritten digits.
It contains 16 spatial features for each of the 10 992 instances. There are 10 classes of roughly equal
sizes corresponding to the digits O to 9. In order to get better clustering results, we normalized the
columns (features) to sum to one.

Glass. The instances in this data-set are samples of glass used for different purposes. Real-valued
features corresponding to their chemical and optical properties describe the instances. There are 214
instances categorized into six classes such as tableware, containers, etc. based on nine attributes.
Hyper Spectral. This data-set contains 5211 labeled pixels from a HyperSpectral snapshot of the
Kennedy Space Center. Each data point is described by a set of 30 HyperSpectral signatures pruned
from an initial set of 176 features. The pruning was performed by a best-basis feature extraction
procedure (Kumar, Ghosh, and Crawford, 2001). The data-set has 13 classes describing the geogra-
phical features apparent in the pixel.

Yeast. The Yeast data-set contains information about proteins within yeast cells with the class attribute
denoting the localization within the cell. This is a fairly hard problem, and this shows in the clustering
results we obtain. The 1484 instances are each characterized by eight attributes, and there are 10 classes
in the data-set.

Vehicle. This data-set was designed for the purpose of learning to classify a given silhouette as one of
the four types of vehicles, using a set of 18 features extracted from the silhouette. The vehicle may be
viewed from one of many different angles. The 846 silhouette instances are classified into four vehicle
categories: Opel, Saab, bus, and van.

4.4.2 Ensemble Test-set Creaftion

In order to compare the hard and soft ensemble methods, as well as to evaluate the k-means Information-
Theoretic (ITK) based approach, we created soft cluster ensembles of varying degrees of difficulty. Note

80 SOFT CLUSTER ENSEMBLES

Table 4.5 Data-set specific options for creating ensembles.

Name # attributes Numatts options #clusterings/Numatts-option
8D5K 8 3,45.,6 10
Vowel 10 3,4,5,6,7 10
Pendigits 16 3,4,6,9,12 15
Glass 9 3,4,5,6,7 10
HyperSpectral 30 5,10,15,20,25 15
Yeast 8 2,345 10
Vehicle 18 458,11 15

here that for each soft cluster ensemble we also stored its corresponding hardened version to evaluate
methods that only accept hard clusterings.

The individual clusterings in our ensembles were created using the EM algorithm (Dempster, Laird,
and Rubin, 1977) with a mixture of Gaussian distribution models, but any algorithm that outputs soft
probabilities could have been used. Further, each constituent clustering was created using vertically
partitioned subsets of the data-sets. This partial view of the data as well as the dependence of EM on
initialization resulted in the diversity in the individual clustering solutions in an ensemble.

As mentioned above, we wanted to evaluate our algorithms on ensembles of varying degrees of difficulty.
For this purpose we created ensembles by varying two parameters that controlled the degree of difficulty.
The first parameter is the number of attributes that the EM algorithm accesses while creating the constituent
clusterings. We expected the difficulty of an ensemble containing clusterings created from less attributes to
be higher. The second parameter is the number of constituent clusterings in the ensemble. In general, we
expected that as the number of constituent clusterings increased the consensus clusterings obtained should
be more accurate. For most data-sets the number of clusterings in the ensembles is varied from two to 10, and
in some cases to 15. The entire set of options for all the data-sets is listed in Table 4.5. The column labeled
‘Numalts options’ in Table 4.5 describes the different settings for a number of features used to create
clusterings. For instance, for the 8D5K data-set we can obtain ensembles with constituent clusterings
created using 3.4,5, or 6 attributes. Also, for each of these settings we can select from 10 clusterings to form
an ensemble. Of course, each of these 10 clusterings is created with a randomly selected set of attributes.

Hence, while creating an ensemble we specify three parameters: the data-set name, the number of
attributes, and the number of clusterings. For each set of parameter values, we create multiple ensembles
by randomly selecting the clusterings to combine. Also, nondeterministic consensus functions are run
multiple times in order to average out variations in results due to initialization.

Here we must note that each individual clustering as well as the consensus function is given the true
number of clusters to find. The use of ensembles for finding the true number of clusters, or the effect of
different & in constituent clusterings on ensemble accuracy, is not investigated in this study.

4.4.3 Evaluation Criteria

In order to evaluate the final consensus clusterings obtained we use two different criteria. Both these
criteria compare the obtained clustering to the true labels of the instances. We also use the geometric mean
ratio to present an overall score for the performance of each algorithm.

4.4.3.1 Normalized Mutual Information (NMI)

The first criterion we use was introduced by Strehl and Ghosh (2002). and is called normalized mutual
information (NMI).
The NMI of two labelings of instances can be measured as

1(X,Y)

NMI(X,Y) = TEORD

(4.2)

EXPERIMENTAL SETUP 81

where I(X, Y) denotes the mutual information between two random variables X and Y and H(X) denotes
the entropy of X. In our evaluation, X will be consensus clustering while Y will be the true labels.

NMI has some nice properties such as NMI(X,X) = 1 and if Y has only one cluster label for all
instances NMI(X,Y) = 0. With these properties NMI is extensively used for evaluating clustering
algorithms in literature.

Another measure of clustering accuracy is adjusted RAND (Hubert and Arabie, 1985). The adjusted
RAND compares two labelings based on whether pairs of objects are placed in the same or different
clusters in them. The maximum value it takes is 1, and its expected value is 0. We computed the adjusted
RAND score for each solution and found it to be highly correlated to the NMI score. Hence we will only
report the NMI score in this chapter.

4.4.3.2 Classification via Clustering (CVC)

The CVC is a measure of the purity of the clusters obtained w.r.t. the ground truth. The CVC is calculated
by the following procedure:

e To each cluster, assign the label that corresponds to the majority of points.
e Each instance is now labeled by its cluster’s label.
e CVC is the fraction of misclassified instances in such a classification of instances.

The CVC measure weighs the contribution of a cluster to the average by its size. This ensures that very
small pure clusters do not compensate for large impure ones.

There are other issues with this measure, however. The CVC measure is biased toward solutions with a
large number of very small pure clusters. This is not an issue in our evaluation since the number of output
clusters is kept constant across all the consensus functions being compared. Also, the CVC measure is not
very well defined in the case of empty clusters in the clustering solution. Since we ignore the purity of
empty clusters in our calculation of CVC, if all the instances were clustered into one cluster, CVC would
be the fraction of instances that belong to the class with the largest number of instances. NMI would have
been zero in such a case. This is not a problem for most data-sets since many algorithms are based on
graph partitioning approaches and output balanced clusters. However, like most existing literature on
cluster ensembles, we will use NMI as our principal measure of goodness.

4.4.3.3 Geometric Mean Ratio

Since we are varying the ensemble parameters over a very wide range for each data-set, we end up with a
lot of different points of comparison. In order to report some sort of overall score for each algorithm on
all the ensembles used, we use the geometric mean ratio (Webb, 2000). The GMR is calculated as
follows. Suppose we have n ensembles that we tested our algorithms on, and NM1, and NMIg are vectors
of the average NMI values w.r.t. to true labels obtained by algorithms A and B on these runs. GMR
is calculated as

L Nmy

GMR(A,B) = (H NMIB")”. (4.3)

In later sections we display the GMR values in tables with rows and columns representing the
algorithms being compared. In these tables element (i,;) represents the value GMR (algo(i), algo(j)),
where algo(i) and algo(j) are the algorithms represented in row i and column j, respectively. Hence,
values > 1 along a column mean that the algorithm corresponding to the column performs better than the
other algorithms. Similarly, the values < 1 along the rows indicate that the algorithm corresponding to the
row scores better than the other algorithms.

82 SOFT CLUSTER ENSEMBLES

4.5 SOFT VS. HARD CLUSTER ENSEMBLES

In this section we present results from our evaluation of the algorithms we described in earlier sections
using the experimental setup described Section 4.4. In Section 4.5.1 we will compare the performance of
algorithms accepting soft ensembles as input and those that run on hardened versions of the ensembles.
After analyzing these experiments we will compare the Information-Theoretic k-means (ITK) approach
with the best performing algorithms from Section 4.5.1. Finally, in Section 4.5.3 and Section 4.5.4, we
will examine the variation in performance of algorithms on ensembles of varying difficulty.

4.5.1 Soft Versions of Existing Algorithms

In this section we evaluate the performance of CSPA, MCLA, and HBGF, their soft counterparts, and the
mixture of multinomials method. The evaluation measure we employ is the geometric mean ratio (GMR),
which is calculated over all the ensembles that were created as described in Section 4.4.2. There were,
however, some exceptions to the direct application of the GMR formula over all data-sets. HBGF, CSPA,
and their soft versions were not run on the HyperSpectral and Pendigits data-sets because these data-sets
are too large to expect solutions in a reasonable time. Hence, when we compare one of these algorithms to
the others we do not consider ensembles of these large data-sets. Also, in certain cases (for hard
ensembles) the consensus functions output clusterings that score 0 on the NMI measure. This would
happen, for example, if all the instances were placed in a single cluster. In such cases the GMR either
becomes 0 or co depending on where the zero score appears. Hence, we assign a very small nominal value
(0.00001) to the NMI score whenever it is zero. The effect of this nominal score vanishes because we
normalize by taking the nth root of the product.

Table 4.6 shows the GMR values of the NMI measure comparing the three original algorithms as well
as their soft versions. We can see that for each algorithm the soft version performs better than the
corresponding hard version. Keep in mind that algorithm with values < 1 on the rows are performing
better than the others. Table 4.6 shows that averaged over all the ensembles we created, the soft versions of
the algorithms are slightly better than their hard counterparts. This shows that the soft versions of the
algorithms are able to use the extra information in the soft ensembles to obtain better consensus
clusterings.

We notice that the mixture of multinomials algorithm (MixMns) performs worse than all other
algorithms other than MCLA. This may be because many of the data-sets we used had a large number
of clusters, causing parameter estimation problems for the mixture model. Topchy, Jain and Punch (2004)
only evaluated their algorithm on real data-sets with very low number of clusters.

Another key observation is the dramatic difference in the performance of the sMCLA and MCLA
algorithms. The performance improvement of SMCLA over MCLA is much larger than the improve-
ments by other soft versions like SCSPA and sHBGF. This is because MCLA’s performance is very bad
when the input clusterings are not accurate. This can be seen by its performance values over tough

Table 4.6 Geometric mean ratio of NMI score over all ensembles. The value fable;; indicates ratio
of algorithms j/i.

CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.05 0.718 0.999 0.978 1.02 0.802
sCSPA 0.94 1 0.68 0.948 0.928 0.967 0.76
MCLA 1.163 1.22 1 1.17 1.136 1.18 0.913
sMCLA 1.00 1.05 0.56 1 0.978 1.019 0.77
HBGF 1.02 1.076 0.73 1.02 1 1.04 0.82
sHBGF 0.98 1.03 0.705 0.98 0.959 1 0.787

MixMns 1.25 1.31 0.73 1.297 1.219 1.269 1

SOFT VS. HARD CLUSTER ENSEMBLES 83

Table 4.7 Geometric mean ratio of CVC score over all ensembles. The value table;; indicates ratio
of algorithms j/i.

CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.02 0.795 1.17 0.99 1.01 0.964
sCSPA 0.976 1 0.777 1.146 0.97 0.99 0.94
MCLA 1.015 1.039 1 1.197 1.01 1.03 0.99
sMCLA 0.85 0.873 0.53 1 0.85 0.87 0.80
HBGF 1.004 1.029 0.799 1.179 1 1.02 0.97
sHBGF 0.98 1.009 0.78 1.156 0.98 1 0.95
MixMns 1.037 1.06 0.66 1.24 1.03 1.05 1

ensembles (Table 4.8) as well as ensembles with a very low number of attributes in constituent
clusterings (Figure 4.1). sSMCLA is not misled during the meta-clustering phase because the distances
between the clusters are now determined from soft probabilities. Hence, an error in an input clustering
that assigns an instance into the wrong cluster could be alleviated in SMCLA’s case if the posterior
probabilities of the wrong assignment are small. This phenomenon, however, needs to be investigated
further since SMCLA performs on a par with the best algorithms shown in Table 4.6.

Table 4.7 shows the GMR value table for the CVC measure. As we can see from the table the GMR
values closely correspond to the values in Table 4.6. Since the values in the two tables closely agree we
will henceforth only report results using the NMI measure.

In order to evaluate the intuition that the information obtained from soft ensembles is especially useful
when dealing with fough ensembles, we have populated Table 4.8 with GMR values calculated over only
the tough ensembles. Tough ensembles are defined as those comprising a small number of clusterings,
each of which are obtained using very few features. In our experiments, tough ensembles contained only
2-4 clusterings, which were obtained using the minimum Numatts option number of features for each
data-set shown in Table 4.5. For example, a tough ensemble for the 8D5K data-set might contain three
clusterings, each obtained using only three features. As we can see from Table 4.8, soft versions of
algorithms perform better than their hard counterparts and the difference in their performance is slightly
higher than those in Table 4.6. The fact that the differences in performances are higher shows that the extra
information in soft clusterings is useful in tough situations.

4.5.2 Information-Theoretic k-means (ITK)

We compare the Information-Theoretic k-means algorithm with only two of the best algorithms from the
analysis in the previous section. Table 4.9 displays the GMR values for the ITK, sHBGF, and sMCLA
algorithm over all the ensembles. As we can see the ITK algorithm performs appreciably better than both

Table 4.8 Geometric mean ratio of NMI score over tough ensembles. The value fable;; indicates ratio of
algorithms j/i.

CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns
CSPA 1 1.085 0.652 0.997 0.97 1.06 0.655
sCSPA 0.92 1 0.60 0.919 0.897 0.98 0.604
MCLA 1.53 1.665 1 1.47 1.49 1.63 0.922
sMCLA 1.003 1.088 0.46 1 0.976 1.06 0.627
HBGF 1.028 1.113 0.67 1.025 1 1.09 0.673
sHBGF 0.94 1.024 0.62 0.94 0.92 1 0.618

MixMns 1.53 1.656 0.73 1.59 1.485 1.617 1

84 SOFT CLUSTER ENSEMBLES

Different algorithms on Pendigits with ensemble size=4

0.70 T

0.65

0.60

0.55

NMI with true labels

0.50

0.45 |

0.40 L

5 6 7 8 9 10 11 12
Number of attributes used for constituent clustering

(a) Pendigits

Different algorithms on Vowel with ensemble size=5

0.38 T

0.36

0.34

0.32

0.30

0.28

NMI with true labels

026~

0.24 -

0.22 L

3.0 3.5

4.0 45 5.0 55 6.0 6.5 7.0
Number of attributes used for constituent clustering
(b) Vowel

Figure 4.1 Performance of CSPA, MCLA, HBGF, sCSPA, sMCLA, and sHBGF while varying the number of
attributes used in constituent clusterings.

SOFT VS. HARD CLUSTER ENSEMBLES 85

Table 4.9 Geometric mean ratio of NMI score over all
ensembles. The value table;; indicates ratio of algorithms j/i.

ITK 10K sHBGF sMCLA
ITK 10K 1 0.856 0.875
sHBGF 1.167 1 0.98
sMCLA 1.142 1.012 1

sHBGF and sMCLA. The sHBGF and sMCLA algorithms are fairly similar to each other in overall
performance. The geometric mean ratio matrix for the CVC score is identical to the one for the NMI score,
and we do not report those results.

In order to find whether ITK performs better for tougher or simpler ensembles we calculate GMR over
only the tough ensembles. Here again the tough ensembles are defined as in Section 4.5.1. The results of
this experiment are listed in Table 4.10. As we can see from the two tables the improvement in ITK
algorithm’s performance over sSHBGF/sMCLA is higher for the subset of tougher ensembles.

In the set of data-sets selected for this chapter some present tougher challenges to the clustering
algorithms than others. In terms of the NMI score of clusterings 8D5K is the simplest data-set while Yeast
is the toughest. We display in Tables 4.11 and 4.12 the GMR value matrix for ensembles of data-sets
8D5K and Yeast, respectively. As we can see from these tables, in the case of the Yeast data-set ITK is by
far the best performing algorithm. However, for the 8D5K data-set all algorithms are fairly comparable
with sSHBGF slightly better than the rest. One reason is that for soft ensembles where most probability
values are close to 1 or 0, more complex algorithms like ITK do not perform better than simple graph-
theoretic approaches.

Another explanation for ITK’s performance on the Yeast data-set can be provided based on the
characteristics of the algorithms. The graph partitioning based consensus algorithms are constrained to
provide roughly balanced clusters. This can be a problem in cases where the underlying data do not have
balanced classes. The 8D5K data-set has perfectly balanced clusters (200 instances each) while the Yeast
data-set has classes that range from five instances to 463 instances in size. The ITK algorithm is not
constrained to find balanced clusters and hence can adapt the clustering solution better to the natural

Table 4.10 Geometric mean ratio of NMI score over tough
ensembles. The value table;; indicates ratio of algorithms j/i.

ITK 10K sHBGF sMCLA
ITK 10K 1 0.816 0.798
sHBGF 1.226 1 0.94
sMCLA 1.253 1.06 1

Table 4.11 Geometric mean ratio of NMI score for only the
8D5K data-set. The value fable;; indicates ratio of algorithms j/i.

ITK 10K sHBGF sMCLA
ITK 10K 1 1.03 0.97
sHBGF 0.968 1 0.944

sMCLA 1.025 1.05 1

86 SOFT CLUSTER ENSEMBLES

Table 4.12 Geometric mean ratio of NMI score for only the yeast
data-set. The value table;; indicates ratio of algorithms j/i.

ITK 10K sHBGF sMCLA
ITK 10K 1 0.84 0.68
sHBGF 1.18 1 0.817
sMCLA 1.454 1.222 1

distribution of instances in the data. This is why we see the ITK algorithm outperform sHBGF and
SMCLA on the Yeast data-set by a large margin.

4.5.3 Performance Variation with Increasing Attributes

In this section we examine how the performances of different consensus functions change as the number
of attributes used for the constituent clusterings is changed. The number of attributes is an ad hoc measure
of the quality of clustering obtained and hence the difficulty of the ensemble. In general, the fewer the
number of attributes in the constituent clusterings the more the confusion in the clustering solutions
obtained and, hence, the more the difficulty of obtaining a consensus labeling using these clustering
solutions.

Figure 4.1 shows the variation in the performance of the existing ensemble methods and their soft
variations on two data-sets. The mixture of multinomial model method is not shown since its performance
was much lower than the others. The data-sets selected for these plots are of intermediate difficulty. As we
can see, as we increase the number of attributes in the constituent clusterings the accuracy of all
algorithms increases in general. For Pendigits, Figure 4.1(a) only has curves for MCLA and sMCLA
since we did not run HBGF and CSPA on it.

Figure 4.2 displays curves for the ITK, sHBGF, and sMCLA. As we can see the ITK algorithm
outperforms the other algorithms over the whole range of attributes, but as the number of attributes is
increased the accuracies of all algorithms tend to saturate.

Fern and Brodley (2003) show experimentally that for high-dimensional domains combining cluster-
ings on subspace projections of the data outperforms clustering on the whole data. They also found that
the impact of subspace clustering is more prominent if the number of dimensions is higher (> 60). We
have not experimented with data-sets that have very high dimensionality, and hence we did not observe
the reduction in accuracy when using the full set of attributes.

4.5.4 Performance Variation with Increasing Ensemble Size

In this section we examine the effect of increasing the number clusterings used in the ensemble on the
accuracy of final clustering. Say, we set the number of attributes used to create constituent clusterings to
some constant value. We would then expect that as more clusterings are added to the ensemble the
combining function would have more information available to create the final clustering. This has been
seen previously in the classifier ensemble literature where increasing the size of the ensemble increases
the accuracy until a saturation point is reached (Hansen and Salamon, 1990; Melville and Mooney, 2003;
Opitz and Maclin, 1999). Hence, the number of clusterings in an ensemble can also be said to be a measure
of the difficulty of the task of combining them.

Figure 4.3 shows the variation in accuracy as the number of clusterings is increased in the ensembles.
We can see that as the ensembles become easier to solve, the accuracy of all algorithms increases. We can
also see that the increasing accuracy of most algorithms reaches a plateau once the number of clusterings
grows very large. Figure 4.4 shows the variation in accuracy of the ITK, SMCLA, and sHBGF over the

0.75

0.70

0.65

0.60

0.55

NMI with true labels

o
&)
=)

0.45

0.40

0.35

SOFT VS. HARD CLUSTER ENSEMBLES 87

Different algorithms on Pendigits with ensemble size=4

—— sMCLA
© - Info-Kmeans 10K

0.50

0.45

0.40

0.35

NMI with true labels
o o
N [
[6)] o

0.20

0.10

4 6 8 10 12 14
Number of attributes used in constituent clusterings

(a) Pendigits

Different algorithms on Vowel with ensemble size=5

—%— sMCLA
+ sHBGF
€ Info-Kmeans 10K

2.5

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Number of attributes used in constituent clusterings

(b) Vowel

Figure 4.2 Performance of ITK, sMCLA, and sHBGF while varying the number of attributes used in constituent

clusterings.

88 SOFT CLUSTER ENSEMBLES

Different algorithms on Pendigits with number of attributes=4
0.75 T T T T T

MCLA ——
SMOLA -
070 L -

0.65 R
0.60
0.55 |
0.50

0.45

NMI with true labels

0.40 B

0.35 i

0.30 R

0.25 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Number of clusterings in the ensemble

(a) Pendigits

Different algorithms on Vowel with number of attributes=5

0.9 ' ' ' ' . CSPA——

0.34

0.32

0.30

NMI with true labels

0.28

026 L |

024 1 1 1 1 1 1
2 3 4 5 6 7 8 9

Number of clusterings in the ensemble
(b) Vowel

Figure 4.3 Performance of CSPA, MCLA, HBGF, sCSPA, sMCLA, and sHBGF while varying the number of
constituent clusterings.

SOFT VS. HARD CLUSTER ENSEMBLES

Different algorithms on Pendigits with number of attributes=4

0.7
- —— sMCLA
$ - Info-Kmeans 10K
I~
- K N7
- 4 N X P
~ - N
0.6
» -
[
Qo
®
° /
=
£
= 1
=
Z os 1
0.4 L L)
0 5 10 15
Number of clusterings in the ensemble
(a) Pendigits
Different algorithm on Vowel with number of attributes=5
0.5
—%— sMCLA
+ sHBGF
- Info-Kmeans 10K|
- o >~
0.4 ©
12}
©
Qo
<
(]
2 o+
< | L-71 1t 1+ 1 4 4
=
=
Z 03
02 1 1 1 1 1 1 1 1]
1 2 3 4 5 6 7 8 9 10

Figure 4.4 Performance of ITK, sMCLA, and sHBGF while varying the number of constituent clusterings.

