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Foreword

Well, here I am writing a foreword for this book. Here is the (free dictionary, Farlex) definition:

‘foreword - a short introductory essay preceding the text of a book.’

An essay about fuzzy clustering? For inspiration, I looked at the forewords in my first two books. When

I wrote my first book about fuzzy clustering (Bezdek, 1981), I asked Lotfi Zadeh to write a foreword for it.

By then, Lotfi and I were friends, so he did it, and I was happy. But why? Was it to prove to you that I could

get him to do it? Was it because he would say things that had never been said about fuzzy models? Was it a

promotional gimmick that the publisher thought would get more buyers interested? Was it . . . hmmm, I

still didn’t know, so I read more carefully.

Lotfi speculated on a variety of possibilities for fuzzy clustering in that foreword. The most interesting

sentence (Bezdek, 1981, p. 5) was perhaps:

‘‘Although the results of experimental studies reported in this book indicate that fuzzy clustering

techniques often have significant advantages over more conventional methods, universal acceptance

of the theory of fuzzy sets as a natural basis for pattern recognition and cluster analysis is not likely to

materialize in the very near future.’’

In short, his foreword was careful, and it was cautionary – Lotfi speculated that fuzzy clustering might

not assume a central place in clustering, but this seems overshadowed by his more general worry about the

role of fuzzy models in computation.

My second book (Bezdek and Pal, 1992) was much more similar to this volume than my first, because

the 1981 effort was a one-author text, while the 1992 book was a collection of 51 papers (the ‘‘chapters’’)

that Pal and I put together (we were editors, just like de Oliveira and Pedrycz) that seemed to provide a

state-of-the-art ‘‘survey’’ of what was happening with fuzzy models in various pattern recognition

domains in 1992. Perhaps the principal difference between these two books is that fuzzy clustering

was only one of the five topics of our 1992 book, whereas the current volume is only about fuzzy

clustering. The other noticeable difference was that the papers we collected had already been published

elsewhere, whereas the chapters in this book have not.

I am looking at the foreword to our 1992 book right now, again written by Lotfi. Well, a lot of positive

things happened for fuzzy sets in the 11 years that separated these two forewords (read, Japan builds fuzzy

controllers), and Lotfi’s 1992 foreword was both more historical and more confident than the 1981

offering. Here is the first sentence of that 1992 forward:

‘‘To view the contents of this volume in a proper perspective it is of historical interest to note that the

initial development of the theory of fuzzy sets was motivated in large measure by problems in pattern

recognition and cluster analysis.’’



Did you notice that Lotfi used exactly the same term ‘‘pattern recognition and cluster analysis’’ in both

forewords? In contradistinction, I believe that most people today view clustering as one of many topics

encompassed by the much broader field of pattern recognition (classifier design, feature selection, image

processing, and so on). My guess is that Lotfi probably used the term pattern recognition almost as a

synonym for classification. This is a small point, but in the context of this volume, an interesting one,

because to this day, Lotfi contends that the word cluster is ill defined, and hence cluster analysis is not

really a topic at all. Nonetheless, you have in your hands a new book about fuzzy cluster analysis.

What should I point out to you in 2006 about this topic? Well, the main point is that fuzzy clustering is

now a pretty mature field. I just ‘‘googled’’ the index term ‘‘fuzzy cluster analysis,’’ and the search

returned this statistic at 1 p.m. on September 6, 2006:

‘‘Results 1–10 of about 1 640 000 for fuzzy cluster analysis (0.34 seconds).’’

Never mind duplication, mixed indexing, and all the other false positives represented by this statistic. The

fact is fuzzy clustering is a pretty big field now. There are still some diehard statisticians out there who

deny its existence, much less its value to real applications, but by and large this is no longer a controversial

undertaking, nor is its real value to practitioners questionable. Moreover, I can pick any chapter in this

book and get returns from Google that amaze me. Example: Chapter 4 has the somewhat exotic title

‘‘Fuzzy Clustering with Minkowski Distance Functions.’’ What would you guess for this topic – 12

papers? Here is the return:

‘‘Results 1–10 of about 20 000 for Fuzzy Clustering with Minkowski distance functions

(0.37 seconds).’’

There aren’t 20 000 papers out there about this topic, but there are probably a few hundred, and this is what

makes the current book useful. Most of these chapters offer an encapsulated survey of (some of) the most

important work on their advertised contents. This is valuable, because I don’t want to sift through 20 000

entries to find the good stuff about Minkowski-based fuzzy clustering – I want the experts to guide me to

20 or 30 papers that have it.

Summary. We no longer need worry whether the topics in this fuzzy clustering book are good stuff –

they are. What we need that these chapters provide is a quick index to the good stuff. And for this, you

should be grateful (and buy the book, for which de Oliveira and Pedrycz will be grateful!), because if you

rely on ‘‘google,’’ you can spend the rest of your life sifting through the chaff to find the grain.

Jim Bezdek

Pensacola, USA
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Preface

Clustering has become a widely accepted synonym of a broad array of activities of exploratory data

analysis and model development in science, engineering, life sciences, business and economics, defense,

and biological and medical disciplines. Areas such as data mining, image analysis, pattern recognition,

modeling, and bio-informatics are just tangible examples of numerous pursuits that vigorously exploit the

concepts and algorithms of clustering treated as essential tools for problem formulation and development

of specific solutions or a vehicle facilitating interpretation mechanisms. The progress in the area happens

at a high pace and these developments concern the fundamentals, algorithmic enhancements, computing

schemes, and validation practices. The role of fuzzy clustering becomes quite prominent within the

general framework of clustering. This is not surprising given the fact that clustering helps gain an

interesting insight into data structure, facilitate efficient communication with users and data analysts, and

form essential building blocks for further modeling pursuits. The conceptual underpinnings of fuzzy sets

are particularly appealing, considering their abilities to quantify a level of membership of elements to

detected clusters that are essential when dealing with the inherent phenomenon of partial belongingness

to the group. This feature is of particular interest when dealing with various interpretation activities.

Even a very quick scan of the ongoing research reveals how dynamic the area of fuzzy clustering really

is. For instance, a simple query on Science Direct ‘‘fuzzy clustering’’ returns slightly under 400 hits (those

are the papers published since 2000). A similar search on ISI Web of Knowledge returns more than 500

hits. In IEEE Xplore one can find around 800 hits. More than half of these entries have been published

after 2000. These figures offer us an impression about the rapid progress in the area and highlight a

genuine wealth of the applications of the technology of fuzzy clustering.

This volume aims at providing a comprehensive, coherent, and in depth state-of-the-art account on

fuzzy clustering. It offers an authoritative treatment of the subject matters presented by leading

researchers in the area. While the volume is self-contained by covering some fundamentals and offering

an exposure to some preliminary material on algorithms and practice of fuzzy clustering, it offers a

balanced and broad coverage of the subject including theoretical fundamentals, methodological insights,

algorithms, and case studies.

The content of the volume reflects the main objectives we intend to accomplish. The organization of the

overall material helps the reader to proceed with some introductory material, move forward with more

advanced topics, become familiar with recent algorithms, and finally gain a detailed knowledge of various

application-driven facets.

The contributions have been organized into five general categories: Fundamentals, Visualization,

Algorithms and Computational Aspects, Real-time and Dynamic Clustering, and Applications and Case

Studies. They are fairly reflective of the key pursuits in the area.

Within the section dealing with the fundamentals, we are concerned with the principles of clustering as

those are seen from the perspective of fuzzy sets. We elaborate on the role of fuzzy sets in data analysis,

discuss the principles of data organization, and present fundamental algorithms and their augmentations.

Different paradigms of unsupervised learning along with so-called knowledge-based clustering and data

organization are also addressed in detail. This part is particularly aimed at the readers who would intend to

gather some background material and have a quick yet carefully organized look at the essential of the

methodology of fuzzy clustering.



In fuzzy clustering, visualization is an emerging subject. Due to its huge potential to address

interpretation and validation issues visualization deserves to be treated as a separate topic.

The part entitled Algorithms and Computational Aspects focuses on the major lines of pursuits on the

algorithmic and computational augmentations of fuzzy clustering. Here the major focus is on the

demonstration of effectiveness of the paradigm of fuzzy clustering in high-dimensional problems,

distributed problem solving, and uncertainty management.

The chapters arranged in the group entitled Real-time and Dynamic Clustering describe the state-of-

the-art algorithms for dynamical developments of clusters, i.e., for clustering built for data gathered over

time. Since new observations are available at each time instant, a dynamic update of clusters is required.

The Applications and Case Studies part is devoted to a series of applications in which fuzzy clustering

plays a pivotal role. The primary intent is to discuss its role in the overall design process in various tasks

of prediction, classification, control, and modeling. Here it becomes highly instructive to highlight at

which phase of the design clustering is of relevance, what role it plays, and how the results – information

granules – facilitate further detailed development of models or enhance interpretation aspects.

PART I FUNDAMENTALS

The part on Fundamentals consists of four chapters covering the essentials of fuzzy clustering and

presenting a rationality and a motivation, basic algorithms and their various realizations, and cluster

validity assessment.

Chapter 1 starts with an introduction to basic clustering algorithms including hard, probabilistic, and

possibilistic ones. Then more advanced methods are presented, including the Gustafson–Kessel algo-

rithm and kernel-based fuzzy clustering. Variants on a number of algorithm components as well as on

problem formulations are also considered.

Chapter 2 surveys the most relevant methods of relational fuzzy clustering, i.e., fuzzy clustering for

relational data. A distinction between object and relational data is presented and the consequences of this

distinction on clustering algorithms are thoroughly analyzed. A most useful taxonomy for relational

clustering algorithms together with some guidelines for selecting clustering schemes for a given

application can also be found in this chapter.

In Chapter 3 the authors offer a contribution that deals with another fundamental issue in clustering:

distance functions. The focus is on fuzzy clustering problems and algorithms using the Minkowski

distance – definitely an interesting and useful idea.

In Chapter 4 the authors discuss the combination of multiple partitioning obtained from independent

clustering runs into a consensus partition – a topic that is gaining interest and importance. A relevant

review of commonly used approaches, new consensus strategies (including one based on information-

theoretic K-means), as well as a thorough experimental evaluation of these strategies are presented.

PART II VISUALIZATION

Visualization is an important tool in data analysis and interpretation. Visualization offers the user the

possibility of quickly inspecting a huge volume of data, and quickly selecting data space regions of

interest for further analysis. Generally speaking, this is accomplished by producing a low-dimensional

graphical representation of the clusters. The part of the book on Visualization consists of two major

contributions.

Chapter 5 reviews relevant approaches to validity and visualization of clustering results. It also presents

novel tools that allow the visualization of multi-dimensional data points in terms of bi-dimensional plots

which facilitates the assessment of clusters’ goodness. The chapter ends with an appendix with a

comprehensive description of cluster validity indexes.

Chapter 6 aims at helping the user to visually explore clusters. The approach consists of the construc-

tion of local, one-dimensional neighborhood models, the so-called neighborgrams. An algorithm is

xviii PREFACE



included that generates a subset of neighborgrams from which the user can manage potential cluster

candidates during the clustering process. This can be viewed as a form of integrating user domain

knowledge into the clustering process.

PART III ALGORITHMS AND COMPUTATIONAL ASPECTS

This part provides the major lines of work on algorithmic and computational augmentations of fuzzy

clustering with the intention of demonstrating its effectiveness in high-dimensional problems, distributed

problem solving and uncertainty handling. Different paradigms of unsupervised learning along with so-

called knowledge-based clustering and data organization are also addressed.

Chapter describes and evaluates a clustering algorithm based on the Yager’s participatory learning rule.

This learning rule pays special attention to current knowledge as it dominates the way in which new data

are used for learning. In participatory clustering the number of clusters is not given a priori as it depends

on the cluster structure that is dynamically built by the algorithm.

Chapter 8 offers a comprehensive and in-depth study on fuzzy clustering of fuzzy data.

The authors of Chapter 9 also address the problem of clustering fuzzy data. In this case, clustering is

based on the amount of mutual inclusion between fuzzy sets, especially between data and cluster

prototypes.

Extraction of semantically valid rules from data is an active interdisciplinary research topic with

foundations in computer and cognitive sciences, psychology, and philosophy. Chapter 10 addresses this

topic from the clustering perspective. The chapter describes a clustering framework for extracting

interpretable rules for medical diagnostics.

Chapter 11 focuses on the combination of regression models with fuzzy clustering. The chapter

describes and evaluates several regression models for updating the partition matrix in clustering algo-

rithms. The evaluation includes an analysis of residuals and reveals the interesting characteristics of this

class of algorithm.

Hierarchical fuzzy clustering is discussed in Chapter 12. The chapter presents a clustering-based

systematic approach to fuzzy modeling that takes into account the following three issues: (1) the number

of clusters required a priori in fuzzy clustering; (2) initialization of fuzzy clustering methods, and (3) the

trade off between accuracy and interpretability.

Chapter 13 deals with the process of inferring dissimilarity relations from data. For this, two methods

are analyzed with respect to factors such as generalization and computational complexity. The approach is

particularly interesting for applications where the nature of dissimilarity is conceptual rather than metric.

Chapter 14 describes how clustering and feature selection can be unified to improve the discovery of

more relevant data structures. An extension of the proposed algorithm for dealing with an unknown

number of clusters is also presented. Interesting applications on image segmentation and text categoriza-

tion are included.

PART IV REAL-TIME AND DYNAMIC CLUSTERING

Real-time and dynamic clustering deals with clustering with time-varying or noisy data and finds its

applications in areas as distinct as video or stock market analysis. Three chapters focus on this timely

topic.

Chapter 15 provides a review of dynamic clustering emphasizing its relationship with the area of data

mining. Data mining is a matter of paramount relevance today and this chapter shows how dynamic

clustering can be brought into the picture. The chapter also describes two novel approaches to dynamic

clustering.

Chapter 16 describes the development of an efficient online version of the fuzzy C-means clustering for

data streams, i.e., data of potentially unbound size whose continuous evolution is not under the control of

the analyzer.
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Chapter 17 presents two approaches to real-time clustering and generation of rules from data. The first

approach concerns a density-driven approach with its origin stemming from the techniques of mountain

and subtractive clustering while the second one looks at the distance based with foundations in the k-

nearest neighbors and self-organizing maps.

PART V APPLICATIONS AND CASE STUDIES

The last part of the book includes three chapters describing various applications and interesting case

studies in which fuzzy clustering plays an instrumental role. The function of fuzzy clustering is discussed

in the overall design process in a variety of tasks such as prediction, classification, and modeling.

Chapter 18 presents a novel clustering algorithm that incorporates spatial information by defining

multiple feature partitions and shows its application to the analysis of magnetic resonance images.

Chapter 19 exploits both the K-means and the fuzzy C-means clustering algorithms as the means to

identify correlations between words in texts, using the hyperspace analogue to language (HAL) model.