Number of clusterings in the ensemble

(a) Vowel

89

90 SOFT CLUSTER ENSEMBLES

Pendigits and Vowel data-sets as we increase the size of the ensembles. The accuracy of all the algorithms
rises but the ITK algorithm performs significantly better than the others.

4.6 CONCLUSIONS AND FUTURE WORK

In this chapter we presented several approaches to solving ensembles of soft clusterings. We introduced a
new approach based on Information-Theoretic k-means, and also presented simple extensions of existing
approaches for hard ensembles (like SCSPA, sMCLA, and sHBGF). These approaches were extensively
evaluated using data-sets and ensembles of varying degrees of difficulty. Some principal conclusions we
made were that soft ensembles contain useful information that can be exploited by our algorithms to
obtain better consensus clusterings, especially in situations where the constituent clusterings are not very
accurate. Also, ITK significantly outperforms existing approaches over most data-sets, with the improve-
ment in performance being especially large when dealing with fough ensembles.

Though the experimental results given in this chapter all assume the same number of clusters in each
solution, the approaches do allow for varying resolution in the individual solutions. Moreover, the match
of the consensus solution at different resolutions with respect to the individual solutions along the lines of
Ghosh, Strehl, and Merugu, (2002) provides a good method of model selection. A challenge to the readers
of this book is to identify scenarios where the use of soft ensembles provides significantly improved
performance over hard ensembles, and if needed devise specialized algorithms to deal with these
domains.

While partitioning instances we can also imagine a grouping of the clusters into meta-clusters.
Algorithms based on MCLA and HBGF already compute these co-clusterings, albeit using graph
partitioning based approaches. There is a significant body of research on co-clustering or bi-clustering
using other approaches (Dhillon, Mallela, and Modha, 2003a; Madeira and Oliveira, 2004), and it will be
worthwhile to investigate specialized co-clustering approaches for obtaining a consensus of soft
clusterings.

ACKNOWLEDGEMENTS

The authors wish to thank Arindam Banerjee, Raymond Mooney, Sreangsu Acharyya, Suju Rajan,
Srujana Merugu and for helpful discussions and thoughtful suggestions through the course of this work.

REFERENCES

Bezdek, J.C. and Pal, S. (1992) Fuzzy Models for Pattern Recognition. IEEE Press, Piscataway, NJ.

Blake, C. and Merz, C. (1998) UCI repository of machine learning databases, http://www.ics.uci.edu/~mlearn/
mlrepository.html.

Breiman, L. (1999) ‘Combining predictors’ In Combining Artificial Neural Nets (ed. Sharkey A) pp. 31-50. Springer-
Verlag Berlin, Germany.

Dempster, A.,Laird, N.andRubin, D. (1977) ‘Maximum likelihood fromincomplete data viathe em algorithm’ Journal of
the Royal Statistical Society, vol. 39 Series, B., pp. 1-38.

Dhillon, L.S. (2001) ‘co-clustering documents and words using bipartite spectral graph partitioning’ Proceedings of The
Seventh, A.C.M. SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD), pp. 269-274.

Dhillon, I., Mallela, S. and Modha, D. (2003a) ‘Information-Theoretic co-clustering’ Proceedings of The Ninth, A.C.M.
SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD), pp. 89-98.

Dhillon, I.S., Mallela, S. and Kumar, R. (2003b) ‘A divisive Information-Theoretic feature clustering algorithm for text
classification’. Journal of Machine Learning Research 3, 1265-1287.

Dimitriadou, E., Weingessel, A. and Hornik, K. (2001) ‘Voting-Merging: An ensemble method for clustering’ In
Proceedings of the International Conference on Artificial Neural Networks (ICANN 01) (ed. Dorffner, G., Bischof, H.
and Hornik K), vol. LNCS 2130, pp. 217-224, Vienna, Austria.

REFERENCES 91

Dunn,J.C.(1973) ‘Afuzzyrelativeof theisodata process anditsuse indetecting compact well-separated clusters’. Journal
of Cybernetics 3, 32-57.

Fern, X.Z. and Brodley, C.E. (2003) ‘Random projection for high dimensional clustering: A cluster ensemble approach’
Proceedings of the Twentieth International Conference on Machine Learning. ACM Press.

Fern, X.Z. and Brodley, C.E. (2004) ‘Solving cluster ensemble problems by bipartite graph partitioning’ Proceedings of
the Twenty-first International Conference on Machine Learning. ACM Press.

Fred, A. and Jain, A.K. (2001) ‘Finding consistent clusters in data partitions’ In Proceedings of the Third International
Workshop on Multiple Classifier Systems (ed. F. Roli, J.K.), vol. LNCS 2364, pp. 309-318.

Fred, A. and Jain, A.K. (2002) ‘Data clustering using evidence accumulation’ Proceedings of the Sixteenth International
Conference on Pattern Recognition (ICPR), pp. 276-280.

Freund, Y. and Schapire, R. (1996) ‘Experiments with a new boosting algorithm’ Proceedings of the Thirteenth
International Conference on Machine Learning, pp. 148—156. Morgan Kaufmann.

Frossyniotis, D.S., Pertselakis, M. and Stafylopatis, A. (2002) ‘A multi-clustering fusion algorithm’ Proceedings of
the Second Hellenic Conference on Al, pp. 225-236. Springer-Verlag.

Gablentz, W., Koppen, M. and Dimitriadou, E. (2000) ‘Robust clustering by evolutionary computation’ Proc. 5th Online
World Conference on Soft Computing in Industrial Applications.

Ghosh, J. (2002) ‘Multiclassifier systems: Back to the future (invited paper)’ In Multiple Classifier Systems (ed. Roli
F and Kittler J) LNCS Vol. 2364, Springer pp. 1-15.

Ghosh, J., Strehl, A. and Merugu, S. (2002) ‘A consensus framework for integrating distributed clusterings under limited
knowledge sharing’ Proceedings of NSF Workshop on Next Generation Data Mining, pp. 99-108.

Hadjitodorov, S., Kuncheva, L. and Todorova, L. (2006) ‘Moderate diversity for better cluster ensembles’. Information
Fusion 7(3), 264-275.

Hansen, L. and Salamon, P. (1990) ‘Neural network ensembles’. IEEE Transactions on Pattern Analysis and Machine
Intelligence 12, 993-1001.

Hubert, L. and Arabie, P. (1985) ‘Comparing partitions’. Journal of Classification 2, 193-218.

Karypis, G. and Kumar, V. (1998) ‘A fast and high quality multilevel scheme for partitioning irregular graphs’. SIAM
Journal on Scientific Computing 20(1), 359-392.

Karypis, G., Aggarwal, R., Kumar, V. and Shekhar, S. (1997) ‘Multilevel hypergraph partitioning: application in VLSI
domain’ Proceedings of the Thirty-fourth Annual Conference on Design Automation, pp. 526-529.

Kreiger, A.M. and Green, P. (1999) ‘A generalized rand-index method for consensus clustering of separate partitions
of the same data base’. Journal of Classification 16, 63—89.

Kullback, S. and Leibler, R.A. (1951) ‘On information and sufficiency’. Annals of Mathematical Statistics 22, 79-86.

Kumar, S., Ghosh, J. and Crawford, M.M. (2001) ‘Best basis feature extraction algorithms for classification of
hyperspectraldata’ IEEE Transactions on Geoscience and Remote Sensing, Special Issue on Analysis of Hyperspectral
Data, vol. 39(7), pp. 1368-1379.

Kuncheva, L. and Hadjitodorov, S. (2004) ‘Using diversity in cluster ensembles’ Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, pp. 1214-1219.

Madeira, S.C. and Oliveira, A.L. (2004) ‘Biclustering algorithms for biological data analysis: a survey’. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 1(1), 24-45.
Melville, P. and Mooney, R.J. (2003) ‘Constructing diverse classifier ensembles using artificial training examples’
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI), pp. 505-510.
Merugu, S. and Ghosh, J. (2003) ‘Privacy-preserving distributed clustering using generative models’ Proceedings
of the Third IEEE International Conference on Data Mining (ICDM), pp. 211-218.

Ng, A., Jordan, M. and Weiss, Y. (2001) ‘On spectral clustering: Analysis and an algorithm’ Proceedings of Advances
in Neural Information Processing Systems 14, pp. 849-856.

Opitz, D. and Maclin, R. (1999) ‘Popular ensemble methods: An empirical study’. Journal of Artificial Intelligence
Research 11, 169-198.

Pedrycz, W. (2002) ‘Collaborative fuzzy clustering’. Pattern Recognition Letters 23(14), 1675-86.

Strehl, A. and Ghosh, J. (2002) ‘Cluster ensembles —a knowledge reuse framework for combining multiple partitions’.
Journal on Machine Learning Research (JMLR) 3, 583-617.

Topchy, A.,Jain, A. and Punch, W. (2004) ‘Mixture Model for Clustering Ensembles’ Proceedings of The Fourth, S..AM
Conference on Data Mining (SDM), pp. 379-390.

Webb, G.1.(2000) Multiboosting: ‘A technique forcombiningboostingand wagging’. Machine Learning 40(2), 159-196.

Part Il

Visualization

S

Aggregation and
Visualization of Fuzzy
Clusters Based on Fuzzy
Similarity Measures

Janos Abonyi and Balazs Feil

Department of Process Engineering, Pannon University, Hungary

Most fuzzy clustering algorithms attempt to partition a data-set into self-similar groups (clusters) and
describe the geometric structure of the clusters using prototypical cluster shapes such as volumetric
clouds, hyperspherical shells, regression models, etc.. The main benefit of the application of these
clustering algorithms is that the clustering algorithm not only partitions the data, but in some cases the
main result of the clustering is the set of the generated cluster prototypes. Hence, prototype generator
clustering methods are widely used in the initial steps of complex knowledge discovery in databases
(KDD) processes. This is because clustering can be used for the segmentation of the data and this can be
very useful at the data selection and preprocessing steps, while they can also be used to initialize a data
mining model based on the generated prototypes. According to this field of application several new fuzzy
clustering algorithms have been developed tailored to handle classification (Pach, Abonyi, Nemeth, and
Arva, 2004; Pedrycz and Sosnowski, 2001), regression (Abonyi, Babuska, and Szeifert, 2002; Johansen
and Babuska, 2002; Kim, Park, and Kim, 1998), time-series prediction, and segmentation (Abonyi, Feil,
Nemeth, and Arva, 2005; Baldwin, Martin, and Rossiter, 1998; Geva, 1999; Wong 1998) problems.

The performance of prototype based fuzzy clustering methods is highly determined by how the selected
prototypes are consistent with the data, how the assumed number of the clusters is correct, which justifies
the study of cluster validity techniques, which attempt to assess the correctness of a particular set of
clusters in a given data-set. As the large number of the applications of fuzzy clustering techniques and the
increasing number of the special prototype based algorithms show, the analysis of the performance of
these algorithms is a significant practical and theoretical problem.

Clustering algorithms always fit the clusters to the data, even if the cluster structure is not adequate for
the problem. To analyze the adequacy of the cluster prototypes and the number of the clusters, cluster
validity measures are used. Appendix 5A.1 will give a short review of these measures. It will be shown

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
© 2007 John Wiley & Sons, Ltd

96 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

that conventional cluster validity techniques represent all the validity information by a single number,
which in some cases does not provide as much information about results as needed; namely, how correct
the cluster prototypes are, what the required number of clusters could be in case of the applied cluster
prototype, which clusters could be merged, or which cluster should be splitted into sub-clusters to get
more reliable partitioning of the data and cluster prototypes that locally describe the data.

Since validity measures reduce the overall evaluation to a single number, they cannot avoid a certain
loss of information. To avoid this problem, this chapter suggests the approach of the visualization of fuzzy
clustering results, since the low-dimensional graphical representation of the clusters could be much more
informative than such a single value of the cluster validity. Hence, the aim of this chapter is to give a
critical overview about the existing cluster visualization techniques, propose new approaches for the
visualization of cluster validity, and show how these tools can be applied.

The impact of visualization of fuzzy clustering results has already been realized in Klawonn,
Chekhtman, and Janz (2003), when the membership values of the data obtained by the clustering
algorithm were simply projected into the input variables, and the resulted plots served for the same
purpose as validity measures.

Bezdek and Hathaway (2002) have updated the method of Johnson and Wichern is based in inter-data
distances and developed a set of VAT algorithms for the visual assessment of (cluster) tendency. VAT uses a
digital intensity image of the reorganized inter-data distance matrix obtained by efficient reorganization
schemes, and the number of dark diagonal blocks on the image indicates the number of clusters in the data.
The different VAT modifications can be used to detect how the data are clustered since the algorithm used
to reorganize the distance matrix is based on the Prim’s algorithm applied to graph-theoretic minimal
spanning tree based clustering. The original VAT algorithm will be described in Section 5.4.1. To detect
information about the performance of prototype generator clustering methods the same authors proposed a
visual cluster validity (VCV) algorithm by a minor modification of VAT. Cluster prototype based clustering
algorithms minimize the distances between the cluster and the data, where different cluster prototypes
define different distance metrics. Since VAT is based on the reorganization and visualization of the inter-
data distance matrix, this tool cannot be directly applied since fuzzy clustering algorithms operate only
based on the distances between the cluster and the data. The key idea of VCV is to calculate the missing
inter-datum distances based on the triangular inequality property (Hathaway and Bezdeck, 2002). The
details of this algorithm will be presented in Section 5.4.2 of this chapter. Beside the critical analysis of this
method some minor modifications will also be presented based on the similarity analysis of the clusters.

The ideas behind the cluster validity measures, the VAT and the VCV algorithms already illustrated that
a good approach for the cluster validity analysis is the analysis of the cluster-prototype data distances. In
higher-dimensional problems this analysis is not possible. One of the approaches applied to the
visualization of high-dimensional spaces is the distance preserving mapping of the higher-dimensional
space into a lower, usually two-dimensional map. Two general approaches for dimensionality reduction
are: (i) feature extraction, transforming the existing features into a lower-dimensional space, and (ii)
feature selection, selecting a subset of the existing features without a transformation.

Feature extraction means creating a subset of new features by combination of existing features.
These methods can be grouped based on linearity (see Figure 5.1). A linear feature extraction or

Dimensionality Reduction Methods

/\

Linear methods Nonlinear methods
PCA, Discriminant Analysis Signal Distance Topology Koontz &
Factor Analysis preserving preserving preserving Fukunaga
(M-PCA) (Sammon) (SOM)

Figure 5.1 Taxonomy of dimensionality reduction methods (Jain and Dubes, 1988).

PROBLEM DEFINITION 97

projection expresses the new features as linear combination of the original variables. The type of linear
projection used in practice is influenced by the availability of category information about the patterns in
the form of labels on the patterns. If no category information is available, the eigenvector projection
(also called principal component analysis (PCA)) is commonly used. Discriminant analysis is a popular
linear mapping technique when category labels are available. In many cases, linear projection cannot
preserve the data structure because of its complexity. In these cases nonlinear projection methods
should be used.

Among the wide range of clustering tools, the self-organizing map (SOM) is often visualized by
principal component analysis (PCA) and Sammon mapping to give more insight into the structure of high-
dimensional data. Usually, with the use of these tools the cluster centers (the codebook of the SOM) are
mapped into a two-dimensional space (Vesanto, 2000). Fuzzy C-means cluster analysis has also been
combined with similar mappings and successfully applied to map the distribution of pollutants and to
trace their sources to access potential environmental hazard on a soil database from Austria (Hanesch,
Scholger and Dekkers, 2001).

While PCA attempts to preserve the variance of the data during the mapping, Sammon’s mapping tries
to preserve the interpattern distances (Mao and Jain, 1995; Pal and Eluri, 1998). Hence, this chapter
focuses on the application of Sammon mapping for the visualization of the results of clustering, as the
mapping of the distances is much closer to the task of clustering than preserving the variances. There are
two main problems encountered in the application of Sammon mapping to the visualization of fuzzy
clustering results:

e The aim of cluster analysis is the classification of objects according to similarities among them, and
organizing data into groups. In metric spaces, similarity is often defined by means of distance from a
data vector to some prototypical object of the cluster. The prototypes are usually not known beforehand,
and are sought by the clustering algorithm simultaneously with the partitioning of the data. The
prototypes may be vectors (centers) of the same dimension as the data objects, but they can also be
defined as “‘higher-level” geometrical objects, such as linear or nonlinear subspaces or functions.
Hence, classical projection methods based on the variance of the data (PCA) or based on the
preservation of the Euclidean interpoint distance of the data (Sammon mapping) are not applicable
when the clustering algorithm does not use the Euclidean distance norm.

e As Sammon mapping attempts to preserve the structure of high n-dimensional data by finding N points
in a much lower g-dimensional data space, such that the interpoint distances measured in the
g-dimensional space approximate the corresponding interpoint distances in the n-dimensional space,
the algorithm involves a large number of computations as in every iteration step it requires the
computation of N(N — 1)/2 distances. Hence, the application of Sammon mapping becomes imprac-
tical for large N (de Ridder and Duin, 1997).

To avoid these problems this chapter also proposes a new algorithm. By using the basic properties of fuzzy
clustering algorithms the proposed tool maps the cluster centers and the data such that the distances
between the clusters and the datapoints will be preserved. During the iterative mapping process, the
algorithm uses the membership values of the data and minimizes an objective function that is similar to
the objective function of the original clustering algorithm.

5.1 PROBLEM DEFINITION

Since clusters can formally be seen as subsets of the data-set, one possible classification of clustering
methods can be according to whether the subsets are fuzzy or crisp (hard). Hard clustering methods are
based on classical set theory, and require that an object either does or does not belong to a cluster. Hard
clustering in a data set X = {x¢|[k = 1,2,..., N} means partitioning the data into a specified number of
mutually exclusive subsets of X. The number of subsets (clusters) is denoted by c. Fuzzy clustering
methods allow objects to belong to several clusters simultaneously, with different degrees of membership.

98 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

The data-set X is thus partitioned into ¢ fuzzy subsets. In many real situations, fuzzy clustering is more
natural than hard clustering, as objects on the boundaries between several classes are not forced to fully
belong to one of the classes, but rather are assigned membership degrees between 0 and 1 indicating their
partial memberships. The discrete nature of hard partitioning also causes analytical and algorithmic
intractability of algorithms based on analytic functionals, since these functionals are not differentiable.

The objective of clustering is to partition the data set X into c¢ clusters. For the time being, assume that ¢
is known, based on prior knowledge, for instance. Fuzzy and possibilistic partitions can be seen as a
generalization of hard partitioning. Possibilistic partition is similar to fuzzy one because a data point can
belong to several clusters simultaneously but it does not require that the sum of memberships of one data
pointis equal to 1. It is able to deal with outliers better than fuzzy clustering but it raises several problems
in the definition and minimization of the objective function. This chapter deals only with fuzzy clustering.

A ¢ x N matrix U = [u;] represents the fuzzy partitions, where 1;; denotes the degree of the
membership of the x;th observation belongs to the 1 < i < cth cluster, so the ith row of U contains
values of the membership function of the ith fuzzy subset of X. The matrix U is called the fuzzy partition
matrix. Conditions for a fuzzy partition matrix are given by:

pix €10,1], 1<i<c, 1 <k<N, (5.1)
c
> mix=1,1<k<N, (52)
=1
N
0<Y mix <N, 1<i<c (5.3)
=1
Fuzzy partitioning space. Let X = [X{,Xp, ..., Xy] be a finite set and let 2 < ¢ < N be an integer. The

fuzzy partitioning space for X is the set

c N
M, = {U € RON|pip € [0,1],¥i, k5 > piise = 1,k;0 <D prige < N,Vi}. (5.4)
k=1

i=1

Equation (5.2)} constrains the sum of each column to 1, and thus the total membership of each x; in X
equals 1. The distribution of memberships among the ¢ fuzzy subsets is not constrained.

A large family of fuzzy clustering algorithms is based on minimization of the sum-of-squared error or
minimum variance objective function (Duda, Hart, and Stork, 2001) formulated as:

J(X;U,V) ZZ pix)"d (X, m;) (5:5)

where U = [p;] is a fuzzy partition matrix of X, #; is the ith cluster prototype, which has to be
determined, and d(xy, 7),4)2 is a squared inner-product distance norm between the kth sample and the
ith prototype. In the classical fuzzy C-means (FCM) algorithm, the prototypes are centers,
V = [v,V2,...,V.], Vi € R"; therefore, the distance can be formed in the following way:

d(xe,vi)? =] xe — vi [3= (3¢ — v)) A(xe — Vi) (5.6)

where A is the distance measure (if there is no prior knowledge, A = I), and m € (1, 00) is a weighting
exponent which determines the fuzziness of the resulting clusters. The measure of dissimilarity in
Equation (5.5) is the squared distance between each data point x; and the cluster prototype 7;. This
distance is weighted by the power of the membership degree of that point (1;)" The value of the cost
function Equation (5.5) is a measure of the total weighted within-group squared error incurred by the
representation of the ¢ clusters defined by their prototypes v;. Statistically, Equation (5.5) can be seen as a
measure of the total variance of {xy from 7;. If the prototypes are known, the membership degrees can be
determined in the following way:

1
i = 1<i<e, 1<k<N. (5.7)

S (e m) (i))P/

CLASSICAL METHODS FOR CLUSTER VALIDITY AND MERGING 99

As was mentioned above, prototype generator clustering methods always produce clusters. They do it
even if there is no (cluster) structure in the data. This chapter deals with other types of problems: how can
the user know whether:

e the given partition;
e the number of clusters; or
o the applied type of cluster prototypes are consistent with the analysed data.

The given partition (the partition matrix U) may be inadequate even if the number of clusters and the used
prototype are consistent. This is because the clustering methods may be stuck in a local optimum in the
search space — or it may happen if the applied method for minimizing the cost function Equation (5.5) is
alternating optimization. This problem can be solved by global search (e.g., genetic or evolutionary
algorithms). In practice, a simpler approach is used: the clustering algorithm is run several times but from
different initial points, and the fuzzy partition with the minimal cost function value (see Equation (5.5)) is
chosen as the optimal solution.

5.2 CLASSICAL METHODS FOR CLUSTER VALIDITY AND
MERGING

Cluster validity refers to the problem whether a given fuzzy partition fits to all the data, and it is often
referred to as the problem of the appropriate number of clusters (especially if the optimal fuzzy partitions
are compared). Two main approaches to determine the appropriate number of clusters in data can be
distinguished:

o Clustering data for different values of ¢, and using validity measures to assess the goodness of the
obtained partitions. This can be done in two ways:

— The first approach is to define a validity function which evaluates a complete partition. An upper
bound for the number of clusters must be estimated (cyax), and the algorithms have to be run with
each ¢ € {2,3,..., cmax}. For each partition, the validity function provides a value such that the
results of the analysis can be compared indirectly.

— The second approach consists of the definition of a validity function that evaluates individual clusters
of a cluster partition. Again, ciax has to be estimated and the cluster analysis has to be carried out for
Cmax- The resulting clusters are compared to each other on the basis of the validity function. Similar
clusters are collected in one cluster, very bad clusters are eliminated, so the number of clusters is
reduced. The procedure can be repeated until there are no ““bad” clusters.

e Starting with a sufficiently large number of clusters, and successively reducing this number by merging
clusters that are similar (compatible) with respect to some predefined criteria. This approach is called
compatible cluster merging.

Appendix 5A.1 gives an overview of the applicable validity measures. Most validation indices proposed
during the last decades have focused on two properties: compactness and separation. Compactness is used
as a measure of the variation or scattering of the data within a cluster, and separation is used to account for
inter-cluster structural information. The basic aim of validation indices has been to find the clustering that
minimizes the compactness and maximizes the separation. However, the classical indices are limited in their
ability to compute these properties because there are several ways to define compactness and separation, and
there is no index that can take into account more viewpoints and also other viewpoints besides these ones,
e.g., the aim of clustering (partition, regression, classification, etc.). In other words, there is no general
validity index and it can be more effective if the results of clustering are visualized because it can give more
and detailed information and the user needs can also be taken into account (see also Section 5.4).

The recursive cluster merging technique evaluates the clusters for their compatibility (similarity) and
merges the clusters that are found to be compatible. During this merging procedure the number of clusters

100 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

is gradually reduced. This procedure can be controlled by a fuzzy decision-making algorithm based on the
similarity of (fuzzy) clusters. Because the compatibility criterion quantifies various aspects of the
similarity of the clusters, the overall cluster compatibility should be obtained through an aggregation
procedure. A fuzzy decision-making algorithm can be used for this purpose (Babuska, 1998). In this work
two criteria were combined and it can be applied to clustering algorithms where the clusters are described
by centers and covariance matrices. Let the centers of two clusters be v; and v;. Let the eigenvalues of the

covariance matrices of two clusters be {/;1,..., A} and {4, ..., 4}, both arranged in descending
order. Let the corresponding eigenvectors be {¢;, ..., #;} and {¢;, ..., #;,}. The following compat-
ibility criteria were defined in Babuska (1998):
¢l = | - &l ¢} close tol, (5.8)
clz] =||vi—v |, clzl close t0 0. (5.9)

The first criterion assesses whether the clusters are parallel, and the second criterion measures the distance
of the cluster centers. These criteria are evaluated for each pair of clusters. The most similar pair of
adjacent clusters has to be merged as long as the value of the corresponding similarity is above a user
defined threshold 7. Clusters can be merged in several ways (see, for example, Babuska 1998; Kelly, 1994;
Marcelino, Nunes, Lima, and Ribeiro, 2003). A similar compatible cluster merging method was applied
to time-series segmentation in Abonyi, Feil, Nemeth, and Arva (2005).

5.3 SIMILARITY OF FUZZY CLUSTERS

The main problem of these approaches is that the similarity of the clusters is measured based on the
comparison of certain parameters of the cluster prototypes (e.g., centers and orientation (eigenvectors) of
the clusters).

Asit will be show in this chapter, for both cluster aggregation and visualization there is a need to determine
how similar the resulted clusters are. For that purpose, a fuzzy set similarity measure can be used because
fuzzy clusters can be seen as fuzzy sets. The similarity of two sets, A and B can be expressed as follows:

S(4,B) = :;‘Ugl' (5.10)

For fuzzy sets, instead of conjunction (), several logic operators exist, the so-called r-norms (see, for
example, Nellas, 2001). Two of them are:

Min: A AND B = min(ua, pg), (5.11)

Product : AAND B = g, (5.12)

where 114 and pp are the membership functions of set A and B, respectively. For the disjunction, several
logic operators also exist, the so-called ¢-conorms. Two of them are:

Max : A OR B = max(ua, ip), (5.13)
Algebraic sum: A OR B = s + pip — piapis- (5.14)

In this way, all i, j pairs of clusters can be compared to each other in the following ways:

N .
S(i,j) = et e 150) | (5.15)
D ne1 Max(fik, pix)

or
N
S(i,) = =2k Hikblit : (5.16)
Dokt Hi + Mk — Hik ik
In this chapter Equation (5.15) is used. Based on the obtained symmetric similarity matrix S, a dendrogram

can be drawn to visualize and hierarchically merge the fuzzy clusters based on a hierarchical clustering
procedure (in this chapter a single-linkage algorithm was applied). Using this diagram, the human data

SIMILARITY OF FUZZY CLUSTERS 101

miner can gain an idea how similar the clusters are in the original space and is able to determine which
clusters should be merged if it is needed. This will be illustrated by the three data-sets used below. In all the
cases, the classical fuzzy C-means algorithm was used. The parameters of the algorithm: the number of
clusters ¢ was 10, the weighting exponent m was equal to 2, and the termination tolerance e was 10™%.

In the following sections, three examples were used to illustrate the detailed methods, one synthetic two-
dimensional data set, and the well-known Iris and Wine data-sets from UCI Machine Learning Repository.
The synthetic data-set can be seen in Figure 5.2. This data-set contains 267 data samples. The Iris data-set
contains measurements on three classes of Iris flower. The data-set was made by measurements of sepal
length and width and petal length and width for a collection of 150 irises (so it is four-dimensional). The
problem is to distinguish the three different types (I7is setosa, Iris versicolor, and Iris virginica). These data
have been analyzed many times to illustrate various methods. The Wine data-set contains the chemical
analysis of 178 wines grown in the same region in Italy but derived from three different cultivars. The
problem is to distinguish the three different types based on 13 continuous attributes derived from chemical
analysis: alcohol, malic acid, ash, alckalinity of ash, magnesium, total phenols, flavanoids, nonflavanoid
phenols, proanthocyaninsm, colour intensity, hue, OD280/0OD315 of diluted wines and proline.

Example 5.1 Merging similar clusters for the synthetic data-set In the case of the synthetic data-set,
more than 10 clusters are needed to ’cover the data’ (based on validity indices, about 15-20). Despite that,
only 10 clusters are used because this example wants to illustrate the proposed approach and 10 clusters can
easily be overviewed in two dimensions. In Figure 5.3 can be seen the results of the fuzzy C-means
algorithm, the contour lines represent equal membership values. As it can be seen on the figure, 3-4-9-6th
clusters could be merged, and also 2-7-10-8th clusters represent a group of clusters. This dendrogram
corresponds the results of the FCM algorithm. However, a much better solution can be given by another
cluster prototype, namely, the Gath—Geva algorithm, which uses adaptive distance norm. However, this
clustering method is very sensitive to the initialization, but minimal spanning tree initialization makes it
much more robust. These results were published in Vathy-Fogarassy, Feil, and Abonyi (2005).

150 T T T T T

100} . " . e T i

50 | S i

0 1 1 1 1 1
0 20 40 60 80 100 120

Figure 5.2 Synthetic data for illustration.

102 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

7 Result of the Clustering Algorithm

V Cluster Aggregation by Single Linkage Algorithm
0.87

0 01 02 03 04 05 06 07 08 09 1 12 7 10 8 3 4 9 6 5
(a) (b)

Figure 5.3 Result of the FCM algorithm; similarity of the resulting clusters.

Example 5.2 Merging similar clusters for the Iris data-set As is known the Iris data contain three
labeled classes of Iris flower, but only two well-separated clusters because data of two kinds of Iris are not
clearly separable. In the case of the Iris data-set, the number of clusters ¢ = 10 was clearly greater than
the optimal number of clusters. In Figure 5.4 it can be seen that two large groups of clusters can be
identified in the case of the Iris data-set.

Example 5.3 Merging similar clusters for the Wine data-set In the case of the Wine data-set, the
number of clusters ¢ = 10 was clearly greater than the optimal number of clusters. In Figure 5.5 it can be
seen that three well-separated groups of clusters can be identified, and the optimal number of clusters is
three. It does not necessarily mean that the real groups of data are well-separated as well. This problem
will be discussed in Section 5.4.2 and in Example 5.9.

Cluster Aggregation by Single Linkage Algorithm

095

0.9

0.85

Level

0.7

0.65

1 10 8 9 2 6 4 5 3 7

Figure 5.4 Similarity of the resulting clusters for the Iris data-set.

VISUALIZATION OF CLUSTERING RESULTS 103

Cluster Aggregation by Single Linkage Algorithm
0.7

0.4

Level

0.3

0.2

1 8 10 2 4 9 7 3 5 6

Figure 5.5 Similarity of the resulted clusters for the Wine data-set.

5.4 VISUALIZATION OF CLUSTERING RESULTS

Maybe the most complex problem in cluster validity is to decide whether the applied clarify or re-word
cluster prototype fits the data at all. To solve that problem, much more information has to be gathered.
Since validity measures reduce the overall evaluation to a single number, they cannot avoid a certain loss
of information. A low-dimensional graphical representation of the clusters could be much more
informative than such a single value of the cluster validity because one can cluster by eye and qualitatively
validate conclusions drawn from clustering algorithms.

In the following sections the most effective visualization techniques will be overviewed and based on
their critical analysis new algorithms will be proposed.

5.4.1 Visual Assessment of Cluster Tendency

Visual assessment of cluster tendency (VAT) method was proposed in (Bezdek and Hathaway, 2002), and
its variants in Huband, Bezdek, and Hathaway 2004, 2005). Its aim is similar to one of cluster validity
indices, but it tries to avoid the ‘massive aggregation of information’ by scalar validity measures. Instead
of a scalar value or a series of scalar values by a different number of clusters, an N x N intensity image is
proposed by Hathaway and Bezdek. It displays the reordered form of the dissimilarity data
D = [d(x;,X;)|yxy> Where d(xX;,X;) is the dissimilarity of the ith and jth samples (not necessarily
distance, but in this chapter we use their distance as the dissimilarity measure). The method consists
of two steps:

e Step 1 reorder the dissimilarity data and get D, in which the adjacent points are members of a possible
cluster;

e Step2 display the dissimilarity image based on D, where the gray level of a pixel is in connection with
the dissimilarity of the actual pair of points.

104 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

The key step of this procedure is the reordering of D. For that purpose, Bezdek used Prim’s algorithm for
finding a minimal spanning tree. The undirected, fully connected, and weighted graph analyzed here
contains the data points or samples as nodes (vertices) and the edge lengths or weights of the edges are the
values in D, the pairwise distances between the samples. There are two differences between Prim’s
algorithm and VAT: (1) VAT does not need the minimal spanning tree itself (however, it also determines
the edges but does not store them), just the order in which the vertices (samples or objects x;) are added to
the tree; (2) it applies special initialization. Minimal spanning tree contains all of the vertices of the fully
connected, weighted graph of the samples, therefore any points can be selected as the initial vertex.
However, to help ensure the best chance of display success, Bezdek proposed a special initialization: the
initial vertex is any of the two samples that are the farthest from each other in the data set (x;, where i is the
row or column index of max(D)). The first row and column of D will be the ith row and column in D. After
the initialization, the two methods are exactly the same. Namely, D is reordered so that the second row and
column correspond to the sample closest to the first sample, the third row and column correspond to the
sample closest to either one of the first two samples, and so on.

This procedure is similar to the single-linkage algorithm that corresponds to the Kruskal’s minimal
spanning tree algorithm and is basically the greedy approach to find a minimal spanning tree. By
hierarchical clustering algorithms (such as single-linkage, complete-linkage, or average-linkage meth-
ods), the results are displayed as a dendrogram, which is a nested structure of clusters. (Hierarchical
clustering methods are not described here, the interested reader can refer, for example, to Jain and Dubes,
(1988).) Bezdek and colleagues followed another way and they displayed the results as an intensity image
1 (ﬁ) with the size of N x N. The approach was presented in (Huband, Bezdek, and Hathaway, 2005) as
follows. Let G = {gu,...,gu} be the set of gray levels used for image displays. In the following,
G =1{0,...,255}, s0 g, = 0 (black) and gy = 255 (white). Calculate

(I(D))id.:ﬁi,,.(M) (5.17)

max(D)

Convert (/(D)), ; to its nearest integer. These values will be the intensity displayed for pixel (i, j) of /(D).
In this form of display, ““white’” corresponds to the maximal distance between the data (and always will be
two white pixels), and the darker the pixel the closer the two data are. (For large data-sets, the image can
easily exceed the resolution of the display. To solve that problem, Huband, Bezdek, and Hathaway (2005)
proposed variations of VAT, which are not discussed here.) This image contains information about cluster
tendency. Dark blocks along the diagonal indicate possible clusters, and if the image exhibits many
variations in gray levels with faint or indistinct dark blocks along the diagonal, then the data set ““[. . .] does
not contain distinct clusters; or the clustering scheme implicitly imbedded in the reordering strategy fails
to detect the clusters (there are cluster types for which single-linkage fails famously |[...]).” One of the
main advantages of hierarchical clusterings is that they are able to detect non-convex clusters. It is, for
example, an “S”’-like cluster in two dimensions; and it can be the case that two data points, which clearly
belong to the same cluster, are relatively far from each other. (An example will be presented in the
following related to that problem.) In this case, the dendrogram generated by single-linkage clearly
indicates the distinct clusters, but there will be no dark block in the intensity image by VAT. Certainly,
single-linkage does have drawbacks, for example, it suffers from chaining effect, but a question naturally
comes up: how much plus information can be given by VAT? It is because it roughly does a hierarchical
clustering, but the result is not displayed as a dendrogram but based on the pairwise distance of data
samples, and it works well only if the data in the same cluster are relatively close to each other based on the
original distance norm. (This problem arises not only by clusters with non-convex shape, but very
elongated ellipsoids as well.) Therefore, one advantage of hierarchical clustering is lost. There is a need
for further study to analyze these problems, and it is not the aim of this chapter. This problem will also be
touched on in Section 5.4.2.

Example 5.4 VAT for synthetic data In Figure 5.6 the results of the single-linkage algorithm and VAT
can be seen on the synthetic data. The clusters are well-separated but non-convex, and single-linkage
clearly identifies them as can be seen from the dendrogram. However, the VAT image is not as clear as the

VISUALIZATION OF CLUSTERING RESULTS 105

Single Linkage on the Original Data

(b)
Figure 5.6 Result of the (a) single-linkage algorithm and (b) VAT for synthetic data.

dendrogram in this case because there are data in the “S” shaped cluster that are far from each other
based on the Euclidean distance norm (see the top and left corner of the image).

Example 5.5 VAT for Iris data As was mentioned in Example 5.2, the Iris data contain three labeled
classes of Iris flower, but only two well-separated clusters because data of two kinds of Iris are not clearly
separable. In Figure 5.7 the results of the single-linkage algorithm and VAT can be seen. Each method
clearly identifies two clusters.

Example 5.6 VAT for Wine data In Figure 5.8 the results of the single-linkage algorithm and VAT can be
seen. In this case, VAT is more informative than the dendrogram. The dendrogram is too “crowded,” and
all that the user can get to know is that there are no well-separated clusters in this 13-dimensional data-
set. VAT provides more information: there are at least three “cores” in the data-set but the clusters are
overlapping and not clearly identifiable.

VAT on the original data

Single Linkage on the Original Data

045

0.4

0351

ol ==

Figure 5.7 Result of the (a) single-linkage algorithm and (b) VAT for Iris data.

106 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

VAT on the original data

Single Linkage on the Original Data

ﬂ‘ \W T

Figure 5.8 Result of the (a) single-linkage algorithm and (b) VAT for Wine data.

5.4.2 Visual Cluster Validity

(b)

Visual cluster validity (VCV) technique proposed in Hathaway and Bezdek (2003) is a possible approach
to visually validate clustering results. The information about the clusters, which can be hard, fuzzy, or
possibilistic, is displayed on a VAT like intensity image described in Section 5.4.1. The differences are the
following:

e The order of data is not determined by a minimal spanning tree algorithm but it depends on the
clustering result.

o The pairwise distance of data is calculated based on the distances from the cluster prototypes. That is
why it is applicable to validate the resulted partition. Thanks to this method, the problems mentioned in
Section 5.4.1 related to VAT, do not occur in the case of VCV.

Let us briefly overview these differences. The ordering procedure is done in two steps. First, the
clusters are reordered, and after that the points within the clusters are reordered. There is a need to
define the similarity (dissimilarity) of clusters to order them. In Hathaway and Bezdek (2003), the
distances between clusters are defined as the Euclidean distance between the parameters defining
the cluster prototypes. Because all clusters have the same number of parameters, this method can be
applied to any prototype generator clustering approaches. However, this is clearly not the best choice
to measure the similarity (dissimilarity) of clusters because prototypes may be very complex and may
contain many parameters of different types. (For example, in the Gustafson—Kessel or Gath—Geva
algorithms the clusters are parameterized by the mean (center) and the distance norm matrix (related to
the covariance matrix of the cluster), see also in Equation (5.6). In the case of fuzzy partition the
similarity measure described in Section 5.3 can be used for all types of fuzzy clustering methods. Based
on the similarity measures in Equation (5.15), pairwise dissimilarity of clusters can be easily
calculated as (1 — S(i,/)). (In the case of the other #-norm and f-conorm in Equation (5.16), another
method has to be used because in this case the value of (1 — S(i, 7)) is not necessarily zero.) In the
original form of VCYV, the cluster ordering procedure was a simple greedy approach. Instead of that, in
this chapter the single-linkage algorithm is applied to get the order of the cluster based on the cluster
distance matrix with the size ¢ x c¢. (It can have a role by large number of clusters.) After that, the
cluster similarity can be drawn as a dendrogram. It contains information about the similarity of the
clusters, and the user can visually analyze the clustering result (maybe can determine the proper
number of clusters). After the order of the clusters are given, the data are reordered within the clusters.

VISUALIZATION OF CLUSTERING RESULTS 107

In the case of fuzzy (or possibilistic) clustering, each datum is assigned to the cluster by which it has
the biggest membership. Within each cluster, data are reordered according to their membership in
descending order.

After the ordering procedure, there is a need to determine the pairwise dissimilarity between data. In
Hathaway and Bezdek (2003), the pairwise dissimilarity is given by

d"(xi,x;) = min {d(x;, 1) + d(x;,m) }- (5.18)

(Itis a dissimilarity but not a metric (distance).) This procedure makes it possible to validate the clustering
results. It has to be noted that this approach corresponds to the so called minimax TIBA (triangle inequality
based approximation of missing data) proposed in (Hathaway and Bezdek, 2002). The original TIBA
algorithms (minimax, maximin, and maximin/minimax average)were developed to handle missing data
problems by relational data. Relational data means that only the pairwise dissimilarity is given (as in D)
and not the original values of the features (as in X). The dissimilarity measure should satisfy the triangle
inequality because TIBA algorithms use this property. These methods estimate the missing (i,/) (and
(j, 1)) pairwise dissimilarity based on the given dissimilarities of the ith and jth data from other data. The
problem related to the pairwise dissimilarity by clustered data is similar to that: if the distance norms of
the clusters are adaptive, it is not known which distance norm should be used to measure the pairwise
dissimilarity! However, the pairwise dissimilarities between the data and cluster prototypes are known,
and using Equation (5.18) is a possible solution to estimate the pairwise dissimilarities between the data.
After the order of data and the pairwise dissimilarities are determined, the intensity image is composed in
the same way as by VAT (see in Section 5.4.1). Small dissimilarities are represented by dark shades and
large dissimilarities are represented by light shades. Darkly shaded diagonal blocks correspond to clusters
in the data. This VCV image can be used to determine which clusters should be merged, and what the
proper number of clusters could be.

Example 5.7 Visual cluster validity image for the synthetic data-set In the case of the synthetic data-
set the proper number of clusters is probably greater than the applied ¢ = 10. However, for the purpose
of illustration, it is worth displaying the VCV image in this case as well, and comparing the result with
Figure 5.3. In Figure 5.9 similar results can be seen. The vertical lines are the bounds of the “hardened”

Visual Assessment of Cluster Tendency diagram

0 50 100 150 200 250

Figure 5.9 VCV image for the synthetic data-set (the numbers mean clusters, see Figure 5.3).

108 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

Visual Assessment of Cluster Tendency diagram

Figure 5.10 VCV image for the Iris data-set.

clusters. Clusters 1 and 5 are clearly well-separated, and at least two groups can be formed from the other
clusters. 3-4-9-6th clusters could be merged, they are displayed as a large dark block on the VCV, but 2-7-
10-8th clusters are not clearly mergeable. It is the user who has to decide in that type of problem.

Example 5.8 Visual cluster validity image for the Iris data-set The results plotted in Figure 5.9 are
clear. There are only two groups of clusters, as was the case by the data points themselves.

Example 5.9 Visual cluster validity image for the Wine data-set The results plotted in Figure 5.9 are

notas clear as in Figure 5.5. (In Figure 5.9 the clusters separated by commas came to be so small because
of the hardening procedure that their borders could not be displayed. It is because these clusters are very

Visual Assessment of Cluster Tendency diagram

80 100 120 140 160

Figure 5.11 VCV image for the Wine data-set.

VISUALIZATION OF CLUSTERING RESULTS 109

similar and close to each other.) As was mentioned in Example 5.3, although the optimal number of
clusters is three and it is clear from Figure 5.5, the three real clusters in the data-set are not well-
separated, because the borders of the middle block in Figure 5.9 are not clear.

5.4.3 Sammon Mapping to Visualize Clustering Results

While PCA attempts to preserve the variance of the data during the mapping, Sammon’s mapping tries to
preserve the interpattern distances (Mao and Jain, 1995; Pal and Eluri, 1998). For this purpose, Sammon
defined the mean-square error between the distances in the high-dimensional space and the distances in
the projected low-dimensional space. This square-error formula is similar to the “stress’ criterion from
multi-dimensional scaling.

The Sammon mapping is a well-known procedure for mapping data from a high n-dimensional space
onto a lower g-dimensional space by finding N points in the g-dimensional data space, such that the
interpoint distances d;; = d” (y;,¥;) in the g-dimensional space approximate the corresponding interpoint
distances d;; = d(x;, X;) in the n-dimensional space. (see Figure 5.12).