Another bio-medical application is provided in Chapter 20 where fuzzy clustering techniques are used

in the identification of cancerous cells.

FINAL REMARKS

All in all, fuzzy clustering forms a highly enabling technology of data analysis. The area is relatively

mature and exhibits a rapid expansion in many different directions including a variety of new concepts,

methodologies, algorithms, and innovative and highly advanced applications.

We do hope that the contributions compiled in this volume will bring the reader a fully updated and

highly comprehensive view of the recent developments in the fundamentals, algorithms, and applications

of fuzzy clustering.

Our gratitude goes to all authors for sharing their expertise and recent research outcomes and reviewers

whose constructive criticism was of immense help in producing a high quality volume. Finally, our

sincere thanks go to the dedicated and knowledgeable staff at John Wiley & Sons, Ltd, who were highly

instrumental in all phases of the project.
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Fundamentals of Fuzzy
Clustering

Rudolf Kruse, Christian Döring, and Marie-Jeanne Lesot

Department of Knowledge Processing and Language Engineering,

University of Magdeburg, Germany

1.1 INTRODUCTION

Clustering is an unsupervised learning task that aims at decomposing a given set of objects into subgroups

or clusters based on similarity. The goal is to divide the data-set in such a way that objects (or example

cases) belonging to the same cluster are as similar as possible, whereas objects belonging to different

clusters are as dissimilar as possible. The motivation for finding and building classes in this way can be

manifold (Bock, 1974). Cluster analysis is primarily a tool for discovering previously hidden structure in a

set of unordered objects. In this case one assumes that a ‘true’ or natural grouping exists in the data.

However, the assignment of objects to the classes and the description of these classes are unknown. By

arranging similar objects into clusters one tries to reconstruct the unknown structure in the hope that every

cluster found represents an actual type or category of objects. Clustering methods can also be used for data

reduction purposes. Then it is merely aiming at a simplified representation of the set of objects which

allows for dealing with a manageable number of homogeneous groups instead of with a vast number of

single objects. Only some mathematical criteria can decide on the composition of clusters when classify-

ing data-sets automatically. Therefore clustering methods are endowed with distance functions that

measure the dissimilarity of presented example cases, which is equivalent to measuring their similarity.

As a result one yields a partition of the data-set into clusters regarding the chosen dissimilarity relation.

All clustering methods that we consider in this chapter are partitioning algorithms. Given a positive

integer c, they aim at finding the best partition of the data into c groups based on the given dissimilarity

measure and they regard the space of possible partitions into c subsets only. Therein partitioning clustering

methods are different from hierarchical techniques. The latter organize data in a nested sequence of

groups, which can be visualized in the form of a dendrogram or tree. Based on a dendrogram one can

decide on the number of clusters at which the data are best represented for a given purpose. Usually the

number of (true) clusters in the given data is unknown in advance. However, using the partitioning

methods one is usually required to specify the number of clusters c as an input parameter. Estimating the

actual number of clusters is thus an important issue that we do not leave untouched in this chapter.
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A common concept of all described clustering approaches is that they are prototype-based, i.e., the

clusters are represented by cluster prototypes Ci, i ¼ 1; . . . ; c. Prototypes are used to capture the structure

(distribution) of the data in each cluster. With this representation of the clusters we formally denote the set

of prototypes C ¼ fC1; . . . ;Ccg. Each prototype Ci is an n-tuple of parameters that consists of a cluster

center ci (location parameter) and maybe some additional parameters about the size and the shape of the

cluster. The cluster center ci is an instantiation of the attributes used to describe the domain, just as the data

points in the data-set to divide. The size and shape parameters of a prototype determine the extension of

the cluster in different directions of the underlying domain. The prototypes are constructed by the

clustering algorithms and serve as prototypical representations of the data points in each cluster.

The chapter is organized as follows: Section 1.2 introduces the basic approaches to hard, fuzzy, and

possibilistic clustering. The objective function they minimize is presented as well as the minimization

method, the alternating optimization (AO) scheme. The respective partition types are discussed and

special emphasis is put on a thorough comparison between them. Further, an intuitive understanding of

the general properties that distinguish their results is presented. Then a systematic overview of more

sophisticated fuzzy clustering methods is presented. In Section 1.3, the variants that modify the used

distance functions for detecting specific cluster shapes or geometrical contours are discussed. In

Section 1.4 variants that modify the optimized objective functions for improving the results regarding

specific requirements, e.g., dealing with noise, are reviewed. Lastly, in Section 1.5, the alternating cluster

estimation framework is considered. It is a generalization of the AO scheme for cluster model optimiza-

tion, which offers more modeling flexibility without deriving parameter update equations from opti-

mization constraints. Section 1.6 concludes the chapter pointing at related issues and selected

developements in the field.

1.2 BASIC CLUSTERING ALGORITHMS

In this section, we present the fuzzy C-means and possibilistic C-means, deriving them from the hard

c-means clustering algorithm. The latter one is better known as k-means, but here we call it (hard) C-

means to unify the notation and to emphasize that it served as a starting point for the fuzzy extensions. We

further restrict ourselves to the simplest form of cluster prototypes at first. That is, each prototype only

consists of the center vectors, Ci ¼ ðciÞ, such that the data points assigned to a cluster are represented by a

prototypical point in the data space. We consider as a distance measure d an inner product norm induced

distance as for instance the Euclidean distance. The description of the more complex prototypes and other

dissimilarity measures is postponed to Section 1.3, since they are extensions of the basic algorithms

discussed here.

All algorithms described in this section are based on objective functions J, which are mathematical

criteria that quantify the goodness of cluster models that comprise prototypes and data partition.

Objective functions serve as cost functions that have to be minimized to obtain optimal cluster solutions.

Thus, for each of the following cluster models the respective objective function expresses desired

properties of what should be regarded as ‘‘best’’ results of the cluster algorithm. Having defined such a

criterion of optimality, the clustering task can be formulated as a function optimization problem. That is,

the algorithms determine the best decomposition of a data-set into a predefined number of clusters by

minimizing their objective function. The steps of the algorithms follow from the optimization scheme that

they apply to approach the optimum of J. Thus, in our presentation of the hard, fuzzy, and possibilistic

c-means we discuss their respective objective functions first. Then we shed light on their specific

minimization scheme.

The idea of defining an objective function and have its minimization drive the clustering process is quite

universal. Aside from the basic algorithms many extensions and modifications have been proposed that

aim at improvements of the clustering results with respect to particular problems (e.g., noise, outliers).

Consequently, other objective functions have been tailored for these specific applications. We address the

most important of the proposed objective function variants in Section 1.4. However, regardless of the

specific objective function that an algorithm is based on, the objective function is a goodness measure.
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Thus it can be used to compare several clustering models of a data-set that have been obtained by the same

algorithm (holding the number of clusters, i.e., the value of c, fixed).

In their basic forms the hard, fuzzy, and possibilistic C-means algorithms look for a predefined number

of c clusters in a given data-set, where each of the clusters is represented by its center vector. However,

hard, fuzzy, and possibilistic C-means differ in the way they assign data to clusters, i.e., what type of data

partitions they form. In classical (hard) cluster analysis each datum is assigned to exactly one cluster.