This is achieved by minimizing an error criterion, called the Sammon’s stress, E:

1L (4 - dy)’
E—_ J 5.19
P3PV (519)
Nl N i=1 j=i+l
where A= > > d;;.
i=1 j=itl
The minimization of E is an optimization problem in Ng variables y;;,i = 1,2,...,N,l=1,...,q, as
Yi = Dits--- ,y,-,q}T. Sammon applied the method of steepest descent to minimizing this function.
Introduce the estimate of y;; at the th iteration
OE(r)
yia(1)
it + 1) =yi(t) — o : 5.20
y:,l())’:11() 62E(Z) ()
Pyia(t)

where « is a nonnegative scalar constant (recommended o ~ 0.3 — 0.4), i.e., the step size for gradient
search in the direction of

OE(t 2 N |dki —df;
() - [dkd*k} (yf,l - yk‘l)
A%k

Oyia(t) /lkzl,k;éi

’E 2 X 1 = 2 d i_d*i
TEO _ 25 gy — (o2 (1+) .
0 yi,l([) Ak:l,k;&idkwidk,i g dk,i dk‘i

It is not necessary to maintain A for a successful solution of the optimization problem, since the
N-1 N
minimization of > > (dij —d} j)z /d; ; gives the same result.

[A
s
\./’ ©

Figure 5.12 Illustration of Sammon mapping.

(5.21)

110 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

When the gradient-descent method is applied to search for the minimum of Sammon’s stress, a local
minimum in the error surface can be reached. Therefore, a significant number of runs with different
random initializations may be necessary. Nevertheless, the initialization of y can be based on information
which is obtained from the data, such as the first and second norms of the feature vectors or the principal
axes of the covariance matrix of the data (Mao and Jain, 1995).

The classical Sammon mapping described above can be used to visualize the data themselves because it
tries to preserve the interpattern distances. How can it be applied to visualize (fuzzy) clustering results?
The following simple idea can be used: the interpattern distances are calculated based on the clustering
results and the distances between the cluster prototypes and data, instead of based on the Euclidean
distance of the objective data X. Exactly the same idea can be applied to obtain these dissimilarities as by
VCV in Section 5.4.2. (see Equation (5.18).

Example 5.10 Visualization of synthetic data based on Sammon mapping The result of the FCM
algorithm based Sammon mapping can be seen in Figure 5.13(a) (the number of clusters is 10 as in the
previous examples, see Section 5.4.2). These data are very similar to the original two-dimensional data. It
is worth comparing the results with another clustering algorithm. The Gath—Geva (GG) method was
chosen for that purpose. Its distance norm is adaptive, and it is able to determine ellipsoids with different
sizes and shapes (for more information see Gath and Geva (1989)). The results of Sammon mapping based
on the Gath—Geva algorithm can be seen in Figure 5.13(b) (the number of clusters was the same by both
clustering algorithms). It can be determined that the four clusters are clearly separable and the data are
very close to the cluster prototypes. From the two diagrams it can be said that the GG prototype represents
best the analyzed data-set than the one of FCM. However, the result of FCM is also acceptable because
the possible number of groups of data are known from VAT image or from the dendrogram (see Figure 5.6),
and the four clusters are identifiable also from Figure 5.13(a).

Example 5.11 Visualization of Iris data based on Sammon mapping The Iris data are displayed in
Figure 5.14 based on Sammon mapping using the result of FCM by ¢ = 10. As it was determined from VAT
(Figure 5.7) and VCV (Figure 5.10) as well, this four-dimensional data-set contains two well-separated
clusters because two kinds of Iris flower are not clearly separable from these data. Figure 5.14 shows
exactly the same. Because in this case the physical label of the data are also known (but of course not used
in clustering), the different kinds of flowers are also displayed in the figure by different markers.

Example 5.12 Visualization of Wine data based on Sammon mapping In Figure 5.15 the results given
by the Sammon mapping can be seen based on two different dissimilarity measures: (a) based on the
Euclidean interpattern distances (it is the classical Sammon mapping), and (b) on the VCV based

Sammon Mapping of Data based on Visual Cluster Validity Distance Measure s Sammon Mapping of Data based on Visual Cluster Validity Distance Measure
06 T v T T T T
o
00099 o o o
90 o483 Ooo ° oo o ‘
04 b o 020% | a0}° o
o
O, o
odi’ o 00
G c%c'o 3 030 30f
02 00 O Og o o 4
0 %0 o 000 o
0%,0 °0,% 9, oo °
009 0%20000 20 ,° 20
ok oo, o 8900 00 B9
© oo0oO 9000 600 0" 0%
0o ©00%0 °°0g8% 00 0°
°°°°o % %% 0o 00 10
o o o
02 8 o8 8
0o S 38089 or) ° o
o o o° S o P
o 0° oS0 o
-0.4 300 &L o
0Q o 0 -10 ? @
) ° o o
0% %000 0 ¢ % o &°
0.6 oo 5© L Y 25
-0 20} 8o SIS %B
o
_08 L L L L L L _30 L L L L
-0.8 -06 -04 -0.2 0 0.2 0.4 0.6 -60 -40 -20 0 20 40 60 80 100

(a) (b)

Figure 5.13 Synthetic data visualized by Sammon mapping using VCV dissimilarities based on (a) fuzzy C-means
clustering, and (b) Gath—Geva clustering.

VISUALIZATION OF CLUSTERING RESULTS

1M

0.8

1 ~
a o
o
0.8 |- og
o
oo o
0.6 - o o
o o o
oo o
a [u] o
04 q < o oo
o o
<]<l Di;l] <]<l o o Lo
0.2 - G4 g © o
0o
a3 9 < B
< 4 o
0+ <
6 © G« jﬁj‘ <]
< < <
02| e 8 <q
0.2 5 %0 < %‘1 Dy o
006) 00 < <
[e} o
-0.4 | © o@qo <<
o) <
o @&p
© ©° Boo
-0.6 oo
o [¢]
_0.8 1 1 1 1 1 1 1 1 J
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Figure 5.14 Iris data visualized by Sammon mapping using VCV dissimilarities.

dissimilarity (Equation (5.18)) using the FCM algorithm with 10 clusters. As was the case for the Iris
data-set as well, the physical labels of the data are known and it is also displayed in the figures. As can be
seen, this clustering problem is very complex because the data in the 13-dimensional space likely form a
“cloud” and the clusters are not well-separated. (However, the physical classes are not mixed too much
but the groups of data are very close to each other.)

5.4.4 Visualization of Fuzzy Clustering Results by Modified Sammon

Mapping

This section focuses on the application of Sammon mapping for the visualization of the results of
clustering, as the mapping of the distances is much closer to the task of clustering than the preserving the

15 15
Og o
o o LR uu o
1 o go o 5@ o o
1 o_9 p oo
o o Ogo® o
of, <4 a 2 uu o 9
=
L 3 o q ° o © 05k <q 9 g oo %% T,]
o - o
05 o o g° L o o °o < < < ° g
o o 9o © 9R°% o o 0 % o g va T4 o
o
u“ oopo) og% 00%06 o ol o Lo o oo 44 « 4 4 <
o
0 9 uuuau" < q DOog 30%03% ° o°°°°°°°o °°° Y4 344424 < <<
o 9
< <9 < 4%000°o o © 02950 o ‘11444%4 «
o £ g LI g 00 -05 °0 %00 ° o 4 Ya <
< 4 9% : 0 a,° 5o 4% _a <
< ey q P ° 0o 9%0 © 4 <
« o 454 4 ° " o 4 49
05 4 <1<<1<<<<1 ;14:4 < ° o o, © « < < <
< <
< Fa a4 -1 o 4% < <
DR IR R <
-1t < < 4 < <4
! < s
<
15 L L L ;2 L L ,
-15 -1 -0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5 1 15

Figure 5.15 Wine data visualized by (a) classical Sammon mapping; (b) VCV dissimilarity based Sammon mapping.

112 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

variances. This section is mainly based on a previous work of the authors, for more details see Kovacs and
Abonyi (2004). There are two main problems encountered in the application of Sammon mapping to the
visualization of fuzzy clustering results:

e The prototypes of clustering algorithms may be vectors (centers) of the same dimension as the data
objects, but they can also be defined as ‘“‘higher-level”” geometrical objects, such as linear or nonlinear
subspaces or functions. Hence, classical projection methods based on the variance of the data (PCA) or
based on the preservation of the Euclidean interpoint distance of the data (Sammon mapping) are not
applicable when the clustering algorithm does not use the Euclidean distance norm.

e As Sammon mapping attempts to preserve the structure of high n-dimensional data by finding N points
in a much lower g-dimensional data space, such that the interpoint distances measured in the
g-dimensional space approximate the corresponding interpoint distances in the n-dimensional space,
the algorithm involves a large number of computations as in every iteration step it requires the
computation of N(N — 1)/2 distances. Hence, the application of Sammon mapping becomes imprac-
tical for large N (de Ridder and Duin, 1997; Pal and Eluri, 1998).

By using the basic properties of fuzzy clustering algorithms a useful and easily applicable idea is to map
the cluster centers and the data such that the distances between the clusters and the data points will be
preserved (see Figure 5.16). During the iterative mapping process, the algorithm uses the membership
values of the data and minimizes an objective function that is similar to the objective function of the
original clustering algorithm.

To avoid the problem mentioned above, in the following we introduce some modifications in order to
tailor Sammon mapping for the visualization of fuzzy clustering results. By using the basic properties of
fuzzy clustering algorithms where only the distance between the data points and the cluster centers are
considered to be important, the modified algorithm takes into account only N x ¢ distances, where ¢
represents the number of clusters, weighted by the membership values:

Efz = Z ;(Hi,k)m[d(xky m) —d (yi,z:)] (5.22)

where d(xy, ;) represents the distance between the x; datapoint and the 7; cluster center measured in the
original n-dimensional space, while d*(y,, z;) represents the Euclidean distance between the projected
cluster center z; and the projected data y,. This means that in the projected space, every cluster is
represented by a single point, regardless of the form of the original cluster prototype, ;. The application
of the simple Euclidean distance measure increases the interpretability of the resulting plots (typically in
two dimensions, although three-dimensional plots can be used as well). If the type of cluster prototypes is
properly selected, the projected data will fall close to the projected cluster center represented by a point
resulting in an approximately spherically shaped cluster.

The resulting algorithm is similar to the original Sammon mapping, but in this case in every iteration
after the adaptation of the projected data points, the projected cluster centers are recalculated based on the
weighted mean formula of the fuzzy clustering algorithms (see Appendix 5A.2).

The resulting two-dimensional plot of the projected data and the cluster centers is easily interpretable
since it is based on a normal Euclidean distance measure between the cluster centers and the data points.

Figure 5.16 Illustration of fuzzy Sammon method.

VISUALIZATION OF CLUSTERING RESULTS 113

Based on these mapped distances, the membership values of the projected data can also be plotted based
on the classical formula of the calculation of the membership values:

[= 1/Z(d* Xk T)L. (5.23)

Xk7 77/

Of course, the resulting two-dimensional plot will only approximate the original high-dimensional
clustering problem. The quality of the approximation can easily be evaluated based on the mean-square
error of the original and the recalculated membership values:

P=|U-U"| (5.24)

where U” = [u;,] represents the matrix of the recalculated memberships.

Of course there are other tools to obtain information about the quality of the mapping of the clusters.
For example, the comparison of the cluster validity measures calculated based on the original and mapped
membership values can also be used for this purpose.

Several numerical experiments will be given below to demonstrate the applicability of the presented
visualization tool. For the sake of comparison, the data and the cluster centers are also projected by
principal component analysis (PCA) and the standard Sammon projection. Beside the visual inspection of
the results the mean-square error of the recalculated membership values, P, see Equation (5.24), the
difference between the original F' and the recalculated F™* partition coefficient (Equation (5A.1)) (one of
the cluster validity measures described in Appendix 5A.1), and the Sammon stress coefficient (Equation
(5.19)) will be analyzed.

Example 5.13 Synthetic data The aim of the first example is to demonstrate how the resulting plots of the
projection should be interpreted and how the distance measure of the cluster prototype is “transformed”
into Euclidean distance in the projected two-dimensional space. The visualization performance of the
modified Sammon mapping is compared with PCA and the original Sammon mapping.

This means that in the projected two-dimensional space, each cluster is represented by a single point,
regardless of the form of the original cluster prototype, ;. In this example the result of the Gustafson—
Kessel algorithm is visualized, hence the distance norms defined by the inverse of the fuzzy covariance
matrices are transferred to Euclidean distances with the presented FUZZSAM mapping. The application
of the simple Euclidean distance measure increases the interpretability of the resulted plots. As
Figure 5.17 shows in the case of a properly selected cluster prototype the projected data will fall close
to the projected cluster center represented by a point resulting in an approximately spherically distributed
cluster (compare Figure 5.17(c) and Figure 5.17(d)). The numerical results summarized in Table 5.1 show
that the presented FUZZSAM tool outperforms the linear method and the classical Sammon projection
tools. The P error of the membership values between are much smaller, and the F and F* cluster validity
measures are similar when the projection is based on the presented FUZZSAM mapping.

5.4.5 Benchmark Examples

The previous example showed that it is possible to obtain a good data structure by the presented
mapping algorithm. However, the real advantage of the FUZZSAM algorithm, the visualization of

Table 5.1 Comparison of the performance of the mappings (Example 5.13).

Method P F F* E

GK-PCA 0.1217 0.8544 0.7263 0.0000
GK-SAMMON 0.1217 0.8544 0.7263 0.0000
GK-FUZZSAM 0.0204 0.8495 0.8284 0.1177

FCM-FUZZSAM 0.0000 0.7468 0.7468 0.0000

114 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

i Yi

(c) (d)

Figure 5.17 (a) Synthetic data in two dimensionals, (b) PCA mapping of the data and the recalculated membership
contours, (¢) FUZZSAM projection of the results of GK clustering, (d) FUZZSAM projection of the results of FCM
clustering.

higher-dimensional spaces was not shown. This will be done by the following real clustering problems.
The first example is the visualization of the results of the clustering of the well known Iris data.

Example 5.14 Iris data visualization 7o test the presented method the results of the clustering of the Iris
data were visualized by principal component analysis (PCA), the original Sammon mapping, and the
modified method. The initial conditions in the applied Gustafson—Kessel fuzzy clustering algorithm were
the following: ¢ = 3, m = 2 and o. = 0.4 in the Sammon and FUZZSAM mapping algorithms. The results
of the projections are shown in Figure 5.18, where the different markers correspond to different types of
Iris, and the level curves represent the recalculated membership degrees.

As Figure 5.18(c) nicely illustrates, the data can be properly clustered by the GK algorithm. One of the
clusters is well-separated from the other two clusters. To illustrate how the fuzziness of the clustering can
be evaluated from the resulted plot, Figure 5.18(d) shows the result of the clustering whenm = 1.4. As can
be seen in this plot the data points lie much closer to the center of the cluster and there are many more
points in the first iso-membership curves. These observations are confirmed by the numerical data given
in Table 5.2.

Example 5.15 Wine data visualization This example is used to illustrate how the FUZZSAM
algorithm can be used to visualize the clustering of 13-dimensional data, and how this visualization

VISUALIZATION OF CLUSTERING RESULTS 115

i

(d)

Figure 5.18 (a) PCA projection of the IRIS data and the recalculated membership contours; (b) SAMMON
projection of the IRIS data and the recalculated membership contours; (c) FUZZSAM projection of the results of
GK clustering of the IRIS data m = 2; (d) FUZZSAM projection of the results of FCM clustering of the the IRIS data
m=14.

can be used to detect the number of clusters (Figure 5.19 and Table 5.3). It can be seen from the
values of partition coefficient F that three clusters fit much better to the data than 10. It can also be
observed in Figure 5.19(a), (b), and (c) that the clusters are so much overlapping that in these figures
only three clusters can be seen. It was also seen by the similarity between clusters (see Example 5.3
and Figure 5.5). There are many points that belong to these three clusters with similar membership
values.

Table 5.2 Comparison of the performance of the mappings (Example 5.14).

Method P F F* E

GK-PCA 0.1139 0.7262 0.6945 0.0100
GK-SAMMON 0.1153 0.7262 0.6825 0.0064
GK-FUZZSAM 0.0175 0.7262 0.7388 0.1481
GK-PCA-m=1.4 0.1057 0.9440 0.9044 0.0100
GK-SAMMON-m=1.4 0.1044 0.9440 0.8974 0.0064

GK-FUZZSAM-m=1.4 0.0011 0.9440 0.9425 0.0981

116 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

08 PCA projection Conventional Sammon mapping

0.6

0.4

-1 -08 -06 -04 -0.2 0 02 04 06 08 1 .—1.5 -1 -0.5 0 0.5 1 15
2 Y1

(a) (b)

Fuzzy Sammon mapping Fuzzy Sammon mapping

0.5

Figure 5.19 (a) PCA projection of the Wine data and the recalculated membership contours; (b) SAMMON
projection of the Wine data and the recalculated membership contours; (c) FUZZSAM projection of the Wine data
by ¢ = 10; (d) FUZZSAM projection of the Wine data by ¢ = 3.

Table 5.3 Comparison of the performance of the mappings (Example 6.15).

Method P F F* E

FCM-PCA ¢ = 10 0.0389 0.1512 0.2252 0.1301
FCM-SAMMON ¢ = 10 0.0262 0.1512 0.1984 0.0576
FCM-FUZZSAM ¢ = 10 0.0105 0.1512 0.1545 0.0999
FCM-PCAc=3 0.1295 0.5033 0.7424 0.1301
FCM-SAMMON ¢ = 3 0.0874 0.5033 0.6574 0.0576
FCM-FUZZSAM ¢ =3 0.0364 0.5033 0.5178 0.1003

5.5 CONCLUSIONS

Visualization of (fuzzy) clustering results may be very important in real-life clustering problems. It is
because humans are very good at pattern recognition in two dimensions but are hopeless with more than
three dimensions and/or large amounts of data. Nevertheless, it is exactly the case in practice. Cluster
validity indices try to solve this problem based on a criterion that measures the ‘“goodness’ of the actual

APPENDIX 5A.1 VALIDITY INDICES 117

results. However, there are many of them and none of them is perfect. It could be much more useful and
informative if the clustering result in n dimensions is “projected” into two dimensions in some sense.

Hence, in this chapter the visualization of fuzzy clustering was our focal point. In the first step after
clustering, there is a need to determine how similar the resulting clusters are. For that purpose, a fuzzy set
similarity measure can be used because fuzzy clusters can be seen as fuzzy sets. For crisp sets, the
similarity of two sets, A and B can be expressed as follows:

sim(A,B) = % (5.25)

For fuzzy sets, the min and max operator should be used instead of () and | J. In this way, all clusters can be
compared with each other. Based on this symmetric similarity matrix, hierarchial clustering can be used
for cluster merging and for the visualization of the results of the clustering by dendrogram. Sammon
mapping can also be used to visualize the cluster prototype in two dimensions. It is important to note that
the original prototypes may be really complex but they can be visualized as single points in two
dimensions in this way. Using this diagram, the human observer can get an impression of how similar
the clusters are in the original space and is able to determine which clusters should be merged if it is
needed. In the next step, data points should be visualized in this two-dimensional space. It could be done,
for example, with triangulation: distances from the two closest cluster prototypes (hence, with the two
biggest memberships) can be preserved by every data point. However, other ideas can be used as well.

The distances calculated from the clustering can also be visualized. For this purpose visual assessment
of cluster tendency (VAT) plots can be used.

Principal component analysis (PCA) and Sammon mapping can also be used to visualize the
n-dimensional data points in two-dimensions. PCA projects the data into a linear subspace, while
Sammon mapping tries to preserve the interpoint distances. Both of them are useful but none of them
can directly be used to visualize the clustering results, only the data points themselves. If the cluster
prototype is not (only) a point in n dimensions, another procedure is needed. A new FUZZSAM
algorithm has also been proposed for this purpose. The FUZZSAM method generates two-
dimensional informative plots about the quality of the cluster prototypes and the required number
of clusters. This tool uses the basic properties of fuzzy clustering algorithms to map the cluster centers
and the data such that the distances between the clusters and the data points are preserved. The
numerical results show superior performance over principal component analysis and the classical
Sammon projection tools.

The proposed tools can be effectively used for interactive and iterative (dynamic) data mining.

Appendices

APPENDIX 5A.1 VALIDITY INDICES

(1) Partition coefficient (PC): measures the amount of “‘overlapping” between clusters. It is defined by
Bezdek (Bezdek, 1981) as follows:

N

PC(E) = 4373 (5A1)

i=1 k=1

where 1 is the membership of data point & in cluster i. The disadvantage of PC is the lack of direct
connection to some property of the data themselves. The optimal number of clusters is indicated by the
minimum value.

118 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

(2) Classification entropy (CE): measures the fuzzyness of the cluster partition only, which is similar to
the partition coefficient:

CE(c) = — le Z > ik In(pi). (5A.2)
i=1 k=1

The optimal number of clusters is indicated by the maximum value.

(3) Partition index (SC): the ratio of the sum of compactness and separation of the clusters. It is a sum of
individual cluster validity measures normalized by dividing it by the fuzzy cardinality of each cluster
(Bensaid et al., 1996):

_ - Zivzl(/li.k)muxk—VfHZ

= N - 2
i1 Dkt Hik Z}:l I[v; = vill

SC(c) (5A.3)

SC is useful when comparing different partitions having an equal number of clusters. A lower value of SC
indicates a better partition.

(4) Separation index (S): different from the partition index (SC), the separation index uses a minimum-
distance separation for partition validity (Bensaid et al., 1996):

c N 2 2
_ 2im Zk.:l(:“i.k) 1% - vill” (5A.4)
N minj ||v; = vil|

S(c)

(5) Xie and Beni’s index (XB): indirect indices like the partition coefficient suffer from three drawbacks.
First, they are at best indirectly related to any real clusters in X; second, they ignore additional parameters
(such as V); and third, they do not use X itself. Xie and Beni defined an index of fuzzy cluster validity that
overcomes the second and third problems. It aims to quantify the ratio of the total variation within clusters
and the separation of clusters (Xie and Beni, 1991)):

c N m 2
XB((,) — Zi:l Zkfl(ul«,k) ||Xk 5 Vl”) (SAS)
N min; |[x; — vi|

The optimal number of clusters should minimize the value of the index.
(6) Dunn’s index (DI): this index was originally proposed to be used at the identification of compact and
well “separated clusters’ (see, for example, in Xie and Beni (1991)). So the result of the clustering has to

be recalculated as if it was a hard partition algorithm:

iny d(x,
DI(c) = min{ min { mitxeciyeg d(X,Y) }} (5A.6)
icc | jeci# | Maxgec{maxyyec d(X,y)}

The main drawback of Dunn’s index is the computational demand since calculating becomes computa-
tionally very expensive as ¢ and N increase.

(7) Alternative Dunn index (ADI): the aim of modifying the original Dunn’s index was that
the calculation becomes more simple, when the dissimilarity function between two clusters
(mingec, ye; d(x,y)) is rated in value from beneath by the triangle nonequality:

d(x,y) = |d(y,vj) — d(x,v})| (5A.7)

APPENDIX 5A.1 VALIDITY INDICES 119

where v; is the cluster center of the jth cluster. Then:

ADI(c) = min

: { min mlnx,EChx,'EC,- ‘d(Y7 Vj) - d(X,-, Vj)|} (SAS)
icc

jeciti maxge{maxyyecd(x,y)}

(8) The fuzzy hyper volume: this index is also widely applied and represents the volume of the clusters:

V(e) =) det(Fy), (5A.9)
i=1
where F; is the fuzzy covariance matrix of the ith cluster,

_ Eszl pi (X — Vi) (X — Vi)T

F; 5
Dkt Wik

(5A.10)

(9) The Fischer interclass separability: this criterion is based on the between-class and within-class
scatter or covariance matrices, called F, and F,,, respectively, which add up to the total scatter matrix F,
which is the covariance of the whole training data containing N data pairs (Roubos, Setres, and Abonyi,
2003):

&
F, :NZ(xk —v)(x¢ — V)7, (5A.11)
k=1
where v is the mean of the samples:
v ! XN:X ! XC:N (5A.12)
=3 k=3 iVi, :
Ni= NS

where N; = Zgil i is the “size” of the cluster, i.e., how many data points belong to it in a fuzzy way.
The total scatter matrix can be decomposed:

F,=F,+F,, (5A.13)
where
Fy =Y Ni(vi—v)(vi = V)", (5A.14)
i=1
F, = ZF,,. (5A.15)
i=1

The interclass separability criterion is a trade-off between F;, and F,:

_ deth
" detF,,’

IS(c) (5A.16)

It is similar to the so-called invariant criteria for clustering (see Duda, Hart, and Stork (2001))
where the cost function, which has to be maximized in this approach, is not in the form of Equation
(5.5) but

Jp = trace[F,'F)] = >/, (5A.17)

i=1

where /; are the eigenvalues of F;th.

120 AGGREGATION AND VISUALIZATION OF FUZZY CLUSTERS

APPENDIX 5A.2 THE MODIFIED SAMMON MAPPING ALGORITHM

o [Input] : Desired dimension of the projection, usually g = 2, the original data set, X; and the results
of fuzzy clustering: cluster prototypes, n;, membership values, U = [u;4], and the distances
D= [dk,i = d(xkvni)]Nxc'

o [Initialize] the y, projected data points by PCA based projection of X, and compute the projected

cluster centers by
N
7 — >kt (k)" Vi

i N m
Zk:l (Mz:,k)

and compute the distances with the use of these projected points D* = [d}; ; = d(y;, %;)]y.- Random
initialization can also be used but PCA based projection is a better choice in many cases because it
may reduce the number of iterations in the next phase.
o [While] (Eyy,, > €) and (t< maxstep)

{for(i=1:ii <c:it++)

{for(i=1:j<N:j++)
OE(t) O%E(r)

(5A.18)

{Compute Da(t) T (e
OE(r)
8,— t
Ayip = Ay + 8%)1118 !
%yii(t)

}

yLI:yi,l_FAyi‘lvvj: L,...,N, I= 17--~7q
Computez; = >3 ()" Y/ >y ()"
D" = ld;; = d(¥, i) yxe

}

Compute Ey,,, by Equation (5A.22)
where the derivatives are

OE(1) 2 XN: [dk‘idz,-

yi(1) eyt

PE1) _ 2 g~ ()" 01 = yua)? .
=12 ”—k{w —dyy) = P (g —d;,m-,k)"’]}

azyi‘l(t) k=1 ki dlfz d;l

ACKNOWLEDGEMENTS

The authors acknowledge the support of the Cooperative Research Center (VIKKK) (project 2001-11-1),
the Hungarian Ministry of Education (FKFP-0073/2001), and the Hungarian Science Foundation
(T037600).

REFERENCES

Abonyi, J., Babuska, R. and Szeifert, F. (2002) ‘Modified Gath-Geva fuzzy clustering for identification of Takagi
Sugeno fuzzy models’. IEEE Transactions on Systems, Man and Cybernetics 32(5), 612-321.

Abonyi, J., Feil, B., Nemeth, S. and Arva, P. (2005) ‘Modified Gath-Geva clustering for fuzzy segmentation of
multivariate time-series’. Fuzzy Sets and Systems — Fuzzy Sets in Knowledge Discovery 149(1), 39-56.

REFERENCES 121

Babuska, R. (1998) Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston.

Baldwin,J., Martin, T. and Rossiter, J. (1998) ‘Time series modelling and prediction using fuzzy trend information’ Proc.
of 5th Internat. Conf. on Soft Computing and Information Intelligent Systems, pp. 499-502.

Bensaid, A. et al. (1996) ‘Validity-guided (Re)Clustering with Applications to Image Segmentation’. /EEE Trans-
actions on Fuzzy Systems 4, 112—123.

Bezdek, J. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

Bezdek, J. and Hathaway, R. (2002) ‘VAT: Visual Assessment of (Cluster) Tendency’ Proceedings of IJCNN,
pp. 2225-2230.

de Ridder, D. and Duin, R.P. (1997) ‘Sammon’s Mapping Using Neural Networks: A Comparison’. Pattern Recognition
Letters 18, 1307-1316.

Duda, R., Hart, P. and Stork, D. (2001) Pattern Classification 2nd edn. John Wiley & Sons, Inc., New York.

Gath, I. and Geva, A. (1989) ‘Unsupervised optimal fuzzy clustering’. IEEE Transactions on Pattern Analysis and
Machine Intelligence 7, 773-781.

Geva, A. (1999) ‘Hierarchical-fuzzy clustering of temporal-patterns and its application for time-series prediction’.
Pattern Recognition Letters 20, 1519-1532.

Hanesch, M., Scholger, R. and Dekkers, M. (2001) “The application of fuzzy c-means cluster analysis and non-linear
mapping to a soil data set for the detection of polluted sites’. Phys. Chem. Earth 26, 885-891.

Hathaway, R. and Bezdek, J. (2002) ‘Clustering Incomplete Relational Data using the Non-Euclidean Relational
Fuzzy c-Means Algorithm’. Pattern Recognition Letters 23, 151-160.

Hathaway, R. and Bezdek, J. (2003) ‘Visual cluster validity for protoype generator clustering models’. Pattern
Recognition Letters 24, 1563—1569.

Huband,J.,Bezdek, J. and Hathaway, R. (2004) ‘Revised Visual Assessmentof (Cluster) Tendency (reVAT)’ Proceedings
of the North American Fuzzy Information Processing Society (NAFIPS), pp. 101-104.

Huband, J., Bezdek, J. and Hathaway, R. (2005) ‘bigVAT: Visual Assessment of Cluster Tendency for Large Data Sets’.
Pattern Recognition 38, 1875-1886.

Jain, A. and Dubes, R. (1988) Algorithms for Clustering Data. Prentice-Hall, Inc.

Johansen, T. and Babuska, R. (2002) ‘On Multi-objective Identification of Takagi—Sugeno Fuzzy Model Parameters’
Preprints 15th IFAC World Congress, Barcelona, Spain, pp. T-Mo—A04, paper no. 587.

Kelly, P. (1994) ‘An algorithm for merging hyperellipsoidal clusters’. Technical Report, L.A.-UR-94-3306, Los Alamos
National Laboratory, Los Alamos, NM.

Kim, E., Park, M. and Kim, S. (1998) ‘A Transformed Input Domain Approach to Fuzzy Modeling’. I[EEE Transactions
on Fuzzy Systems 6, 596—-604.

Klawonn, F., Chekhtman, V. and Janz, E. (2003) ‘Visual inspection of fuzzy clustering results’ In Advances in Soft
Computing - Engineering, Design and Manufacturing (ed. Benitez, J., Cordon, O., Hoffmann, F. and Roy R) Springer,
London pp. 65-76.

Kovacs, A.and Abonyi,J. (2004) ‘Vizualization of Fuzzy Clustering Results by Modified Sammon Mapping’ Proceedings
of the 3rd International Symposium of Hungarian Researchers on Computational Intelligence, pp. 177-188.

Mao, J. and Jain, K. (1995) ‘Artificial Neural Networks for Feature Extraction and Multivariate Data Projection’. [EEE
Trans. on Neural Networks 6(2), 296-317.

Marcelino, P., Nunes, P, Lima, P.and Ribeiro, M.I. (2003) ‘Improving objectlocalization through sensor fusion applied to
soccer robots’. Actas do Encontro Cientifico do Robotica.

Nelles, O. (2001) Nonlinear System Identification. Springer, Berlin, Germany.

Pach, P., Abonyi, J., Nemeth, S. and Arva, P. (2004) ‘Supervised Clustering and Fuzzy Decision Tree Induction for the
Identification of Compact Classifiers’ 5th International Symposium of Hungarian Researchers on Computational
Intelligence, pp. 267-279, Budapest, Hungary.

Pal, N. and Eluri, V. (1998) ‘Two Efficient Connectionist Schemes for Structure Preserving Dimensionality Reduction’.
IEEE Transactions on Neural Networks 9, 1143-1153.

Pedrycz, W.and Sosnowski, A. (2001) ‘The designof decisiontreesin the framework of granular dataand theirapplication
to software quality models’. Fuzzy Sets and Systems 123, 271-290.

Roubos, J., Setnes, M. and Abonyi, J. (2003) ‘Learning Fuzzy Classification Rules from Labeled Data’. Information
Sciences 150(1-2), 77-93.

Vathy-Fogarassy, A., Feil, B. and Abonyi, J. (2005) ‘Minimal Spanning Tree based Fuzzy Clustering’ In Transactions on
Enformatika, Systems Sciences and Engineering (ed. Ardil C), vol. 8, pp. 7-12.

Vesanto, J. (2000) ‘Neural network tool for data mining: Som toolbox’. Proceedings of Symposium on Tool Environments
and Development Methods for Intelligent Systems (TOOLMET2000) pp. 184—196.

Wong, J., McDonald, K. and Palazoglu, A. (1998) ‘Classification of process trends based on fuzzified symbolic
representation and hidden markov models’. Journal of Process Control 8, 395-408.

Xie, X. and Beni, G. (1991) ‘Validity measure for fuzzy clustering}’. IEEE Trans. PAMI 3(8), 841-846.

6

Interactive Exploration
of Fuzzy Clusters

Bernd Wiswedel', David E. Patterson?, and Michael R. Berthold"

'Department of Computer and Information Science, University of Konstanz, Germany
2Vistamount Consulting, USA

6.1 INTRODUCTION

Classical learning algorithms create models of data in an uncontrolled, non-interactive manner. Typically
the user specifies some (method-dependent) parameters like distance function or number of clusters that
he/she likes to identify, followed by the application of the algorithm using these settings. The process of
the model generation itself, however, cannot be controlled or influenced by the user. The final outcome is
then evaluated by means of some quality measure, for instance the classification error for supervised
learning or some cluster validity measure for unsupervised tasks, or it is judged based on the user’s
impression, provided that the model is interpretable. Depending on the quality of the results, the model
generation is either considered successful, which means the model is a good summarization of the data
and can be used, for example, for further classification tasks, or it requires further fine-tuning of the
parameters and a rerun of the algorithm.

This “learning” scheme is characteristic for most methods in machine learning and data mining.
However, in many applications the focus of analysis is not on the optimization of some quality function
but rather on the user-controlled generation of interpretable models in order to incorporate background
knowledge. This requires tools that allow users to interact with the learning algorithm to inject domain
knowledge or help to construct a model manually by proposing good model components, for example,
cluster prototypes or classification rules, which can then be accepted, discarded, or fine-tuned. There are
generally two different extrema of cooperation between user and system: either the user or the system has
all the control and carries out the model generation; however, in general it requires a balance of both.

Several approaches to build interpretable models interactively for classification have been proposed in
the past. Ankerst, Elsen, Ester, and Kriegel (1999) propose an interactive decision tree learner that is based
on a pixel-oriented visualization of the data. Figure 6.1 shows a screenshot of such an interactive tool. The
visualization technique is similar to the one proposed by Ankerst, Elsen, Ester, and Kriegel (1999) but uses
a box instead of a circle view. The top half of the figure displays the class distribution for one of the input
dimensions with each pixel representing one of the training objects (there are about 15000 training objects

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
© 2007 John Wiley & Sons, Ltd

124 INTERACTIVE EXPLORATION OF FUZZY CLUSTERS

000000
o—iatn~o
CoONNLI—

Figure 6.1 Interactive construction of decision trees.

in this data-set). The objects are aligned column by column according to the order of their values in the
current dimension, whereby the object with the smallest value is plotted at the top left corner of the pixel
display and the others are lined using a snake like alignment. Different colors represent different classes,
for instance there are two classes in the example in Figure 6.1. The bottom half of the figure shows the
entropy curve for the current dimension, i.e., a classical (automatic) decision tree learner would perform a
split at the value with the smallest entropy over all dimensions. This visualization technique allows the
class distribution to be inspected immediately for each individual dimension, either by plotting different
boxes for different classes or — as proposed by Ankers, Elsen, Ester, and Kriegel (1999) — by using a circle
view where different segments of the circle are used to plot the distribution in different dimensions. The
construction of the decision tree model will take place interactively whereby the system supports the user
by proposing good split points, allowing for look-aheads (such as what would be a resulting sub tree if a
split was performed), or automatic construction of sub-trees, for example, when there are only small
amounts of data left in a decision branch. The user, on the other hand, can adjust split points or also
perform the split on another attribute, which may not lead to such a high information gain as the numerical
optimal split point but is, from the user’s perspective, more meaningful.

This system for decision tree construction is a typical example for an interactive model generation tool.
By using an appropriate visualization technique (in the above example a pixel display), the user can guide
the model generation.

Decision trees always partition the instance space, i.e., each point in the input space is assigned a class
label. This is often not desirable as some regions of the input space may not contain (training-) data at all
and therefore there is no obvious evidence to prefer one class over the other. Rule learning algorithms, on
the other hand, generate a set of rules whereby each rule covers only a relatively small region of the input
data. Typically, there may be regions in the input space for which more than one rule fires (posing the
challenge of conflict handling when the firing rules are of contradicting classes) or for which none of the
rules is active. In the latter case, an outcome is often determined using the majority class (the one with
highest a priori probability) or — and which is often preferable — a “‘don’t know” answer. Many rule
learning algorithms also use the notion of fuzzy membership functions to model regions of high and low
confidence (Berthold, 2003; Chiu, 1997).

Fuzzy clusters, similar to fuzzy rules, are well suited for presentation of the resulting classification model
to the user. Although the traditional cluster algorithm works on unsupervised data-sets, extensions also allow
cluster models to be built that distinguish between areas of different classes. This is an intriguing approach
especially for cases where one expects to find various, distributed areas that belong to the same class. Often
these clusters are then used directly as fuzzy rules or serve to initialize a fuzzy rule system, which is then
optimized. A typical example of this sort of algorithm has been proposed by Chiu (1997): it first finds a set of
clusters for each class using subtractive clustering (Chiu, 1994), an algorithm that builds upon the well-
known mountain method by Yager and Filev (1994), and then derives classification rules from them.

In this chapter we focus on a supervised approach to construct a set of fuzzy clusters for classification.
The algorithm does not use a two stage learning such as in (Chiu, 1997) but rather generates potentially

NEIGHBORGRAM CLUSTERING 125

discriminative fuzzy clusters from the beginning. It initially constructs a so-called Neighborgram for each
object of interest. A Neighborgram is a summarization of the neighborhood of an object, which allows an
interpretable view on the underlying data. Such a complete and hence computationally expensive
approach obviously only works for all classes of a medium size data-set or — in the case of very large
data-sets — to model a minority class of interest. However, in many applications the focus of analysis is on
a class with few objects only, a minority class. Such data can be found, for instance, in drug discovery
research. Here, huge amounts of data are generated in high throughput screening, but only very few
compounds really are of interest to the biochemist. Therefore, it is of prime interest to find clusters that
model a small but interesting subset of data extremely well.

The algorithm finds clusters in a set of such Neighborgrams based on an optimality criterion.
Since Neighborgrams are easy to interpret, the algorithm can also be used to suggest clusters
visually to the user, who is able to interact with the clustering process in order to inject expert
knowledge. Therefore, the clustering can be performed fully automatically, interactively, or even
completely manually. Furthermore, constructing Neighborgrams only requires a distance matrix,
which makes them applicable to data-sets where only distances between objects are known. For
many similarity metrics in molecular biology no underlying feature values are known since those
similarity (and hence also the distance) values are computed directly. In contrast, methods that
compute cluster representatives as mixtures of training objects (like fuzzy c-means by Bezdek
(1981)) do require the availability of an underlying feature representation in order to continuously
compute and update the cluster centers.

Neighborgrams can naturally be applied to problem settings where there are multiple descriptors for
the data available, known as parallel universes. One such application is biological data analysis where
different descriptors for molecules exist but none of them by itself shows global satisfactory prediction
results. We will demonstrate how the Neighborgram clustering algorithm can be used to exploit the
information of having different descriptors and how it finds clusters spread out of different universes, each
modeling a small subset of the data.

This chapter is organized as follows. We first introduce the concept of Neighborgrams and describe the
basic clustering algorithm. We then extend the algorithm to also handle fuzzy clusters before Section 6.3
discusses some aspects of the visual exploration and demonstrates the usefulness of the visual clustering
procedure. In Section 6.4 we focus on learning in parallel universes and give an example application using
the Neighborgram algorithm.

6.2 NEIGHBORGRAM CLUSTERING

This section introduces Neighborgrams as an underlying data structure of the presented algorithm. We
will formalize this structure and derive some properties which help us to judge the quality of a
Neighborgram later on. We will refer to one of our previous articles, which discusses the automatic
classifier using Neighborgrams more extensively (Berthold, Wiswedel, and Patterson, 2005).

We will assume a set of training objects T with |T| =M instances for which distances,
d(x;,x;),i, je{l,..., M}, are given'. Each example is assigned to one of C classes,
c(x)) =k, 1 <k<C.

6.2.1 Neighborgrams
A Neighborgram is a one-dimensional model of the neighborhood of a chosen object, which we will call
the centroid. Other objects are mapped into the Neighborgram depending on their distance to this

centroid. Essentially, a Neighborgram summarizes the neighborhood of the centroid through a ray on

"Note that it is not necessary to know the feature values for an instance. It is sufficient to provide the algorithm with
distances between objects.

126 INTERACTIVE EXPLORATION OF FUZZY CLUSTERS

to which the closest neighbors of the centroid are plotted. Obviously, mapping all objects on to the ray
would be complicated and the visualization would lose its clarity. Therefore, we introduce a parameter R
that determines the maximum number of objects stored in a Neighborgram. Those R stored items
represent the R-closest neighbors to the centroid. Hence, a Neighborgram for a certain centroid x; can
also be seen as an ordered list of length R:

NG; =[xy, ..., Xz
The list NG; is sorted according to the distance of object x;, to the center vector x;:
Vr : 2<r<R /\d(x,-,xl(r 1]) <d(x;,x,),
and the objects in the Neighborgram are the closest neighbors of the centroid:
—3r : r>RAd(x;,x,) < d(xi,x,).

Note that /; = i, because d(x;,x;) = 0 forall i, that is, each object is closest to itself. Note also that this list
is not necessarily a unique representation since it is possible that two entries in the list have exactly the
same distance to the centroid. The order of those items would then not be uniquely defined. However, as
we will see later, this does not affect the outcome of the clustering algorithm that we are discussing here.

Obviously in the case of large data-sets the computation of Neighborgrams for each training object is
excessively time and memory consuming. However, as noted earlier, the main target of the algorithm
discussed here are problems where one (or several) minority class(es) are of prime interest. The
computation of Neighborgrams for all these objects is then of complexity O(R - M - M'), where M’
indicates the number of examples of the minority class(es), i.e., M’ < M in the case of large data-sets.
This complexity estimate is derived as follows: for each object (O(M)) and for each Neighborgram
(O(M")) do an insertion sort into a list of R objects (O(R)). If the size R of the Neighborgrams is closer to
the overall number of objects M it might make more sense to use a more efficient sorting scheme but for
large data-sets usually R < M holds and an insertion sort is sufficiently efficient. For large data-sets, M
will dominate the above estimate and result in a roughly linear complexity.

Figure 6.2 shows an example of two Neighborgrams for the famous Iris data (Fisher, 1936), a data-set
containing four-dimensional descriptions of three different types of Iris plant. For the sake of simplicity,
in the example we use only two of the original four dimensions in order to be able to display them in a
scatterplot (left-hand side). Different colors are used here to show the different class memberships of the
overall 150 objects. Two sample Neighborgrams are shown on the right. They are constructed for the
two centroids of the gray class (Iris-Setosa), indicated by the arrows in the scatterplot. Each Neighbor-
gram summarizes the neighborhood of its centroid. The centroid of the top Neighborgram, for instance,
has many objects from the same (gray) class in its close vicinity as can be immediately seen when looking
at the Neighborgram. The visualization technique uses a simple ray to plot neighbors; however, whenever
two objects are too close to each other and might overlap, we stack them. Stacking allows the user to
individually select certain objects in one Neighborgram, which are then also highlighted in the other
Neighborgrams or another system.

Figure 6.2 Two Neighborgrams for the Iris data is shown on the left. The two-dimensional input space, on the right
there are two different Neighborgrams for two selected objects displayed.

NEIGHBORGRAM CLUSTERING 127

Neighborgrams are constructed for all objects that are of interest to the user, for instance all objects of
one class. Just from looking at the example in Figure 6.2, we can qualitatively rank Neighborgrams: the
centroid of the top Neighborgram has many objects of its class in the close neighborhood whereas the
centroid of the bottom Neighborgram is surrounded by some gray but also white objects. The top
Neighborgram therefore suggests a better cluster candidate since new, unseen objects that have a small
distance to the centroid are likely to be of the same class.

Let us briefly sketch the underlying algorithm to identify a set of good Neighborgrams in the next
section before we derive some underlying properties of a Neighborgram using the notation introduced
above.