Consequently, the hard C-means yield exhaustive partitions of the example set into non-empty and

pairwise disjoint subsets. Such hard (crisp) assignment of data to clusters can be inadequate in the

presence of data points that are almost equally distant from two or more clusters. Such special data points

can represent hybrid-type or mixture objects, which are (more or less) equally similar to two or more

types. A crisp partition arbitrarily forces the full assignment of such data points to one of the clusters,

although they should (almost) equally belong to all of them. For this purpose the fuzzy clustering

approaches presented in Sections 1.2.2 and 1.2.3 relax the requirement that data points have to be assigned

to one (and only one) cluster. Data points can belong to more than one cluster and even with different

degrees of membership to the different clusters. These gradual cluster assignments can reflect present

cluster structure in a more natural way, especially when clusters overlap. Then the memberships of data

points at the overlapping boundaries can express the ambiguity of the cluster assignment.

The shift from hard to gradual assignment of data to clusters for the purpose of more expressive data

partitions founded the field of fuzzy cluster analysis. We start our presentation with the hard C-means and

later on we point out the relatedness to the fuzzy approaches that is evident in many respects.

1.2.1 Hard c-means

In the classical C-means model each data point xj in the given data-set X ¼ fx1; . . . ; xng, X � Rp is

assigned to exactly one cluster. Each cluster �i is thus a subset of the given data-set, �i � X. The set of

clusters � ¼ f�1; . . . ;�cg is required to be an exhaustive partition of the data-set X into c non-empty and

pairwise disjoint subsets �i, 1 < c < n. In the C-means such a data partition is said to be optimal when the

sum of the squared distances between the cluster centers and the data points assigned to them is minimal

(Krishnapuram and Keller, 1996). This definition follows directly from the requirement that clusters

should be as homogeneous as possible. Hence the objective function of the hard C-means can be written as

follows:

JhðX;Uh;CÞ ¼
Xc

i¼1

Xn

j¼1

uijd
2
ij; ð1:1Þ

where C ¼ fC1; . . . ;Ccg is the set of cluster prototypes, dij is the distance between xj and cluster center ci,

U is a c� n binary matrix called partition matrix. The individual elements

uij 2 f0; 1g ð1:2Þ

indicate the assignment of data to clusters: uij ¼ 1 if the data point xj is assigned to prototype Ci, i.e.,

xj 2 �i; and uij ¼ 0 otherwise. To ensure that each data point is assigned exactly to one cluster, it is

required that:

Xc

i¼1

uij ¼ 1; 8j 2 f1; . . . ; ng: ð1:3Þ

This constraint enforces exhaustive partitions and also serves the purpose to avoid the trivial solution

when minimizing Jh, which is that no data is assigned to any cluster: uij ¼ 0; 8i; j. Together with

uij 2 f0; 1g it is possible that data are assigned to one or more clusters while there are some remaining

clusters left empty. Since such a situation is undesirable, one usually requires that:

Xn

j¼1

uij > 0; 8i 2 f1; . . . ; cg: ð1:4Þ
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Jh depends on the two (disjoint) parameter sets, which are the cluster centers c and the assignment of data

points to clusters U. The problem of finding parameters that minimize the C-means objective function is

NP-hard (Drineas et al., 2004). Therefore, the hard C-means clustering algorithm, also known as

ISODATA algorithm (Ball and Hall, 1966; Krishnapuram and Keller, 1996), minimizes Jh using an

alternating optimization (AO) scheme.

Generally speaking, AO can be applied when a criterion function cannot be optimized directly, or when

it is impractical. The parameters to optimize are split into two (or even more) groups. Then one group of

parameters (e.g., the partition matrix) is optimized holding the other group(s) (e.g., the current cluster

centers) fixed (and vice versa). This iterative updating scheme is then repeated. The main advantage of

this method is that in each of the steps the optimum can be computed directly. By iterating the two (or

more) steps the joint optimum is approached, although it cannot be guaranteed that the global optimum

will be reached. The algorithm may get stuck in a local minimum of the applied objective function J.

However, alternating optimization is the commonly used parameter optimization method in clustering

algorithms. Thus for each of the algorithms in this chapter we present the corresponding parameter update

equations of their alternating optimization scheme.

In the case of the hard C-means the iterative optimization scheme works as follows: at first initial cluster

centers are chosen. This can be done randomly, i.e., by picking c random vectors that lie within the

smallest (hyper-)box that encloses all data; or by initializing cluster centers with randomly chosen data

points of the given data-set. Alternatively, more sophisticated initialization methods can be used as well,

e.g., Latin hypercube sampling (McKay, Beckman and Conover, 1979). Then the parameters C are held

fixed and cluster assignments U are determined that minimize the quantity of Jh. In this step each data

point is assigned to its closest cluster center:

uij ¼
1; if i ¼ argminc

l¼1dlj

0; otherwise :

�
ð1:5Þ

Any other assignment of a data point than to its closest cluster would not minimize Jh for fixed clusters.

Then the data partition U is held fixed and new cluster centers are computed as the mean of all data vectors

assigned to them, since the mean minimizes the sum of the square distances in Jh. The calculation of the

mean for each cluster (for which the algorithm got its name) is stated more formally:

ci ¼
Pn

j¼1 uijxjPn
j¼1 uij

: ð1:6Þ

The two steps (1.5) and (1.6) are iterated until no change in C or U can be observed. Then the hard C-

means terminates, yielding final cluster centers and data partition that are possibly locally optimal only.

Concluding the presentation of the hard C-means we want to mention its expressed tendency to become

stuck in local minima, which makes it necessary to conduct several runs of the algorithm with different

initializations (Duda and Hart, 1973). Then the best result out of many clusterings can be chosen based on

the values of Jh.

We now turn to the fuzzy approaches, that relax the requirement uij 2 f0; 1g that is placed on the cluster

assignments in classical clustering approaches. The extensions are based on the concepts of fuzzy sets

such that we arrive at gradual memberships. We will discuss two major types of gradual cluster assign-

ments and fuzzy data partitions altogether with their differentiated interpretations and standard algo-

rithms, which are the (probabilistic) fuzzy C-means (FCM) in the next section and the possibilistic fuzzy

C-means (PCM) in Section 1.2.3.

1.2.2 Fuzzy c-means

Fuzzy cluster analysis allows gradual memberships of data points to clusters measured as degrees in [0,1].

This gives the flexibility to express that data points can belong to more than one cluster. Furthermore,

these membership degrees offer a much finer degree of detail of the data model. Aside from assigning a

data point to clusters in shares, membership degrees can also express how ambiguously or definitely a data
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point should belong to a cluster. The concept of these membership degrees is substantiated by the

definition and interpretation of fuzzy sets (Zadeh, 1965). Thus, fuzzy clustering allows fine grained

solution spaces in the form of fuzzy partitions of the set of given examples X ¼ fx1; . . . ; xng. Whereas the

clusters �i of data partitions have been classical subsets so far, they are represented by the fuzzy sets��i
of

the data-set X in the following. Complying with fuzzy set theory, the cluster assignment uij is now the

membership degree of a datum xj to cluster �i, such that: uij ¼ ��i
ðxjÞ 2 ½0; 1�. Since memberships to

clusters are fuzzy, there is not a single label that is indicating to which cluster a data point belongs. Instead,

fuzzy clustering methods associate a fuzzy label vector to each data point xj that states its memberships to

the c clusters:

uj ¼ ðu1j; . . . ; ucjÞT : ð1:7Þ

The c� n matrix U ¼ ðuijÞ ¼ ðu1; . . . ; unÞ is then called a fuzzy partition matrix. Based on the fuzzy set

notion we are now better suited to handle ambiguity of cluster assignments when clusters are badly

delineated or overlapping.

So far, the general definition of fuzzy partition matrices leaves open how assignments of data to more

than one cluster should be expressed in form of membership values. Furthermore, it is still unclear what

degrees of belonging to clusters are allowed, i.e., the solution space (set of allowed fuzzy partitions) for

fuzzy clustering algorithms is not yet specified. In the field of fuzzy clustering two types of fuzzy cluster

partitions have evolved. They differ in the constraints they place on the membership degrees and how the

membership values should be interpreted. In our discussion we begin with the most widely used type, the

probabilistic partitions, since they have been proposed first. Notice, that in literature they are sometimes

just called fuzzy partitions (dropping the word ‘probabilistic’). We use the subscript f for the probabilis-

tic approaches and, in the next section, p for the possibilistic models. The latter constitute the second type

of fuzzy partitions.

Let X ¼ fx1; . . . ; xng be the set of given examples and let c be the number of clusters ð1 < c < nÞ
represented by the fuzzy sets ��i

, ði ¼ 1; . . . ; cÞ. Then we call Uf ¼ ðuijÞ ¼ ð��i
ðxjÞÞ a probabilistic

cluster partition of X if

Xn

j¼1

uij > 0; 8i 2 f1; . . . ; cg; and ð1:8Þ

Xc

i¼1

uij ¼ 1; 8j 2 f1; . . . ; ng ð1:9Þ

hold. The uij 2 ½0; 1� are interpreted as the membership degree of datum xj to cluster �i relative to all other

clusters.

Constraint (1.8) guarantees that no cluster is empty. This corresponds to the requirement in classical

cluster analysis that no cluster, represented as (classical) subset of X, is empty (see Equation (1.4)).

Condition (1.9) ensures that the sum of the membership degrees for each datum equals 1. This means that

each datum receives the same weight in comparison to all other data and, therefore, that all data are

(equally) included into the cluster partition. This is related to the requirement in classical clustering that

partitions are formed exhaustively (see Equation (1.3)). As a consequence of both constraints no cluster

can contain the full membership of all data points. Furthermore, condition (1.9) corresponds to a

normalization of the memberships per datum. Thus the membership degrees for a given datum formally

resemble the probabilities of its being a member of the corresponding cluster.

Example: Figure 1.1 shows a (probabilistic) fuzzy classification of a two-dimensional symmetric data-

set with two clusters. The grey scale indicates the strength of belonging to the clusters. The darker shading

in the image indicates a high degree of membership for data points close to the cluster centers, while

membership decreases for data points that lie further away from the clusters. The membership values of

the data points are shown in Table 1.1. They form a probabilistic cluster partition according to the

definition above. The following advantages over a conventional clustering representation can be noted:

points in the center of a cluster can have a degree equal to 1, while points close to boundaries can be
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identified as such, since their membership degree to the cluster they are closer to is considerably smaller

than 1. Points on class boundaries may be classified as undetermined with a degree of indeterminacy

proportional to their similarity to core points. The equidistant data point x5 in the middle of the figure

would have to be arbitrarily assigned with full weight to one of the clusters if only classical (‘crisp’)

partitions were allowed. In this fuzzy partition, however, it can be associated with the equimembership

vector ð0:5; 0:5ÞT to express the ambiguity of the assignment. Furthermore, crisp data partitions cannot

express the difference between data points in the center and those that are rather at the boundary of a

cluster. Both kinds of points would be fully assigned to the cluster they are most similar to. In a fuzzy

cluster partition they are assigned degrees of belonging depending on their closeness to the centers.

After defining probabilistic partitions we can turn to developing an objective function for the fuzzy

clustering task. Certainly, the closer a data point lies to the center of a cluster, the higher its degree of

membership should be to this cluster. Following this rationale, one can say that the distances between the

cluster centers and the data points (strongly) assigned to it should be minimal. Hence the problem to

divide a given data-set into c clusters can (again) be stated as the task to minimize the squared distances of

the data points to their cluster centers, since, of course, we want to maximize the degrees of membership.

The probabilistic fuzzy objective function Jf is thus based on the least sum of squared distances just as Jh

Figure 1.1 A symmetric data-set with two clusters.

Table 1.1 A fuzzy partition of the symmetric data-set.

j x y u0j u1j

0 �3 0 0.93 0.07

1 �2 0 0.99 0.01

2 �1 0 0.94 0.06

3 �2 1 0.69 0.31

4 �2 �1 0.69 0.31

5 0 0 0.50 0.50

6 1 0 0.06 0.94

7 2 0 0.01 0.99

8 3 0 0.07 0.93

9 2 1 0.31 0.69

10 2 �1 0.31 0.69
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of the hard C-means. More formally, a fuzzy cluster model of a given data-set X into c clusters is defined to

be optimal when it minimizes the objective function:

Jf ðX;Uf ;CÞ ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij; ð1:10Þ

under the constraints (1.8) and (1.9) that have to be satisfied for probabilistic membership degrees in Uf .

The condition (1.8) avoids the trivial solution of minimization problem, i.e., uij ¼ 0; 8i; j. The normal-

ization constraint (1.9) leads to a ‘distribution’ of the weight of each data point over the different clusters.

Since all data points have the same fixed amount of membership to share between clusters, the normal-

ization condition implements the known partitioning property of any probabilistic fuzzy clustering

algorithm. The parameter m;m > 1, is called the fuzzifier or weighting exponent. The exponentiation

of the memberships with m in Jf can be seen as a function g of the membership degrees, gðuijÞ ¼ um
ij , that

leads to a generalization of the well-known least squared error functional as it was applied in the hard

c-means (see Equation (1.1)). The actual value of m then determines the ‘fuzziness’ of the classification. It

has been shown for the case m ¼ 1 (when Jh and Jf become identical), that cluster assignments remain

hard when minimizing the target function, even though they are allowed to be fuzzy, i.e., they are not

constrained in {0, 1} (Dunn, 1974b). For achieving the desired fuzzification of the resulting probabilistic

data partition the function gðuijÞ ¼ u2
ij has been proposed first (Dunn, 1974b). The generalization for

exponents m > 1 that lead to fuzzy memberships has been proposed in (Bezdek, 1973). With higher

values for m the boundaries between clusters become softer, with lower values they get harder. Usually

m ¼ 2 is chosen. Aside from the standard weighting of the memberships with um
ij other functions g that

can serve as fuzzifiers have been explored. Their influence on the memberships will be discussed in

Section 1.4.2.

The objective function Jf is alternately optimized, i.e., first the membership degrees are optimized for

fixed cluster parameters, then the cluster prototypes are optimized for fixed membership degrees:

U� ¼ jUðC��1Þ; � > 0 and ð1:11Þ
C� ¼ jCðU� Þ: ð1:12Þ

In each of the two steps the optimum can be computed directly using the parameter update equations jU
and jC for the membership degrees and the cluster centers, respectively. The update formulae are derived

by simply setting the derivative of the objective function Jf w.r.t. the parameters to optimize equal to zero

(taking into account the constraint (1.9)). The resulting equations for the two iterative steps form the fuzzy

C-means algorithm.

The membership degrees have to be chosen according to the following update formula that is

independent of the chosen distance measure (Bezdek, 1981; Pedrycz, 2005):

uij ¼
1

Pc
l¼1

d2
ij

d2
lj

� � 1
m�1

¼
d
� 2

m�1

ij

Pc
l¼1 d

� 2
m�1

lj

: ð1:13Þ

In this case there exists a cluster i with zero distance to a datum xj, uij ¼ 1 and ulj ¼ 0 for all other clusters

l 6¼ i. The above equation clearly shows the relative character of the probabilistic membership degree. It

depends not only on the distance of the datum xj to cluster i, but also on the distances between this data

point and other clusters.