6.2.2 The Basic Clustering Algorithm

The key idea underlying the clustering algorithm is that each object, for which a Neighborgram has been
built, is regarded as a potential cluster center. The objective of the algorithm is to rank Neighborgrams in
order to greedily find the “best” cluster at each step. The result is a subset of all possible clusters that
covers a sufficient number of objects.

The algorithm can be summarized as follows:

. determine a cluster candidate for each Neighborgram;

. rank cluster candidates and add the best one as a cluster;

. remove all objects covered by this cluster;

. start over at Step 1, unless certain stopping criteria are fulfilled.

D W N o~

Obviously, it needs to be defined, what a cluster candidate is how these candidates can be ranked it, and
what removing covered objects really means. In addition, the termination criterion has to be specified. In
order to do this, let us first define a few properties of Neighborgrams.

6.2.3 Neighborgram Properties

In Section 6.2.1 we used an ordered list as representation for a Neighborgram. This list contains objects,
which are ordered according to their distance to the centroid. The length of the list is determined by the
parameter R:

NGi = [xh yeeey Kby oo 7‘XIR]'

The main parameters to describe a cluster candidate are the following:

e CoverageI'. The default coverage of a cluster with a certain depth r < R determines how many positive
objects it “explains,” that is, the number of objects of the same class as the centroid that fall within its
radius:

Li(r) = {x, e NGi|1 < ¥ < rie(x,) = c(xi)}

o Puyrity I1. The purity of a Neighborgram is the ratio of the number of objects belonging to the same class
as the centroid to the number of objects encountered up to a certain depth » < R. The purity is a measure
of how many positive vs. negative objects a certain neighborhood around the centroid contains. Positive
objects belong to the same class as the centroid, whereas negative objects belong to a different class:

128 INTERACTIVE EXPLORATION OF FUZZY CLUSTERS

e Optimal depth 2. The optimal depth is the maximum depth where for all depths r less than or equal to 2
the purity is greater than or equal to a given threshold ppi,. The optimal depth defines the maximum size
of a potential cluster with a certain minimum purity. Note that it is straightforward to derive the
corresponding radius from a given depth, that is, d(x;, x;,):

Qi (Pmin) = max{r|1 < ¥ < r ATL(F) > Pmin}-

Furthermore, we introduce a final parameter W for the overall coverage, which is part of the termination
criterion for the algorithm. It represents the sum of all coverages of the chosen clusters. Once this
threshold is reached, the algorithm stops.

6.2.4 Cluster Candidates and the Clustering Algorithm

Using the above properties we can already clarify the (automatic) clustering procedure. Starting from a
user-defined value for parameter purity II = pni, and the stopping criterion ¥, we can compute values for
parameters optimal depth {2 and coverage I for each potential cluster. The best cluster is identified as the
one with the highest coverage. This cluster then “covers” all objects that are within its radius. These
objects are then discarded from the data-set and the cluster-selection process can start again in a
sequential covering manner, based on the reduced set of remaining objects. The termination criterion
of the algorithm is based on the accumulated coverage of identified clusters: once it exceeds a certain
threshold given by the user-defined overall coverage W, the algorithm stops. Thus, the numbers of clusters
is implicitly determined by the algorithm as new clusters are being added as long as the coverage is below
. The basic algorithm is outlined in Table 6.1.

Although the clustering scheme as listed in Table 6.1 does not incorporate user interaction, it is fairly
easy to integrate: the algorithm determines the (numerically) best Neighborgram (line (6)) and adds it to the
set of clusters. However, instead of simply adding the Neighborgram, the ranking (according to I';(€2;)) can
be used to suggest discriminative Neighborgrams to the user, who might be interested in picking another
(second choice) Neighborgram or changing the cluster boundaries. Please note that the identification of
good Neighborgrams is always bound to an appropriate visualization of the underlying objects in the
cluster. For example, as we will also see later in Section 6.3, if the objects represent molecular drug
candidates, an accompanying visualization of the molecular structures of the objects in one cluster can help
the user to judge if these objects do indeed have something in common or if they are just artifacts in the data.

The basic clustering algorithm in Table 6.1 removes objects once they are covered by a cluster. This
effect might be desirable for objects lying close to the center of the new cluster but it will reduce accuracy
in areas further away from the cluster center. We therefore introduce the notion of partial coverage using
fuzzy membership functions, which allows us to model a degree of membership of a particular object to a
cluster. The next section will present the membership functions used.

Table 6.1 The basic Neighborgram
clustering algorithm (Berthold, Wiswedel
and Patterson, 2005).

(1) Vax;: ¢(x;) is class of interest = compute NG;
(2) VNG;: compute Q;(Pmin)
(3) VNG;: compute I';(€;)
“4) s =0
(5) whiles < ¥
(6) ipest = arg max,{I;()}
(7) add NG;,, to list of clusters,
add F,’bN (Q,’bm) tos
(8) determine list of covered objects
(9) remove them from all Neighborgrams NG;
(10) VNG;: recompute T';(£2;)
(11) end while

NEIGHBORGRAM CLUSTERING 129
6.2.5 Membership Functions

The idea underlying the partial coverage is that each cluster is modeled by a fuzzy membership function.
This function has its maximum at the centroid and declines toward the cluster boundaries. The coverage is
then determined using the corresponding degrees of membership. Objects are removed to a higher degree
towards the inner areas of a cluster and to a lesser degree toward the outer bounds. Figures 6.3 to 6.6 show
the four membership functions we used. Note that the rectangular membership function corresponds to

Ty Ts T3
1) = 1, if0<d< ’.".'.;_'_'u
AA=T ! oherwises,

Figure 6.3 The rectangular membership function.

i

1, if0<d<r
puld) = razd i < d <y

r3—m

0, otherwise.

Figure 6.4 The trapezoidal membership function.

H

e taed if0<d<nrs
BEESY 0, otherwise.

Figure 6.5 The triangular membership function.

] il

| ra TF3=Tyg

2

; d- : S ri
() —l.\p((,2) with o= = (0)

Figure 6.6 The gaussian membership function.

130 INTERACTIVE EXPLORATION OF FUZZY CLUSTERS

the basic algorithm discussed above: objects are covered with degrees of 0 or 1 only, and are therefore
removed completely when covered.

In order to describe a cluster by means of a membership function we first need to introduce three radii,
which will help to specify different regions of the neighborhood:

e 1) represents the radius of the last object with IT = 1
(last known perfect): r; = max{r | IL;(r) = 1}.

e 1, is the last object with IT > pi, (last known good), that is,
rp=max{r | 1 <7 <rAIL(r) > pmin}-

e 13 describes the first object for which II < pp, (first known bad), that is,
rs=max{r | 1 <v <r—1AIL) > pmin}-

These radii are sufficient to describe as shown in Figure 6.3 to 6.6 commonly used membership functions.

While the shape of the rectangular, trapezoidal and triangular membership functions are determined by
the three radii, the Gaussian membership function is specified using the additional parameter 6. The
inverse value of 0, ry, determines radius r3. For a minimum required purity py,;, equal to 1, the parameter 6
determines the maximum degree of membership of an incorrect class for other objects in the training data
(see Berthold and Diamond (1998) for details).

Using these fuzzy membership functions the clustering algorithm changes slightly. First, a degree of
exposure (measuring how much is still uncovered), € [0, 1], needs to be assigned to each object of the
classes of interest. At the beginning this value is initialized to 1.0 for each object, that is, each object still
needs to be covered completely. Subsequently this value will be decreased during clustering. A new
cluster which (partly) covers an object will reduce this value accordingly. Obviously an object can only be
covered until 7 = 0. Let 7(x) be an object’s degree of exposure and picysrer(d(xi,x)) the degree of
membership to the cluster. Then the partial coverage ® of a cluster is defined as:

Q;(Q) = Z min{n(x;,), picuser (d(xi,X1,))}-
x, eNG; [1<r'<0,
Nel, =c(x)

The new fuzzy version of the algorithm is shown in Table 6.2. A list of objects for the class of interest
needs to be created in conjunction with their degrees of coverage (step (2)). Steps (8) and (9) of the basic
algorithm are modified to incorporate the notion of partial coverage. Note that we do not need to remove
covered objects from other Neighborgrams anymore, since the added degree of exposure does this
implicitly.

The introduction of this concept of partial coverage improves the accuracy substantially. Experiments
on publicly available data-sets from the StatLog project (Michie, Spiegelhalter, and Taylor, 1994)
demonstrate that the performance of such an automatic classifier is comparable to state-of-the-art

Table 6.2 The fuzzy Neighborgram clustering
algorithm (Berthold, Wiswedel, and Patterson, 2005).

(1) Vx; : c(x;) is class of interest = compute NG;
(2) Vx; : c(x;) is class of interest = store 7(x;) = 1
(3) VNG;: compute €2;

(4) VNG;: compute @;(€;)

3) s:=0

(6) whiles < WU

(7) ipest = argmax;{P;(Q)}

(8) addNG;,, to list of clusters, add ®;, . (£,) tos
(9) recompute 7 for each object and

(10) VYNG;: recompute D;(€2;)

(11) end while

INTERACTIVE EXPLORATION 131

techniques (among others c4.5, k nearest neighbor, and a multi-layer perceptron). We do not discuss these
experiments here but rather refer to (Berthold, Wiswedel, and Patterson, 2005). The use of fuzzy
membership functions as cluster description increased the generalization ability of the classifier sig-
nificantly. The best performance was always achieved using the Gaussian membership function, which,
however, has one important drawback: it always produces an output since the membership value is
always greater than 0. In most cases a classifier that also produces a “do not know’” answer is preferable,
as it allows an obviously uncertain classification to be deferred to an expert or to another system. In the
following we will therefore concentrate on the other membership functions instead, also because they
allow for a more intuitive visualization.

6.3 INTERACTIVE EXPLORATION

As already outlined in the introduction, the main focus of this chapter lies on the interactive exploration of
such supervised fuzzy clusters. The quality measures as introduced in the previous sections allow
Neighborgrams to be ranked based on their coverage given a user-defined threshold value for the purity
Pmin- The system uses these values to suggest potentially interesting Neighborgrams to the user who is
then able to evaluate how interesting they are. This section demonstrates the usefulness of this approach
by means of some examples. We will first briefly explain the visualization technique of a Neighborgram
and its cluster candidate before we show its applicability in practice on a real-world data-set from the
National Cancer Institute.

6.3.1 Neighborgram Visualization

Since a Neighborgram is a one-dimensional representation of the neighborhood of an object, it is
straightforward to visualize. Figure 6.7 shows the Neighborgrams for two objects of the Iris data-set
(Fisher, 1936). In comparison to Figure 6.2 the figure also contains a visualization of the (trapezoidal)
fuzzy membership function as proposed by the system. While the vertical axis does not have a meaning
for the visualization of points (as noted earlier, we use it only to avoid overlaps), it is used to display the
membership function.

Both clusters in Figure 6.7 are built for the Iris- Virginica class (points shown in black); however, the top
Neighborgram suggests better clustering behavior as it covers almost all of the objects of Virginica class
(the same class as the centroid), whereas the bottom Neighborgram also has objects of Iris-Versicolor
class (white points) in its close neighborhood. Note also how objects of Iris-Setosa class (gray) form a nice
separate cluster far away in both Neighborgrams, a fact well-known from the literature. In this
case automatic ranking is likely to be a good choice; however, in a less obvious case, the user could

L] Iu]
BOoon

&
%383

Elgg
L [ulal™
om

Figure 6.7 Two Neighborgrams built for the Iris data.

132 INTERACTIVE EXPLORATION OF FUZZY CLUSTERS

overrule the algorithm’s choice, select individual clusters, and also modify their membership functions if
so desired.

6.3.2 NCI’s HIV Data

To show the usefulness of the proposed visual clustering algorithm in a real-world scenario, let us look at
the application of Neighborgrams on a well-known data-set from the National Cancer Institute, the DTP
AIDS Antiviral Screen data-set. The screen utilized a soluble formazan assay to measure protection of
human CEM cells from HIV-1 infection. All compounds in the data-set were tested on their protection of
the CEM cell; those that did not provide at least 50 % protection were labeled as confirmed inactive (CI).
All others were tested in a second screening. Compounds that provided protection in this screening, too,
were labeled as confirmed active (CA), the remaining ones as moderately active (CM). Available online
(National Cancer Institute, 2005) are screening results and chemical structural data on compounds
that are not protected by a confidentiality agreement. Available are 41 316 compounds of which we
have used 36 045°. A total of 325 belongs to class CA, 877 are of class CM and the remaining
34843 are of class CI. Note the class distribution for this data-set is very unbalanced, there are
about 100 times as many inactive compounds (CI) as there are active ones (CA). The focus of
analysis is on identifying internal structures in the set of active compounds as they showed
protection to the CEM cells from an HIV-1 infection.

This data-set is a very typical application example of the Neighborgram classifiers: although it is
a relatively large data-set, it has an unbalanced class distribution with the main focus on a minority
class.

In order to generate Neighborgrams for this data-set, a distance measure needs to be defined. We
initially computed Fingerprint descriptors (Clark, 2001), which represent each compound through a 990-
dimensional bit string. Each bit represents a (hashed) specific chemical substructure of interest. The used
distance metric was a Tanimoto distance, which computes the number of bits that are different between
two vectors normalized over the number of bits that are turned on in the union of the two vectors. The
Tanimoto distance is often used in cases like this, where the used bit vectors are only sparsely occupied
with 1s.

NCI lists a small number (75) of known active compounds, which are grouped into seven chemical
classes:

azido pyrimidines;

pyrimidine nucleosides;

heavy metal compounds;

natural products or antibiotics;

dyes and polyanions;

purine nucleosides;

benzodiazepines, thiazolobenzimidazoles, and related compounds.

One would expect that a decent clustering method would retrieve at least some of these classes of
compounds.

Therefore, we constructed Neighborgrams for all of the active compounds (overall 325) and used the
system to rank these Neighborgrams based on their coverage. Figure 6.8 shows the biggest cluster that the
algorithm encountered using a purity of 90 % and building clusters for class CA. Note how the next two
rows show Neighborgrams for compounds of the same cluster, both of them with slightly worse computed
purity and coverage. At first we were surprised to see that none of the compounds contained in this cluster

%For the missing compounds we were unable to generate the used descriptors.

INTERACTIVE EXPLORATION 133

File Highlight Navigation View OI File View Hilite Hide Fade Cluster

Key sln [[|] v |
Lt] = |_s< —- > > > ClusterQuality |« Recalculate

Key Unity FP

SENSh

oo
"R,
sR0¥Ooe0g

Oosnoe

o

288

ooqo0

O DEG
OooOGO0GGa0E

639475

-
-
CH
oy
{*]

v_é 46989
C|:©-N &
E -

:

Fafor 0”7
F
647014

0 .
639476
SONN @L'TOO 647019
0

647024
S:,@

AmAEEmg
S
IOD0000000000L

......
;.
HEDD .

] T

lale]

.
”
<
Hew
- - "Dw
g.aa.a.
o032 e0""an
=H58HAE,
OpomOscs
tejuin| lolulsiels]ele}

LIst
B0 noy

OOoof
D0000000006]
0000000000 |

Fanae

Ho,
Goiw
DOO0gnonOony

-
.
.
.
.
Oog
.
g|:|

N F
= 8 o eog
640266 cl g BZgE
8 BEAE
0 647311 or . 5 5 JEEE
O S8R0 ® OO0 08 0000000
o a0 8 OO0 OO0 OOo0e00o0o0
-] OBEe D O0N0 00 mME00oooog - |
= O-008-8 00 0—0—-0-00-00-8 000 00— b

Figure 6.8 The first cluster of the NIH-Aids data centered around compound #647014. On the right the Neighbor-
grams in unity-fingerprint space (black=CA, gray=CM, white=CI), on the left a view showing some of the structures
contained in this cluster.

fall in any of the classes of active compounds listed on NIH’s Web site (National Cancer Institute, 2005).
As it turns out when looking at the corresponding structures, this cluster covers m-acylaminobenzamides
which probably all inhibit folic acid synthesis, but are likely to be too toxic and hence not very interesting
as active compounds to fight HIV. This is therefore a nice example of a cluster that a chemist might discard
as ‘useful but not very interesting for the current task at hand.”” The clustering algorithm has no insights
other than numerical cluster measures and therefore would assign a high ranking value to this cluster
without any expert interaction.

Subsequent clusters reveal groupings very much in line with the classes listed above, one particular
example is shown in Figure 6.9. Here the group of “dyes and polyanions” are grouped together in a nice
cluster with almost perfect purity (two inactive compounds are covered as well). Figure 6.10 shows
another example, this time grouping together parts of the group of ““azido pyrimidines,” probably one of
the best-known classes of active compounds for HIV.

Experiments with this (and other similar) data-sets showed nicely how the interactive clustering using
Neighborgrams helps to inject domain knowledge in the clustering process and how Neighborgrams help
promising cluster candidates to be quickly inspected visually. Without the additional display of chemical
structure this would not have worked as convincingly. It is important to display the discovered knowledge
in a “language” the expert understands.

In our experiments we were confronted with the problem of which descriptor to use. In the previous
experiments we always used unity fingerprint descriptors in conjunction with the Tanimoto distance. We
have ignored that there may be more than just this single description available. However, particularly in
the field of molecular data analysis there are numerous ways to describe molecules and it is hardly ever
known which descriptor is best. This problem relates to the learning in parallel universes, which will be
addressed in the next section.

INTERACTIVE EXPLORATION OF FUZZY CLUSTERS

134

File View Hilite Hide Fade Cluster

>> iClusterQuaiiw ¥ || Recalculate

Yiew 0O

MNavigation

ghlight

File Hi
Key

sin

«| i [»
+ +
POoOOpEREONOY joonsnooEon
_mmmmmmﬂm_u 00 | oo mm_u_u.u HEL *2000000
soccooBEezes HEBARAORRGRS oocgsoucych *BBRGBGHRR: sebteriuniiy
IR R RonenRaA OOoonood *o0000aaBHES ogy WO0mOnnom,
Agogec 2% [Gangg = FoBEEnogpwGs | m-unmmn =s00s00ogos
BUmn_Uu 808 | lmmnn Bagoc0 _ R s
oREEY | o o A R ——
B ooag g woog AN
o3 | ooosagoas Tmcmnos L
CO0B0gon g, ﬂmnﬁ .
a Boewa JAROGOCENAeg 00 ay o L
e a9AREH | Onatoe, . Ll
21 omasop I®OBCCE e e Boonggh | #eesseoafos)
= o oecece]d Oogg, Ootopgg, B¢
=] I JRLL NI Sy B e,
e T
"| oo,y | ="Bggeat fen=-aengioy
“memzoh | g o-“nn.. *O0ommg,
el g0 Ooopg,
s ! Oopg,
o L)
LT I
] Doy
]
"
.
L3 - - - &
— s o Te] e
w w 0w (re] o el
& ~ ~ ~ I~ ~
~ ~ ™~ I~ I~
-+ - - - -
oo @
o
(=]
Z=Z0
(=]
=] L ot
[al=] g == [=]
L= L=l
[=] =z =4 [
=
=
o
=
[=]

47770

58057

Figure 6.9 Another cluster of the NIH-Aids data centered around compound #47764 (right: Neighborgrams

CI), left: structures). This cluster nicely covers one of the classes of active compounds:

CM, white

dyes and polyanions.

=CA, gray=

(black:

File View Hilite Hide Fade Cluster

Yiew 0O

File

Highlight Navigation

| [T} [»
@ | +
=
=3
et
[
@
-5
'l ! L=
— fEpooon; fBpoon) ooBa oosos {=afsTalale]s]a]
5 unulnumm“m“ Eu-nume“nm ummmem“m “mmﬂmmﬁmm mmnm-nmm-mm
£ || }Ee8cHepgRsn: JEUBEHInERgAY jooNdttaatooy j0oHGcoansony NIBETSSC 00w
= °CBERRRNSS " CBERRHAGS | aoocooHRES o ooBEEEEg BiSasan
3|| | "~aueSgmgef| “"WuSSgagef | “soogescoog | “afogescon | “oomocoatep
= ~ Olgon; oEgng _unuln_ _unni_ul Doooogy
¢l anlggh anlgE L= wilmy
= |2] ™Osuoooy *OOwoooog g =D LLE
== |
el LT LTSy
M |
M e e
L 4 --+ P oooog D nooog
- - . -
M
¥
B I."'_ e - - -
« 0 I~] a o
my "y my o N
2l 3 - T T T
b | w 0w (e w w
T - T+ - -+
-] -3 & S [r]
1
- O [=]
+
\ " 'ziz=Z
o = o
NJA z o
° 5 OblN o ,
o OH = 0./
\ =
oL . =Z
= = =
W rd o
"y w R
- - &
==] 0o L
i s I~ Lo
= o v -
0w 0w w

Figure 6.10 Another cluster of the NIH-Aids data centered around compound #646436 (right: Neighborgrams

CI), left: structures). This cluster nicely covers part of one of the most well-known

=CM, white=
classes of active compounds: azido pyrimidines.

CA, gray

(black:

PARALLEL UNIVERSES 135

6.4 PARALLEL UNIVERSES

In the foregoing experiment we assumed that there is an adequate description of the data available. This
descriptor was expected to comprise all necessary information to classify an object. However, in many
real-world applications, the generation of an appropriate descriptor is far from trivial as the underlying
objects are complex and can be described in various ways, focusing on different aspects of the object’s
nature. An example, other than molecules, are musical songs, i.e., audio streams, which can be
represented based on dynamics, melody and key or — as a different representation — based on rhythm
and harmony. A third representation may be more descriptive, such as interpreter, position in music
charts, length, and so on. Further examples of such complex objects are images, and three-dimensional
objects. For the learning it is often unclear, which of the available descriptors are optimal for any given
task. This leads to the notion of learning in parallel universes, where we can find interesting patterns, e.g.,
clusters, in different descriptor spaces in parallel. Wiswedel and Berthold (2006), for instance, applied a
fuzzy c-means algorithm to data described in parallel universes. However, this is an unsupervised
approach. When looking at the algorithm in Table 6.1, one notes that the Neighborgram methodology
lends itself naturally to handling different descriptor spaces: the clusters do not interact with each other
based on any universe-specific information. Besides the fact that a chosen cluster removes covered
objects from consideration there is no obvious need for two clusters to originate from the same universe.
Instead of constructing just one Neighborgram for each object of interest, we can easily create Neighbor-
grams for each available descriptor space and consider these as potential cluster candidates. We can then
modify the clustering algorithm to investigate all Neighborgrams in all feature spaces in parallel and
choose the best cluster among all universes. Covered objects will subsequently be removed from all
universes and the result is a set of clusters, spread out over different feature spaces.

Figure 6.11 shows an example for the HIV data from the previous section. However, rather than just
having one fingerprint descriptor as before, we computed two other descriptors of the underlying
compounds. Firstly, we generated an AtomPair fingerprint descriptor, a 1200-dimensional bit vector,
which encodes the presence or absence of certain pairs of atoms in the molecule. The second one is a VolSurf
descriptor (Cruciani, Crivori, Carrupt and Testa, 2000), i.e., a 56-dimensional numerical feature vector
encoding molecular properties such as molecular weight and two-dimensional numerical descriptions
describing properties of the three-dimensional structure. Distances were calculated using the Euclidean
distance in VolSurf space and Tanimoto distance for both fingerprints (Unity and AtomPair). The left
column in the figure shows Neighborgrams in AtomPair space, the middle column Neighborgrams in Unity
space, whereas the Neighborgrams in the right column are constructed using the VolSurf descriptor.

Note how the Neighborgrams in the first row differ substantially although they represent the neighbor-
hood of the same object (#662427). The Unity fingerprint descriptor (middle) suggests for this compound

= << < > > ClusterQuality |+ Recalculate I
| Key AtomPair FP Unity FP VolSurf
; R o mr St
= & e FHEGD o8 ot -
- e BREES & & BEs
5 Ha EiEO B8 B & PE
s mm ma@pood &5 S B 8 Eg
662427 0 O8N _somooad = B @O B0 o 1 gesgtsis]
662427 s B _HEpecmess . = =i Cmnon = Eman
. B E poEERdERD H Came mndaa a8
H % 8 GmEooCoOEoO § pOoR0 Coneow a0
= . ® momoEE R EOOO mEmS o oomEn aE
w = & mEow mRCECEEOE L. T BE
: O > CHIC OO R + * O R »
= &8 HER g foonog
B B hes - w i Em g Hawigd
© m oo B0 mE o 0_oioo 8o
- = o oEon SEie Bl & mEn B 06
T H o oot 6 B8 e & DRBEE BE
704062 - w We oo e » o8 BEa 0 O smOmDg o0
o - H e = o BESGERE & Stwoon oo
i cn w oW G mm 00000 . LET T o S50 668 56
WE wEE O WG EGEIOO0 = = @ gEoag 0 0 @D w0 oo
ER u mm memoommmscon TR R u Ghoomooonoe
D e e e e s e + . SOOa0a0008—
W B ENAH
80 mo pmomo
= S EaR 8 B Emons
d BHAR o G mndhe
g gEae g on 8 EEREE.
78741 o8 60 ao g &6 o O mo ageg
BE Omooe 8 s 8B mo B 8 meooog
- - &FR A RRRER = = = A £ & &3R8 52 n moTR SNRASER

Figure 6.11 Neighborgrams for the NIH-Aids data in parallel universes. The left column in a AtomPair fingerprint
space (1200-dimensional bit vectors), the middle column Unity fingerprint space (990-dimensional bit vectors), and the
right column 56-dimensional Euclidean space, the VolSurf descriptor. Note how the Neighborgrams in the top row
differ, although they represent the neighborhood of the same compound, however in different universes.

136 INTERACTIVE EXPLORATION OF FUZZY CLUSTERS

the best cluster as it covers about 25 active molecules (black points). However, the neighborhood of this
compound in the VolSurf space (right) contains only few actives (less than 10) and in the AtomPair
fingerprint space about 15. This example demonstrates that the definition of a cluster depends on the
underlying object description. The user can consequently inspect the cluster and potentially gain new
insights as to why objects group in one universe but not in another. Especially for data-sets that involve
structural descriptions of molecules it is hardly ever known which descriptor is optimal for a particular
problem. The final outcome of the clustering algorithm itself is a set of clusters originating from different
feature spaces.

6.5 DISCUSSION

In this chapter we discussed a supervised approach to identify and visually explore a set of fuzzy clusters.
We used a one-dimensional data structure, a so-called Neighborgram, to depict local neighborhoods of
each object. Constructing Neighborgrams for all objects of interest, for example, all objects of a particular
class, and deriving potential cluster candidates from them, allowed us to rank these Neighborgrams. An
automatic clustering algorithm sequentially accepts the top-ranked cluster and removes all objects
covered by this cluster from consideration. More important, however, is that the accompanying visualiza-
tion of a Neighborgram provides a powerful way to explore the proposed cluster selection and enables the
user to inject domain knowledge into the clustering process by accepting, discarding, or fine-tuning
potential cluster candidates. Using a real-world data-set from a bioinformatics application we demon-
strated how this method of visual exploration supports the user in finding potentially interesting groupings
in the data. The described technique provides a tool for interactive exploration of large data-sets, allowing
for truly intelligent data analysis.

REFERENCES

Ankerst, M., Elsen, C., Ester, M. and Kriegel, H.P. (1999) ‘Visual classification: An interactive approach to decision tree
construction’. Proceedings of the Fifth, A.C.M. SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 392-396.

Berthold, M.R. (2003) ‘Mixed fuzzy rule formation’. International Journal of Approximate Reasoning (IJAR) 32,
67-84.

Berthold, M.R. and Diamond, J. (1998) ‘Constructive training of probabilistic neural networks’. Neurocomputing 19,
167-183.

Berthold, M.R., Wiswedel, B. and Patterson, D.E. (2005) ‘Interactive exploration of fuzzy clusters using neighborgrams’.
Fuzzy Sets and Systems 149(1), 21-37.

Bezdek, J.C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

Chiu, S.L. (1994) ‘Fuzzy model identification based on cluster estimation’. Journal of Intelligent and Fuzzy Systems 2(3),
267-278.

Chiu, S.L. (1997) ‘An efficient method for extracting fuzzy classification rules from high dimensional data’. Journal of
Advanced Computational Intelligence 1(1), 31-36.

Clark, R.D. (2001) ‘Relative and absolute diversity analysis of combinatorial libraries’ Combinatorial Library Design
and Evaluation Marcel Dekker New York pp. 337-362.

Cruciani, G., Crivori, P., Carrupt, P.A. and Testa, B. (2000) ‘Molecular fields in quantitative structure-permeation
relationships: the VolSurf approach’. Journal of Molecular Structure 503, 17-30.

Fisher,R.A. (1936) ‘The use of multiple measurements in taxonomic problems’ Annual Eugenics, 11, pp. 179-188 7. John
Wiley & Sons, Inc., New York.

Michie, D., Spiegelhalter, D.J. and Taylor, C.C. (eds) (1994) Machine Learning, Neural and Statistical Classification.
Ellis Horwood Limited Chichester, UK.

National Cancer Institute (2005) http://dtp.nci.nih.gov/docs/aids/aids_data.html.

Wiswedel, B. and Berthold, M.R. (2007) ‘Fuzzy clustering in parallel universes’. International Journal of Approximate
Reasoning (in press).

Yager,R.R.andFilev,D.P.(1994) ‘Approximateclustering viathe mountainmethod’. IEEE Transactionon Systems, Man,
and Cybernetics 24(8), 1279-1284.

Part Il

Algorithms and
Computational Aspects

7

Fuzzy Clustering
with Participatory Learning
and Applications

Leila Roling Scariotda Silva', Fernando Gomide',and Ronald Yager”

!State University of Campinas — FEEC — DCA, Campinas, SP — Brazil
2Jona College, New Rochelle, New York, USA

7.1 INTRODUCTION

Clustering is an essential task in information processing, engineering, and machine learning domains.
Applications include man—-machine communication, pattern recognition, decision-making, data mining,
system modeling, forecasting, and classification (Bezdek and Pal, 1992).

A recurring problem in clustering concerns the estimation of the number of clusters in a data-set. Most
clustering algorithms are supervised in the sense that they assume that the number of clusters is known a
priori. If the algorithm assumes that the number of clusters is unknown, then it is unsupervised (Gath and
Geva, 1989). When clustering is performed by optimizing a performance criterion, acommon approach to
find an appropriate number of clusters is to repeat the clustering algorithm for distinct values of c, the
number of clusters, and observe how the performance changes. Unsupervised algorithms attempt to find
the clusters based on information contained in the data itself. Often, however, validation procedures are
used to find the number of clusters. Many validity criteria have been proposed in the literature, but
currently there is no consensus on which one is the best since the results depend heavily on the data-set
and clustering algorithms (Geva, Steinberg, Bruckmair and Nahum, 2000). It is well known that to find the
optimal number of clusters is a complex issue (Bezdek and Pal, 1992; Duda and Hart, 1973; Duda, Hart,
and Stork, 2001) and in practice users must validate cluster results using perception and knowledge of the
intended application. The user examines the cluster structure directly from data and relative criteria are
built comparing different cluster structures to find a reference and decide which one best reveals data
characteristics. In these circumstances, unsupervised clustering algorithms are significant once they
provide useful information without polarization of the user’s perception and knowledge.

One way of clustering a p-dimensional data space into c clusters is to assume a performance criterion P
and initially set the c¢ cluster centers randomly in the data space (Pedrycz, 2005). Then, a cluster
assignment is performed globally by either assigning each data point to one cluster, or assigning a

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
© 2007 John Wiley & Sons, Ltd

140 FUZZY CLUSTERING WITH PARTICIPATORY LEARNING AND APPLICATIONS

membership grade, the degree with which the data point is compatible with each of the ¢ clusters. Cluster
updating and assignment continues during several iterations until convergence, when no significant
difference in the value of P or in the cluster assignments is observed between consecutive iterations. An
alternative way of performing clustering is to update cluster centers and perform cluster assignment
sequentially. Often, sequential updating either uses online gradient of P or a learning law. At each
iteration one data point is presented and assigned to a cluster. Next, the respective cluster center is updated
using the learning law. This procedure is a form of competitive learning similar to that found in the neural
networks literature. Neural network-based clustering has been dominated by the self-organizing maps,
learning vector quantization, and adaptive resonance theory (Xu and Wunsch, 2005).

This chapter introduces a fuzzy clustering algorithm in which cluster centers are updated using the
participatory learning law of Yager (1990). The algorithm can be implemented either globally or
sequentially. The participatory learning clustering algorithm is an unsupervised procedure in which
the number of clusters depends on the cluster structure developed by the algorithm at each iteration. This
accounts for the participatory nature of the clustering algorithm once the current cluster structure affects
acceptance and processing of new data. In participatory learning clustering, cluster structures play the
role of belief and data operate as information.

The organization of the chapter is as follows. Section 7.2 overviews the main idea and conceptual
structure of participatory learning. Section 7.3 shows how participatory learning (PL) is used to cluster
data and details the fuzzy clustering procedures. Section 7.4 compares the PL algorithms with the
Gustafson—Kessel (GK) and modified fuzzy k-means (MFKM) since they are amongst the most efficient
clustering algorithms reported in the literature. Section 7.5 addresses applications of PL clustering
algorithm in evolutionary optimization of complex systems, and in system modeling for time series
forecasting. The chapter concludes by summarizing issues that deserve further investigation.

7.2 PARTICIPATORY LEARNING

In many environments, learning is a bootstrap process in the sense that we learn and revise our beliefs in
the framework of what we already know or believe. Such an environment is called a participatory learning
environment. A prototypical example of this environment is that of trying to convince a scientist to discard
an old theory for a new one. In this situation, it is worth relating and explaining the new theory in terms of
the old, and the faults of the old theory must lie within itself. The old theory must participate in the
learning and believing of the new theory (Yager, 1990). Thus, participatory learning assumes that learning
and beliefs about an environment depend on what the system already knows about the environment. The
current knowledge is part of the learning process itself and influences the way in which new observations
are used for learning. An essential characteristic of participatory learning is that an observation impact in
causing learning or belief revision depends on its compatibility with the current system belief.

Let v € [0, 1] be a vector that encodes the belief of a system. Our aim is to learn the values of this
variable v. We will assume that our knowledge about the values of the variable comes in a sequence of
observations x; € [0, 1], where x; is a manifestation of a value of v in the kth observation. Thus we use
vector x as a means to learn valuations of v. The learning process is participatory if the usefulness of each
observation x; in contributing to the learning process depends upon its acceptance by the current estimate
of the value of v as being valid observation. Implicit in this idea is that, to be useful and to contribute to the
learning of values of v, observations x; must somehow be compatible with the current estimates of v. Let vy,
be the estimate of v after k observations. Participatory learning means that, to be relevant for the learning
process, x; must be close to v. Intuitively, participatory learning is saying that the system is willing to
learn from information that is not too different from the current beliefs. A mechanism to update the
estimate, or belief, of v is a smoothing-like algorithm:

Virl = Vi op (e — vi) (7.1)

where k = 1, ..., n, and n is the number of observations, v is the new system belief, v; € [0, l]p and
xi € [0, 1) are defined above, o € [0, 1] is the learning rate, and p, € [0, 1] is the compatibility degree

PARTICIPATORY LEARNING 141
between x; and v;_given by:
pr = F(Sk1,Sk2, -, Skp)s
where Sy; is a similarity measure,
Sy = Gi(vig, %),

Sy €1[0,1], j=1,...,p,and Fis an aggregation operator (Pedrycz and Gomide, 1998). S;; = 1 indicates
full similarity whereas Sy; = 0 means no similarity. Notice that G;; maps pairs (v, x;;) into a similarity
degree and this frees the values vy and x5, j = 1,...,p,k = 1,...,n, from being in the unit interval.
Moreover, Gy, allows that two vectors v and x; to have S; = 1 even if they are not exactly equal. This
formulation also allows for different perceptions of similarity for different components of the vectors, that
is, for different js. A possible formulation is:

1 P
pr=1-=-Y dy (7.2)
p j:l

where dij = |xj — vij|. Clearly, p, provides a compatibility measure between observation x; and the
current belief v;;. Notice that, in this case, p; is the complement of the average absolute difference
between each observation and the corresponding current belief, that is, between x; and v;;. We note
that Equation (7.2) is a special case of the Hamming distance, more precisely a complement of the
normalized Hamming distance. In some instances, especially in machine learning, it is common to
adopt the Euclidean distance as an alternative. In general, the compatibility measure p, can be defined
as:

1
pe=1-d (7.3)

where d; = || x; — v ||> and || - | is a distance function.

One concern about this is that the above participatory learning environment ignores the situation where
a stream of conflicting observations arises during a certain period of time. In this circumstance, the system
sees a sequence of low values of p,, that is, incompatibility of belief and observations. While in the short
term low values of p, cause an aversion to learning, actually it should make the system more susceptible to
learning because it may be the case that the current belief structure is wrong. Yager (1990) identified this
situation with a type of arousal, a mechanism that monitors the compatibility of the current beliefs with
the observations. This information is translated into an arousal index used to influence the learning
process, as Figure 7.1 suggests. The higher the arousal rate, the less confident is the system with the
current belief, and conflicting observations become important to update the beliefs.

Arousal
mechanism
Y
P a
Observations v
—> Learning Beliffs
process >

Figure 7.1 An overall scheme of participatory learning.

142 FUZZY CLUSTERING WITH PARTICIPATORY LEARNING AND APPLICATIONS

Let us denote the arousal index by a; € [0, 1]. The higher the values of ay, the more aroused the system
is. The arousal index is updated as follows:

a1 = ax + BI(1 = pyy) — axl. (7.4)

The value of § € [0, 1] controls the rate of change of arousal, the closer f3 is to one, the faster the system
is to sense compatibility variations. The arousal index can be viewed as the complement of the confidence
in the belief structure currently held.

One way for the participatory learning procedure to consider the arousal mechanism appropriately is to
incorporate the arousal index in the basic procedure (7.1) as follows:

Virl = Vi + “(Pk)l_ak (ke — vi)- (75)

The form of Equation (7.5) introduces a self-equilibrium mechanism in the participatory learning.
While p, measure how much the system changes its credibility in its own beliefs, the arousal index a; acts
as a critic to remind us when the current belief should be modified in the light of new evidence.

Figure 7.1 highlights the main components of participatory learning. The current beliefs, in addition to
providing a standard against which observations are compared via the lower feedback loop, directly affect
the process used for learning via the upper feedback loop. This upper feedback corresponds to the
participatory nature of the model. In Equation (7.5) the upper feedback appears in the form of p,, the
compatibility degree between x; and v . The arousal mechanism monitors the performance of the lower
system by observing the compatibility of the current model with the observations. Therefore learning is
dynamic in the sense that Equation (7.5) can be viewed as a belief revision strategy whose effective
learning rate

o = O‘(Pk)l_ak

depends on the compatibility between new observations and current beliefs, and on model confidence as
well. The primary learning rate is modulated by the compatibility. In models such as competitive
learning and gradient based models there are no participatory considerations and the learning rate is
usually set small to avoid undesirable swings due to spurious values of x that are far from v. Small values
of the primary learning rate while protecting against the influence of bad observations, slow down
learning. Participatory learning allows the use of higher values of the primary learning rate o once p,,
acts to lower the effective learning rate when large deviations occur. Conversely, when the compatibility
is large, p, is such that it increases the effective rate that means speeding up the learning process.
Next we show how the participatory learning paradigm naturally induces an unsupervised clustering
algorithm.

7.3 PARTICIPATORY LEARNING IN FUZZY CLUSTERING

This section introduces participatory learning (PL) as a fuzzy clustering algorithm. One of the main
characteristics of the PL clustering algorithm is to naturally partition a data-set X into a suitable
number of clusters. Participatory learning clustering is an instance of unsupervised fuzzy clustering
algorithm.

First, it is worth noting that there is a close relationship between the participatory learning paradigm
and data clustering if we associate data points x; and cluster centers v; with observations and beliefs,
respectively. The compatibility p,; between observation k and the ith belief of the system is viewed
as the compatibility degree between x; and the cluster center v;. The same happens with the arousal
index ay;, since it gives an incompatibility degree between current beliefs and observations, that is,
it provides an evaluation on how far are observations xx,k =1,...,n, from the current centers
vi,i=1,...,c.

PARTICIPATORY LEARNING IN FUZZY CLUSTERING 143

To partition a data-set X into clusters, the participatory learning fuzzy clustering algorithm uses a
parameter t. The parameter 7 is a threshold whose purpose is to advise when an observation should be
declared incompatible with the current system belief, the current group structure. In this circumstance
belief must be reviewed to accommodate new knowledge. In data clustering this means that if a data point
x is far enough from all cluster centers, then there is enough motivation to create a new cluster and to
declare the discovery of a new cluster structure. An alternative, the one adopted in this chapter, is to set x;
itself as the new cluster representative, that is, the new cluster center.

More formally, participatory learning clustering partitions a set of data X = {xi,...,x,},
x €[0,1,k=1,2,...,ninto ¢c,2 < ¢ < n, fuzzy sets of X. Many clustering models assume spherical
clusters of equal size. In this case, an appropriate measure is the Euclidean distance. When spherical
clusters are not justifiable, elliptical clustering using the Mahalanobis distance is a more appropriate
choice. Therefore, we may, without loss of generality, adopt the Mahalanobis distance in Equation (7.6) to
compute the similarity measure, due to its practical usefulness (Gustafson and Kessel, 1979). Application
and real-time constraints may require computationally simpler distance measures or recursive computa-
tion of the covariance matrix and its inverse:

43 = (e —vi) {[(det(F) " Y o — wi) (7.6)

1

where F; is the covariance matrix (7.7) associated with the ith cluster, that is,

i (1] " (¢ = vi) (x; — vi)'
Fi=t= : (7.7)

i [w;i]"

In fuzzy clustering, the fuzzy partition can be represented by a membership matrix U (n x ¢) whose
element uy; € [0,1]i = 1,2,...,c is the membership degree of the kth data point x; to the ith cluster,
the one with center v; € [0, 1]”. For instance, membership degrees, in the same way as in the fuzzy
c-means algorithm (Bezdek, 1981; Pedrycz, 2005), can be found using the membership assignment,
where m > 1:

1
. (7.8)

c

> (duif i)"Y

j=1

The participatory fuzzy clustering algorithm can be summarized as follows. Given initial values for o,
B, and 7, two random points of X are chosen to assemble the set V° of the initial cluster centers. Next, the
compatibility p,; and arousal a;; indexes are computed to verify if, for all v;, the arousal index of x; is
greater than the threshold 7. If the arousal index is greater than the threshold t, then x; is declared as the
center of a new cluster. Otherwise, the center closest to x; is updated, that is, the center v, that has the
greatest compatibility index with x; is adjusted.

Notice that whenever a cluster center is updated or a new cluster is added, it is necessary to verify if
redundant clusters are being formed. This is because updating a cluster center may push it closer to a
different cluster center and redundant knowledge may be formed. Therefore a mechanism to exclude
close cluster centers is needed since redundancy does not add new information from the point of view of
participatory learning once redundancy means the same belief.

A mechanism to exclude redundant cluster centers adopts a compatibility index between cluster centers
using the Euclidean distance. A center is excluded when the compatibility index is greater than a threshold
that depends on a parameter 4 whose value, found experimentally, is 4 = 0.95t. Thus, a cluster center i is
excluded whenever its compatibility A,; with another center is less than or equal to A, or when the

144 FUZZY CLUSTERING WITH PARTICIPATORY LEARNING AND APPLICATIONS

compatibility index between the two centers is high. The value of 4,; is inspired in the arousal index idea
Equation (7.4).

When a finite set of data is clustered, the algorithm stops when either the maximum number /. of
iterations is reached or no significant variation in the location of the cluster centers has been noted. It is
worth noting that, since the cluster centers are updated whenever a data point is provided, the fuzzy
partition matrix U must be updated accordingly. Note that steps 2 and 3 are relevant for finite data sets
only, thatis, when n is fixed, as in the global case. In its sequential version k = 1, . .. and steps 2 and 3 must
be skipped. The detailed steps of the global algorithm (PL-A) are as follows (Silva, Gomide, and Yager,
2005).

7.3.1 Participatory Learning Fuzzy Clustering Algorithm

Input: x; € [0,1]", k=1,...,n,0 € [0,1], €[0,1], T € [0,1],e > 0em > 0.
Choose [,,,,, maximum number of iterations. Set ¢ = 2, choose V? = {v1,v2} randomly.
Compute U° from V’, setl = 1,a), =0,k =1,2,...,n,andi = 1,...,c.

Output: c,v; € [0,1]7,i=1,...,cand U.