The update formulae jC for the cluster parameters depend, of course, on the parameters used to describe

a cluster (location, shape, size) and on the chosen distance measure. Therefore a general update formula

cannot be given. In the case of the basic fuzzy C-means model the cluster center vectors serve as

prototypes, while an inner product norm induced metric is applied as distance measure. Consequently the

derivations of Jf w.r.t. the centers yield (Bezdek, 1981):

ci ¼
Pn

j¼1 um
ij xjPn

j¼1 um
ij

: ð1:14Þ
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The choice of the optimal cluster center points for fixed memberships of the data to the clusters has the

form of a generalized mean value computation for which the fuzzy C-means algorithm has its name.

The general form of the AO scheme of coupled equations (1.11) and (1.12) starts with an update of the

membership matrix in the first iteration of the algorithm (� ¼ 1). The first calculation of memberships is

based on an initial set of prototypes C0. Even though the optimization of an objective function could

mathematically also start with an initial but valid membership matrix (i.e., fulfilling constraints (1.8) and

(1.9)), a C0 initialization is easier and therefore common practice in all fuzzy clustering methods.

Basically the fuzzy C-means can be initialized with cluster centers that have been randomly placed in

the input space. The repetitive updating in the AO scheme can be stopped if the number of iterations �
exceeds some predefined number of maximal iterations �max, or when the changes in the prototypes are

smaller than some termination accuracy. The (probabilistic) fuzzy C-means algorithm is known as a

stable and robust classification method. Compared with the hard C-means it is quite insensitive to its

initialization and it is not likely to get stuck in an undesired local minimum of its objective function in

practice (Klawonn, 2006). Due to its simplicity and low computational demands, the probabilistic fuzzy

C-means is a widely used initializer for other more sophisticated clustering methods. On the theoretical

side it has been proven that either the iteration sequence itself or any convergent subsequence of the

probabilistic FCM converges in a saddle point or a minimum – but not in a maximum – of the objective

function (Bezdek, 1981).

1.2.3 Possibilistic c-means

Although often desirable, the ‘relative’ character of the probabilistic membership degrees can be

misleading (Timm, Borgett, Döring and Kruse, 2004). Fairly high values for the membership of datum

in more than one cluster can lead to the impression that the data point is typical for the clusters, but this is

not always the case. Consider, for example, the simple case of two clusters shown in Figure 1.2. Datum x1

has the same distance to both clusters and thus it is assigned a membership degree of about 0.5. This is

plausible. However, the same degrees of membership are assigned to datum x2 even though this datum is

further away from both clusters and should be considered less typical. Because of the normalization,

however, the sum of the memberships has to be 1. Consequently x2 receives fairly high membership

degrees to both clusters. For a correct interpretation of these memberships one has to keep in mind that

they are rather degrees of sharing than of typicality, since the constant weight of 1 given to a datum must

be distributed over the clusters. A better reading of the memberships, avoiding misinterpretations, would

be (Höppner, Klawonn, Kruse and Runkler 1999): ‘If the datum xi has to be assigned to a cluster, then with

the probability uij to the cluster i’.

The normalization of memberships can further lead to undesired effects in the presence of noise and

outliers. The fixed data point weight may result in high membership of these points to clusters, even

though they are a large distance from the bulk of data. Their membership values consequently affect the

clustering results, since data point weight attracts cluster prototypes. By dropping the normalization

constraint (1.9) in the following definition one tries to achieve a more intuitive assignment of degrees of

membership and to avoid undesirable normalization effects.

Figure 1.2 A situation in which the probabilistic assignment of membership degrees is counterintuitive for datum x2.
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Let X ¼ fx1; . . . ; xng be the set of given examples and let c be the number of clusters ð1 < c < nÞ
represented by the fuzzy sets ��i

, ði ¼ 1; . . . ; cÞ. Then we call Up ¼ ðuijÞ ¼ ð��i
ðxjÞÞ a possibilistic

cluster partition of X if

Xn

j¼1

uij > 0; 8i 2 f1; . . . ; cg ð1:15Þ

holds. The uij 2 ½0; 1� are interpreted as the degree of representativity or typicality of the datum xj to

cluster �i.

The membership degrees for one datum now resemble the possibility (in the sense of possibility theory

(Dubois and Prade, 1988) of its being a member of the corresponding cluster (Davé and Krishnapuram,

1997; Krishnapuram and Keller, 1993).

The objective function Jf that just minimizes the squared distances between clusters and assigned data

points would not be appropriate for possibilistic fuzzy clustering. Dropping the normalization constraint

leads to the mathematical problem that the objective function would reach its minimum for uij ¼ 0 for all

i 2 f1; . . . ; cg and j 2 f1; . . . ; ng, i.e., data points are not assigned to any cluster and all clusters are

empty. In order to avoid this trivial solution (that is also forbidden by constraint (1.15)), a penalty term is

introduced, which forces the membership degrees away from zero. That is, the objective function Jf is

modified to

JpðX;Up;CÞ ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij þ
Xc

i¼1

�i

Xn

j¼1

ð1� uijÞm; ð1:16Þ

where �i > 0 (i ¼ 1; . . . ; c) (Krishnapuram and Keller, 1993). The first term leads to a minimization of the

weighted distances. The second term suppresses the trivial solution since this sum rewards high member-

ships (close to 1) that make the expression ð1� uijÞm become approximately 0. Thus the desire for

(strong) assignments of data to clusters is expressed in the objective function Jp. In tandem with the first

term the high membership can be expected especially for data that are close to their clusters, since with a

high degree of belonging the weighted distance to a closer cluster is smaller than to clusters further away.

The cluster specific constants �i are used balance the contrary objectives expressed in the two terms of Jp.

It is a reference value stating at what distance to a cluster a data point should receive higher membership to

it. These considerations mark the difference to probabilistic clustering approaches. While in probabilistic

clustering each data point has a constant weight of 1, possibilistic clustering methods have to learn the

weights of data points.

The formula for updating the membership degrees that is derived from Jp by setting its derivative to

zero is (Krishnapuram and Keller, 1993):

uij ¼
1

1þ
d2

ij

�i

 ! 1
m�1

: ð1:17Þ

First of all, this update equation clearly shows that the membership of a datum xj to cluster i depends only

on its distance dij to this cluster. Small distance corresponds to high degree of membership whereas larger

distances (i.e., strong dissimilarity) results in low membership degrees. Thus the uij have typicality

interpretation.

Equation (1.17) further helps to explain the parameters �i of the clusters. Considering the case m ¼ 2

and substituting �i for d2
ij yields uij ¼ 0:5. It becomes obvious that �i is a parameter that determines the

distance to the cluster i at which the membership degree should be 0.5. Since that value of membership

can be seen as definite assignment to a cluster, the permitted extension of the cluster can be controlled with

this parameter. Depending on the cluster’s shape the �i have different geometrical interpretation. If

hyperspherical clusters as in the possibilistic C-means are considered,
ffiffiffiffi
�i
p

is their mean diameter. In shell

clustering
ffiffiffiffi
�i
p

corresponds to the mean thickness of the contours described by the cluster prototype

information (Höoppner, Klawonn, Kruse and Runkler 1999) (see Section 1.3.2). If such properties of the

BASIC CLUSTERING ALGORITHMS 11



clusters to search for are known prior to the analysis of the given data, �i can be set to the desired value. If

all clusters have the same properties, the same value can be chosen for all clusters. However, the

information on the actual shape property described by �i is often not known in advance. In that case

these parameters must be estimated. Good estimates can be found using a probabilistic clustering model

of the given data-set. The �i are then estimated by the fuzzy intra-cluster distance using the fuzzy

memberships matrix Uf as it has been determined by the probabilistic counterpart of the chosen

possibilistic algorithm (Krishnapuram and Keller, 1993). That is, for all clusters (i ¼ 1; . . . ; n):

�i ¼
Pn

j¼1 um
ij d2

ijPn
j¼1 um

ij

: ð1:18Þ

Update equations jC for the prototypes are as well derived by simply setting the derivative of the

objective function Jp w.r.t. the prototype parameters to optimize equal to zero (holding the membership

degrees Up fixed). Looking at both objective functions Jf and Jp it can be inferred that the update

equations for the cluster prototypes in the possibilistic algorithms must be identical to their probabilistic

counterparts. This is due to the fact that the second, additional term in Jp vanishes in the derivative for

fixed (constant) memberships uij. Thus the cluster centers in the possibilistic C-means algorithm are

re-estimated as in Equation (1.14).