1. Fork=1,...,m
1.1 Fori=1,...,c
Compute covariance matrix using Equation (7.7).
Compute dy, (xg,v;), using, for instance, Equation (7.6).
Determine p/;

1.2 Fori=1,...,c;
Compute al,

aii = C’IIJI +BL(1— Plla') - ai;]J-

13 Ifal; >, Vie {1,...,c} then
create new center

else update vy, vl =

!
— Ay (
s

X — Vi), s = argmlax{pki}.

1.4 Update the number of cluster centers: compute the compatibility index among cluster centers

-1 1=
Vs + %Prs

fori=1,....,c—1;
forj=i+1,...,c

1 1& ! 12

Py, =1 **Z Vin = Vin
Pi=

M= p1—pl)

if 4,, < 0.957 then eliminate v;
Update U excluding the ith cluster.
2. Compute error

1—1

error =|| VI = V7! |= maxl-j\vﬁj =V |

3. If error > € and | < lpax, [= [+ 1 then return to step 1; else stop.
4. Update fuzzy partition matrix U.

End

EXPERIMENTAL RESULTS 145

When there is no requirement on the shape of clusters, a simpler version of the participatory learning
algorithm, PL-B, can be implemented computing p/; in step 1.1 as follows

1)4
Piizl—gzdkﬁ dij = | — vigl (7.9)
=

instead of using Equations (7.6) and (7.7).

The complexity of the PL clustering algorithm is affected mainly by how pl, is computed. Therefore,
for spherical and ellipsoidal clusters, PL is as complex as FCM and GK algorithms. When PL uses
Equation (7.9) to compute p/, its complexity is less than FCM and GK. Recall, however, that FCM and GK
are supervised while PL is not. Moreover, PL clustering can be done sequentially and can be performed in
real time while FCM and GK cannot.

Notice that the update scheme given by (7.5) is similar to the Widrow—Hoff learning rule, but results in
a fundamentally different convergence behavior: while in the classic rule the learning rate « is kept small
to maintain learning responding smoothly to outlier observations, the PL rule can keep the learning rate
higher because of the effect of any observation incompatible with current cluster structure is modulated
by the arousal term. Similarly to FCM, the PL rule of Equation (7.5) can also be viewed as a gradient-
based updating rule relative to an implicit quadratic objective function. Also, the PL update rule is very
close to the fuzzy competitive learning (FCL) rule (Backer and Sheunders, 1999), but the FCL learning
rate must decrease along iterations to assure convergence. In FCL, cluster information is inserted via
membership degrees.

7.4 EXPERIMENTAL RESULTS

In this section we address clustering examples discussed in the literature using participatory learning
fuzzy clustering (PL) and two representative fuzzy clustering algorithms, namely the Gustafson—Kessel
or GK (Gustafson and Kessel, 1979) and the modified fuzzy k-means or MFKM (Gath, Iskoz, Cutsem, and
Van, 1997). The GK is as a generalization of the fuzzy C-means in which the Mahalanobis distance is used
in the objective function. GK is a partition-based algorithm. The GK has shown to be particularly effective
to find spherical, ellipsoidal, and convex clusters. Differently from the partition-based methods, the
MFKM uses a data induced metric with the Dijkstra shortest path procedure in a graph-based representa-
tion. The outstanding feature of the MFKM worth mentioning is its ability to find non-convex clusters.

Bezdek and Pal (1992) suggested the following items to evaluate clustering algorithms: (1) need to
choose the number of clusters; (2) initialization of cluster centers; (3) order in which data are input; (4)
geometric properties of data; (5) diversity of geometric forms of the clusters; (6) variation of data density
among groups; (7) separation degree of clusters.

The experiments reported here adopt the following parameters: error = 0.001, [.x = 8, and m = 2.
Data have been normalized in [0,1], and the order of data input and cluster centers initialization were the
same for all algorithms. When cluster center initializations were kept fixed, data presentation order was
random. Also, we consider a finite set of data only, once there is no substantial challenge when using the
PL clustering algorithm in its sequential, real-time form.

The parameters chosen for the participatory learning fuzzy clustering algorithm are o = 0.01 and
f = 0.9, and 7 varies depending on the data-set. They are shown at the bottom of the figures. Similarly, for
the MFKM the grid parameter) is depicted at the bottom of the figures.

First we recall that participatory learning fuzzy clustering and MFKM are unsupervised algorithms
whereas GK is not. Both PL and GK may fail when clustering complex data-sets, especially when they are
not convex. A classic example is shown in Figure 7.2. On the other hand, the MFKM fails when clusters
overlap while PL and GK successfully find the clusters, as Figures 7.3 and 7.4 show. Figure 7.5 concerns
the Iris data. Since PL and GK use the same distance measure, they behave similarly as Figures 7.3, 7.4,
and 7.5 suggest.

146 FUZZY CLUSTERING WITH PARTICIPATORY LEARNING AND APPLICATIONS

1.0 S S s v
‘.*++i . *h
0.8 |]
'y
06} :
=
041

0.2

(c)n=1.5 (d) =01

Figure 7.2 (a) Original data and clusters, (b) GK, (c) MFKM, (d) PL. Cluster centers are marked with “e”.

(0 n=1.5 (d) 7=0.1

Figure 7.3 (a) Original data and clusters, (b) GK, (c) MFKM, (d) PL. Cluster centers are marked with “e”.

1.0

0.8

0.6 \
=

0.4

0.2

‘\

(a)
1.0

0.8

0*

0.6

=,
0.4
0.244*

02 0.4 06 0.8

X

w

0.2 04

€) n=15

1.0
0.8
0.6
0.4
0.2

(a)

X

©) n=15

Figure 7.5 (a) Iris dada and clusters, (b) GK, (c) MFKM, (d) PL. Cluster centers are marked with “e”.

EXPERIMENTAL RESULTS

(d r=01

Figure 7.4 (a) Original data and clusters, (b) GK, (¢) MFKM, (d) PL. Cluster centers are marked with “e”.

1.0
0.8
5.0.6

0.4

0.2,

(b)

(d) z=01

147

148 FUZZY CLUSTERING WITH PARTICIPATORY LEARNING AND APPLICATIONS

600 1.0
o 0.9
50 08
. 400 _0.71
% @ 06
E o gos
2 200 El
& 503
100 0.2
0.1
> 50 100 160 240 300 500 800 1000 00°
n 2 3 4 5 6 7 8,9
—6—GK —6— PL-A —A— PL-B —%— MFKM —o— GK —o— PL-A —a—PL-B
(a) Dimension p = 2 and number of clusters ¢ = 2 (b) Number of data points n=26 and ¢ =2

Figure 7.6 Time performance as (a) data dimension and (b) number of points in data-set changes.

Figure 7.6 summarizes a series of experiments and shows how the runtime of the algorithms changes as
two important parameters, dimension and number of points in the data-set, varies. We note, as discussed
above, that the time complexity of PL clustering algorithms depends on the procedure to compute
compatibility. The MFKM runtime increases exponentially as the number of points and data dimension
increase. The experiment of Figure 7.6 (b) does not include results for MFKM because runtimes were
substantially greater than the ones required for GK, PL-A, and PL-B.

7.5 APPLICATIONS

In this section we address two application examples to illustrate the usefulness of participatory learning
clustering in practice. The first concerns a class of hybrid genetic algorithm in which clustering is used as
a strategy to improve computational performance through fitness estimation. The second deals with
adaptive fuzzy system modeling for time series forecasting. In this case, clustering is used to learn the
forecasting model structure.

7.5.1 Participatory Fuzzy Clustering in Fitness Estimation Models
for Genetic Algorithms

Despite the success achieved in many applications, genetic algorithms still encounters challenges. Often,
genetic algorithms need numerous fitness evaluations before acceptable solutions are found. Most real-
world applications require complex and nontrivial fitness evaluation. Fitness evaluation can be costly and
computationally efficient performance estimation models must be adopted in these circumstances. One
approach to alleviate costly evaluations is to use fitness estimation models.

Fitness estimation models based on fuzzy clustering are a way of improving runtime of genetic
algorithms (Mota Filho and Gomide, 2006). Together, fitness estimation models and genetic algorithms
assemble a class of hybrid genetic algorithm (HGA) in which individuals of a population are genetically
related. In HGA, fuzzy participatory clustering can be used to cluster population into groups during fitness
evaluations in generations. The purpose of clustering population individuals is to reduce direct evalua-
tions, to improve processing speed and, at the same, to keep time population diversity and solution quality.
In HGA, fitness is evaluated for representative individuals of the population. Cluster centers are natural
candidates to act as representative individuals.

The main idea can be grasped looking at Figure 7.7. As the population evolves, individuals tend to
concentrate around an optimal solution and become genetically similar. This observation suggests that the
number of clusters should reduce over the generations. Also, in Figure 7.6 we note that unsupervised
clustering algorithms such as FCM always groups the population in a fixed number of clusters and

APPLICATIONS 149

Clustering by PL

Clustenng by FCM with four clus

(X] L
L ®
Mg * op
b
o — o 0
o] 20 2 o €le
® ‘..
t -
.. .. :-..
1° generation 10° generation 20° generation

ters in each generation

oo .‘ L
oo L o0
' 4
— — L=
o} 8220 oe o sf%
® L] ® ... "'.
* -,
- L]
- A -
1° generation 10° generation 20° generation

| ® Individuals O Optimum ¥ Cluster centers|

Figure 7.7 FCM and PL in HGA.

generates genetically redundant cluster centers. In the example of Figure 7.6 this is the case in the 10th and

20th generation. Unsupervised procedures, such as the P

L fuzzy clustering introduced in this chapter,

recognize the distribution of the population over the search space and cluster the population in a smaller
number of groups along generations. This avoids the creation of genetically redundant clusters. In
general, PL tends to perform better than supervised clustering once it naturally adapts and evolves
together with the population. The hybrid genetic algorithm is summarized in Figure 7.8. As an illustra-

tion, consider the classic Schwefel function

P
flx) =418.9829p + > " x; - sin(y/|xi]), x € R?

i=1

Initial

population

A4

[Cluster population]<—

N

Next generation

J

Y

Evaluate cluster D — —
centers

Estimate fitness of
remaining individuals

— L

Reproduction

Selection

Return best
individual

Figure 7.8 HGA based on fitness estimation.

150 FUZZY CLUSTERING WITH PARTICIPATORY LEARNING AND APPLICATIONS

Fitness

500

i 0t 10’ 10t
{a) 500 500 (b) Number of direct evaluations

Figure 7.9 HGAs behavior for the Schwefel function.

depicted in Figure 7.9 (a). The global optimum is atx = (—420.9687, —420.9687). Despite several local
minima, the HGA and its variations successfully converged to the global optimum faster than the classic
genetic algorithm (CGA), Figure 7.8 (right).

Note that the HGA with PL fuzzy clustering (HGA3) requires less direct evaluations of the individuals
than the remaining algorithms, especially the conventional genetic algorithm (CGA). They are based on
the fuzzy C-means and on fitness imitation schemes (see Mota Filho and Gomide (2006) for further details
and a description of a real-world application concerning real-time train scheduling).

7.5.2 Evolving Participatory Learning Fuzzy Modeling

When learning models online, data are collected and processed continuously. New data may either
reinforce and confirm the current model or suggest model revision. This is the case when operating
conditions of a system modify, faults occur or parameters of a dynamic process change. In adaptive
system modeling, a key question is how modity the current model structure using the newest information.
Fuzzy functional model identification, Takagi—Sugeno (TS) models in particular, considers a set of rule-
based models with fuzzy antecedents and functional consequents. Online learning of TS models needs
online clustering to find cluster centers and least square procedures to compute consequent parameters.
Each cluster defines a rule and the cluster structure the rule base. Participatory fuzzy clustering modeling
adopts this same scheme. Clustering is performed at each time step and a new cluster can be created, an
old cluster modified, and redundant clusters eliminated as environment information is updated. Each
cluster center defines the focal point of a rule and model output is found as the weighted average of
individual rules output. This constitutes a form of participatory evolving system modeling suggested in
(Lima et al, 2006) whose procedure is as follows.

7.5.3 Evolving Participatory Learning Fuzzy Modeling Algorithm

Input: data samples x; € (0,17, k=1,. ..
Output: model output

begin{enumerate}
1. Initialize the rule base structure
2. Read the next data sample
3. Compute cluster centers using PL
4. Update rule base structure

APPLICATIONS 151

T T T
[]Average

.| —% Standard deviation | |

[Sa]

(=]

=
T
33

Streamflow (m3/s)
(o]
=
=]

1000

- -

SO0 H

10 15

Figure 7.10 Weekly averages and standard deviations (1931-2000).

5. Compute the consequent parameters
6. Compute model output
end

The evolving participatory learning (ePL) modeling approach was adopted to forecast average
weekly inflows of a large hydroelectric plant. Hydrological data covering the period of 1931-1990 was
used. The analysis and forecast of inflow are of utmost importance to operate water resource-based
systems. One of the greatest difficulties in forecasting is the nonstationary nature of inflows due to wet
and dry periods of the year as Figure 7.10 shows via weekly averages and standard deviations for the
1931-2000 period.

The performance of the ePL was compared with eTS, an evolving modeling technique introduced by
Angelov and Filev (2004) from which ePL was derived. Both eTS and ePL use an online clustering
phase followed by a least squares phase to estimate the parameter of linear TS rule conequents.

The performances of ePL and eTS forecasting models were evaluated using the root mean square error
(RMSE), mean absolute error (MAD), mean relative error (MRE), and maximum relative error (REmax).
Their values are summarized in Table 7.1.

Figure 7.11 shows the actual inflows and forecasted values for ePL and eTS. Both models
developed two rules with linear consequents. Further details are given in Lima, Ballini, and Gomide
(2006).

Table 7.1 Performance of weekly inflow forecasts using ePL and eTS.

Evaluation method ePL eTS

RME (m%/s) 378.71 545.28
MAE (m?/s) 240.55 356.85
MRE (%) 12.54 18.42

REmax (%) 75.51 111.22

152 FUZZY CLUSTERING WITH PARTICIPATORY LEARNING AND APPLICATIONS

ePL Results aTS Results
0.4 . . 0.4 e
L H

0.35 ; 0.35 3

03 o3 | - 5w
@ = . 3
Eozs E 025t @
© 2
§ 0.2 g 0.2 |
E . E l
g 015 : g 0151]
@ @ I

0.1 0.1H

— 0.05} g

0 L N SR, Pl
Q 0 50 100 150 200 250 300 350 400 450 50055C

D 50 100 150 200 250 300 350 400 450 500 550

Weeks
Weeks

Figure 7.11 Actual (dotted line) and forecasted (solid line) inflows for ePL and eTS.

7.6 CONCLUSIONS

In this chapter, we have introduced a fuzzy clustering algorithm as a participatory learning mechanism
whose purpose is to learn cluster structure embedded in data. Participatory learning is a model in which
the representation of current knowledge is part of the learning process itself and influences the way in
which new observations are used for learning. In clustering this means that current cluster structure is part
of and influences the way data is processed to find the cluster structure itself.

Computational experiments suggest that the participatory learning fuzzy clustering algorithm is an
attractive alternative for unsupervised fuzzy clustering. PL clustering is as efficient as GK and MFKM,
two other major fuzzy clustering algorithms. Its computational complexity depends on the distance
measure adopted to express compatibility.

The use of the participatory learning fuzzy clustering algorithm in applications such as in hybrid
genetic algorithms enhances computational performance and helps to solve complex optimization
problems. PL also improves the effectiveness of evolving system modeling and adaptive systems
applications.

Participatory learning fuzzy clustering algorithms, however, still need further improvement. For
instance, mechanisms to find values for the threshold 7 still need further investigation because, indirectly,
T determines the cluster structure. Here clustering evaluation functions and validation indexes could be of
value when combined with genetic algorithms. The effectiveness of this approach will, however, depend
on the availability of universal clustering validation functions, an issue still open. These are the questions
to be addressed in future research.

ACKNOWLEDGEMENTS

The first two authors are grateful to CNPq, the Brazilian National Research Council, for its support via
fellowships 133363/2000-7 and 304299/2003-0, respectively. The second author also acknowledges
FAPESP, the Research Foundation of the State of Sao Paulo, for grant 03/10019-9.

REFERENCES

Angelov, P. and Filev, D. (2004) ‘An approach to online identification of Takagi-Sugeno fuzzy models’. IEEE Trans.
Systems Man, and Cybernetics, Part B, 34, 484-498.

REFERENCES 183

Backer, S. and Scheunders, P. (1999) ‘A competitive elliptical clustering algorithm’. Pattern Recognition Letters, 20,
1141-1147.

Bezdek, J. C. and Pal, S. K. (1992) Fuzzy Models for Pattern Recognition: Methods that Search for Structures in Data.
IEEE Press, New York, USA.

Duda, R. O. and Hart, P. E. (1973) Pattern Classification and Scene Analysis. John Wiley & Sons, Inc., New York, USA.

Duda, R. O., Hart, P. E. and Stork G. D. (2001) Pattern Classification. John Wiley & Sons, Inc., New York, USA.

Gath, I. and Geva, A. B. (1989) ‘Unsupervised optimal fuzzy clustering’. IEEE Trans. Pattering Analysis and Machine
Intelligence, 11, 773-781.

Gath, L., Iskoz A. S., Cutsem, B. and Van M. (1997) ‘Data induced metric and fuzzy clustering of non-convex patterns of
arbitrary shape’. Pattern Recognition Letters, 18, 541-553.

Geva, A, Steinberg, Y., Bruckmair, S. and Nahum, G. (2000) ‘A comparison of cluster validity criteria for a mixture of
normal distributed data’. Pattern Recognition Letters, 18, 511-529.

Gustafson, D. and Kessel, W. (1979) ‘Fuzzy clustering with a fuzzy covariance matrix’. Proc. IEEE Conference on
Decision and Control, San Diego, USA, pp. 761-766.

Lima, E., Ballini, R. and Gomide, F. (2006) ‘Evolving participatory learning modeling’. Proc. 2nd Int. Symposium on
Evolving Fuzzy Systems, Lake District, UK.

Mota, Filho, F. and Gomide F. (2006) ‘Fuzzy clustering in fitness estimation models for genetic algorithms and
applications’. Proc. 15th IEEE Int. Conf. on Fuzzy Systems, Vancouver, Canada.

Pedrycz, W. and Gomide, F. (1998) An Introduction to Fuzzy Sets: Analysis and Design. MIT Press, Cambridge,
MA, USA.

Pedrycz, W. (2005) Knowledge-based Clustering: from Data to Information Granules. John Wiley & Sons, Inc.,
Hoboken, NJ, USA.

Silva, L. Gomide, F. and YagerR. (2005) ‘Participatory learning in fuzzy clustering’. Proc. 14th IEEE Int. Conf. on Fuzzy
Systems, Reno, USA, pp. 857-861.

Xu, R. and Wunsch, D. (2005) ‘Survey of clustering algorithms’. IEEE Trans. on Neural Networks, 6, 645-678.

Yager, R. (1990) ‘A model of participatory learning’. IEEE Trans. on Systems, Man and Cybernetics, 20, 1229-1234.

8

Fuzzy Clustering of Fuzzy
Data

Pierpaolo D’Urso

Dipartimento di Scienze Economiche, Universita degli Studi del Molise,
Campobasso, Italy

8.1 INTRODUCTION

Exploratory data analysis represents a particular category of knowledge acquisition, since it defines a
class of statistical methods referring to a specific type of information element and to the associated
processing procedures, i.e., the data and the models. Thus the exploratory data analysis can be described
as a cognitive process based on the so-called informational paradigm constituted by the data and the
models (Coppi, D’Urso, and Giordani, 2007). Since, in the real world, this paradigm is often inherently
associated with the factor of fuzziness, it happens that the available information is completely or partially
fuzzy (i.e., we can have fuzzy data and crisp (nonfuzzy) model, crisp data and fuzzy model, fuzzy data and
fuzzy model). Likewise in different exploratory procedures, the cluster analysis can be based on the
informational paradigm in which the two informational components can be separately or simultaneously
fuzzy. In this chapter, we analyze only the case in which the information is completely fuzzy.

In the last few years a great deal of attention has been paid to the classification of imprecise (vague or
fuzzy) data and, in particular, to the fuzzy clustering of fuzzy data (see, for example, Sato and Sato, 1995;
Hathaway, Bezdek, and Pedrycz, 1996; Pedrycz, Bezdek, Hathaway, and Rogers, 1998; Yang and Ko,
1996; Yang and Liu, 1999; Yang, Hwang, and Chen, 2004; Hung and Yang, 2005; Alvo and Théberge,
2005; Colubi, Gonzales Rodriguez, Montenegro, and D’Urso, 2006; D’Urso, Giordani, 2006a; see in the
following Sections 8.4 and 8.5).

The aim of this chapter is to review and compare various fuzzy clustering models for fuzzy data.

The study is structured as follows. In Section 8.2, we explain the informational paradigm and discuss
the fuzziness in the clustering processes by analyzing the different informational situations. In Section
8.3, we define fuzzy data and analyze the different features connected to mathematical (algebraic and
geometric formalization, mathematical transformations, metrics) and conceptual (elicitation and speci-
fication of the membership functions) aspects. An organic and systematic overview and a comparative
assessment of the different fuzzy clustering models for fuzzy univariate and multivariate data are shown
in Section 8.4. In Section 8.5, we analyze some extensions of the fuzzy clustering models for complex

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
© 2007 John Wiley & Sons, Ltd

156 FUZZY CLUSTERING OF FUZZY DATA

structures of fuzzy data, the so-called three-way fuzzy data. In particular, we formalize mathematically
and geometrically the fuzzy data time array and define suitable distance measures between the so-called
fuzzy time trajectories. Then, we show an example of dynamic fuzzy clustering model. In Section 8.6, for
evaluating the empirical capabilities and the different performances of the illustrated clustering models,
several applicative examples are shown. Final remarks and future perspectives in this methodological
domain are provided in Section 8.7.

8.2 INFORMATIONAL PARADIGM, FUZZINESS, AND COMPLEXITY
IN CLUSTERING PROCESSES

8.2.1 Informational Paradigm, Fuzziness and Complexity

In decision making and in the more systematic processes of knowledge acquisition in the various
scientific domains, the important role of vagueness has been widely recognized (Ruspini, Bonissone,
and Pedrycz, 1998). In general, a “corpus of knowledge” is a set of “‘information elements.”” Each
information element is represented by the following quadruple (attribute, object, value, confidence),
in which attribute is a function mapping of an object to a value, in the framework of a reference
universe; value is a predicate of the object, associated to a subset of a reference universe, and
confidence indicates the reliability of the information elements (Coppi, 2003). In the real world, an
element of information is generally characterized by imprecision (with regards to value) and uncer-
tainty (expressed t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>