1.2.4 Comparison and Respective Properties of Probabilistic and
Possibilistic Fuzzy c-means

Aside from the different interpretation of memberships, there are some general properties that distinguish

the behaviour and the results of the possibilistic and probabilistic fuzzy clustering approaches.

Example: Figures 1.3 and 1.4 illustrate a probabilistic and a possibilistic fuzzy C-means classification of

the Iris data-set into three clusters (Blake and Merz, 1998; Fisher, 1936). The displayed partitions of the

data-set are the result of alternatingly optimizing Jf and Jp, respectively (Timm, Borgelt, Döring and

Kruse, 2004). The grey scale indicates the membership to the closest cluster. While probabilistic

memberships rather divide the data space, possibilistic membership degrees only depend on the typicality

to the respective closest clusters. On the left, the data-set is divided into three clusters. On the right, the

possibilistic fuzzy C-means algorithm detects only two clusters, since two of the three clusters in the

upper right of Figure 1.4 are identical. Note that this behaviour is specific to the possibilistic approach. In

the probabilistic counterpart the cluster centers are driven apart, because a cluster, in a way, ‘seizes’ part

of the weight of a datum and thus leaves less that may attract other cluster centers. Hence sharing a datum

between clusters is disadvantageous. In the possibilistic approach there is nothing that corresponds to this

effect.

Figure 1.3 Iris data-set classified with probalistic fuzzy C-means algorithm. Attributes petal length and petal width.
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1.2.4.1 Cluster Coincidence

One of the major characteristics in which the approaches differ lies in the fact that probabilistic algorithms

are forced to partition the data exhaustively while the corresponding possibilistic approaches are not

compelled to do so. The former distribute the total membership of the data points (sums up to one)

whereas the latter are rather required to determine the data point weights by themselves. Probabilistic

algorithms attempt to cover all data points with clusters, since sharing data point weight is disadvanta-

geous. In the possibilistic case, there is no interaction between clusters. Thus the found clusters in

possibilistic models can be located much closer to each other than in a probabilistic clustering. Clusters

can even coincide, which has been widely observed (Barni, Cappellini and Mecocci, 1996; Krishnapuram

and Keller, 1996). This leads to solutions in which one cluster being actually present in a data-set can be

represented by two clusters in the possibilistic model. In worse cases there is data left in other regions of

the input space that has cluster structure, but which is not covered by clusters in the model. Then

possibilistic algorithms show the tendency to interpret data points in such left over regions as outliers by

assigning low memberships for these data to all clusters (close to 0) instead of further adjusting the

possibly non-optimal cluster set (Höppner, Klawonn, Jruse and Runkler, 1999).

This described behaviour is exhibited, since Jp treats each cluster independently. Every cluster

contributes to some extent to the value of the objective function Jp regardless of other clusters. The

resulting behaviour has been regarded by stating that possibilistic clustering is a rather mode-seeking

technique, aimed at finding meaningful clusters (Krishnapuram and Keller, 1996). The number c of

known or desired clusters has been interpreted as an upper bound, since cluster coincidence in effect leads

to a smaller number of clusters in the model (Höppner, Klawonn, Kruse and Runkler, 1999). For reducing

the tendency of coinciding clusters and for a better coverage of the entire data space usually a probabilistic

analysis is carried out before (exploiting its partitional property). The result is used for the prototype

initialization of the first run of the possibilistic algorithm as well as for getting the initial guesses of the �i

(and c). After the first possibilistic analysis has been carried out, the values of the �i are re-estimated once

more using the first possibilistic fuzzy partition. The improved estimates are used for running the

possibilistic algorithm a second time yielding the final cluster solution (Höppner, Klawonn, Jruse and

Runkler, 1999).

1.2.4.2 Cluster Repulsion

Dealing with the characteristics of the possibilistic clustering techniques as above is a quite good

measure. However, there are theoretical results, which put forth other developments. We discovered

that the objective function Jp is, in general, truly minimized only if all cluster centers are identical (Timm,

Borgelt, Döring and Kruse, 2004). The possibilistic objective function can be decomposed into c

independent terms, one for each cluster. This is the amount by which each cluster contributes to the

value of Jp. If there is a single optimal point for a cluster center (as will usually be the case, since multiple

Figure 1.4 Iris data-set classifed with possibilistic fuzzy C-means algorithm. Attribtes petal length and petal width.
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optimal points would require a high symmetry in the data), all cluster centers moved to that point results in

the lowest value of Jp for a given data-set. Consequently other results than all cluster centers being

identical are achieved only because the algorithm gets stuck in a local minimum of the objective function.

In the example of the PCM model in Figure 1.4 the cluster on the lower left in the figure has been found,

because it is well separated and thus forms a local minimum of the objective function. This, of course, is

not a desirable situation. Good solutions w.r.t the minimization of Jp unexpectedly do not correspond to

what we regard as a good solution of the clustering problem. Hence the possibilistic algorithms can be

improved by modifying the objective function in such a way that the problematic property examined

above is removed (see Section 1.4.4). These modifications of Jp lead to better detection of the shape of

very close or overlapping clusters. Such closely located point accumulations have been problematic, since

possibilistic clusters ‘wander’ in the direction where most of the data can be found in their �i environment,

which easily leads to cluster coincidence. Nevertheless, the modified possibilistic techniques should also

be initialized with the corresponding probabilistic algorithms as described in the last paragraph. It is a

good measure for improving the chances that all data clouds will be regarded in the resulting possibilistic

model leaving no present cluster structure unclassified. Recent developments that try to alleviate the

problematic properties of the possibilistic clustering algorithms propose using a combination of both

fuzzy and possibilistic memberships (see Section 1.4.4).

1.2.4.3 Recognition of Positions and Shapes

The possibilistic models do not only carry problematic properties. Memberships that depend only on the

distance to a cluster while being totally independent from other clusters lead to prototypes that better

reflect human intuition. Calculated based on weights that reflect typicality, the centers of possibilistic

clusters as well as their shape and size better fit the data clouds compared to their probabilistic relatives.

The latter ones are known to be unable to recognize cluster shapes as perfectly as their possibilistic

counterparts. This is due to the following reasons: if clusters are located very close or are even over-

lapping, then they are separated well because sharing membership is disadvantageous (see upper right in

Figure 1.3). Higher memberships to data points will be assigned in directions pointing away from the

overlap. Thus the centers are repelling each other. If complex prototypes are used, detected cluster shapes

are likely to be slightly distorted compared to human intuition. Noise and outliers are another reason for

little prototype distortions. They have weight in probabilistic partitions and therefore attract clusters

which can result in small prototype deformations and less intuitive centers. Possibilistic techniques are

less sensitive to outliers and noise. Low memberships will be assigned due to greater distance. Due to this

property and the more intuitive determination of positions and shapes, possibilistic techniques are

attractive tools in image processing applications. In probabilistic fuzzy clustering, noise clustering

techniques are widely appreciated (see Section 1.4.1). In one of the noise handling approaches, the

objective function Jf is modified such that a virtual noise cluster ‘‘seizes’’ parts of the data point weight of

noise points and outliers. This leads to better detection of actual cluster structure in probabilistic models.

1.3 DISTANCE FUNCTION VARIANTS

In the previous section, we considered the case where the distance between cluster centers and data points

is computed using the Euclidean distance, leading to the standard versions of fuzzy C-means and

possibilistic C-means. This distance only makes it possible to identify spherical clusters. Several variants

have been proposed to relax this constraint, considering other distances between cluster centers and data

points. In this section, we review some of them, mentioning the fuzzy Gustafson–Kessel algorithm, fuzzy

shell clustering algorithms and kernel-based variants. All of them can be applied both in the fuzzy

probabilistic and possibilistic framework.

Please note that a more general algorithm is provided by the fuzzy relational clustering algorithm

(Hathaway and Bezdek, 1994) that takes as input a distance matrix. In this chapter, we consider the

variants that handle object data and do not present the relational approach.
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1.3.1 Gustafson–Kessel Algorithm

The Gustafson–Kessel algorithm (Gustafson and Kessel, 1979) replaces the Euclidean distance by a

cluster-specific Mahalanobis distance, so as to adapt to various sizes and forms of the clusters. For a

cluster i, its associated Mahalanobis distance is defined as

d2ðxj;CiÞ ¼ ðxj � ciÞT ��1
i ðxj � ciÞ; ð1:19Þ

where �i is the covariance matrix of the cluster. Using the Euclidean distance as in the algorithms

presented in the previous section is equivalent to assuming that 8i;�i ¼ I, i.e., all clusters have the same

covariance that equals the identity matrix. Thus it only makes it possible to detect spherical clusters, but it

cannot identify clusters having different forms or sizes.

The Gustafson–Kessel algorithm models each cluster �i by both its center ci and its covariance matrix

�i; i ¼ 1; . . . ; c. Thus cluster prototypes are tuples Ci ¼ ðci;�iÞ and both ci and �i are to be learned. The

eigenstructure of the positive definite p� p matrix �i represents the shape of cluster i. Specific constraints

can be taken into account, for instance restricting to axis-parallel cluster shapes, by considering only

diagonal matrices. This case is usually preferred when clustering is applied for the generation of fuzzy

rule systems (Höppner, Klawonn, Kruse, and Runkler, 1999). The sizes of the clusters, if known in

advance, can be controlled using the constants %i > 0 demanding that det ð�iÞ ¼ %i. Usually the clusters

are assumed to be of equal size setting detð�iÞ ¼ 1.

The objective function is then identical to the fuzzy C-means (see Equation (1.10)) or the possibilistic

one (see Equation (1.16)), using as distance the one represented above in Equation (1.19). The update

equations for the cluster centers ci are not modified and are identical to those indicated in Equation (1.14).

The update equations for the membership degrees are identical to those indicated in Equation (1.13) and

Equation (1.17) for the FCM and PCM variants respectively, replacing the Euclidean distance by the

cluster specific distance given above in Equation (1.19). The update equations for the covariance matrices

are

�i ¼
��i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð��i Þ

p ; where ��i ¼
Pn

j¼1 uijðxj � ciÞðxj � ciÞTPn
j¼1 uij

: ð1:20Þ

They are defined as the covariance of the data assigned to cluster i, modified to incorporate the fuzzy

assignment information.

The Gustafson–Kessel algorithm tries to extract much more information from the data than the

algorithms based on the Euclidean distance. It is more sensitive to initialization, therefore it is recom-

mended to initialize it using a few iterations of FCM or PCM depending on the considered partition type.

Compared with FCM or PCM, the Gustafson–Kessel algorithm exhibits higher computational demands

due to the matrix inversions. A restriction to axis-parallel cluster shapes reduces computational costs.

1.3.2 Fuzzy Shell Clustering

The clustering approaches mentioned up to now search for convex ‘‘cloud-like’’ clusters. The corre-

sponding algorithms are called solid clustering algorithms. They are ‘‘specially useful’’ in data analysis

applications. Another area of application of fuzzy clustering algorithms is image recognition and

analysis. Variants of FCM and PCM have been proposed to detect lines, circles or ellipses on the data-set,

corresponding to more complex data substructures; the so-called shell clustering algorithms (Klawonn,

Kruse, and Timm, 1997) extract prototypes that have a different nature than the data points. They need to

modify the definition of the distance between a data point and the prototype and replace the Euclidean by

other distances. For instance the fuzzy c-varieties (FCV) algorithm was developed for the recognition of

lines, planes, or hyperplanes; each cluster is an affine subspace characterized by a point and a set of
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orthogonal unit vectors, Ci ¼ ðci; ei1; . . . ; eiqÞ where q is the dimension of the affine subspace. The

distance between a data point xj and cluster i is then defined as

d2ðxj;CiÞ ¼ jjxj � cijj2 �
Xq

l¼1

ðxj � ciÞT eil:

The fuzzy c-varieties (FCV) algorithm is able to recognize lines, planes or hyperplanes (see Figure 1.5).

These algorithms can also be used for the construction of locally linear models of data with underlying

functional interrelations.

Other similar FCM and PCM variants include the adaptive fuzzy c-elliptotypes algorithm (AFCE) that

assigns disjoint line segments to different clusters (see Figure 1.6). Circle contours can be detected by the

fuzzy c-shells and the fuzzy c-spherical shells algorithm. Since objects with circle-shaped boundaries in are

projected into the picture plane the recognition of ellipses can be necessary. The fuzzy c-ellipsoidal shells

algorithm is able to solve this problem. The fuzzy c-quadric shells algorithm (FCQS) is furthermore able

to recognize hyperbolas, parabolas, or linear clusters. Its flexibility can be observed in Figures 1.7 and 1.8.

The shell clustering techniques have also been extended to non-smooth structures such as rectangles and

other polygons. Figures 1.9 and 1.10 illustrate results obtained with the fuzzy c-rectangular (FCRS) and

fuzzy c-2-rectangular shells (FC2RS) algorithm. The interested reader may be referred to Höppner,

Klawonn, Kruse, and Runkler (1999) and Bezdek, Keller, Krishnapuram, and Pal (1999) for a complete

discussion of this branch of methods.

Figure 1.5 FCV analysis. Figure 1.6 AFCE analysis. Figure 1.7 FCQS analysis.

Figure 1.8 FCQS analysis. Figure 1.9 FCRS analysis. Figure 1.10 FC2RS analysis.
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1.3.3 Kernel-based Fuzzy Clustering

The kernel variants of fuzzy clustering algorithms further modify the distance function to handle

non-vectorial data, such as sequences, trees, or graphs, without needing to modify completely the

algorithms themselves. Generally speaking, kernel learning methods (see e.g., Schölkopf and Smola

(2002); Vapnik (1995)) constitute a set of machine learning algorithms that make it possible to extend, in a

formal framework, classic linear algorithms. This extension addresses a double aim: on the one hand, it

makes it possible to address tasks that require a richer framework than the linear one, while still

preserving this generally simple formalism. On the other hand, it makes it possible to apply algorithms

to data that are not described in a vectorial form, but as more complex objects, such as sequences, trees or

graphs. More generally, kernel methods can be applied independently of the data nature, without needing

to adapt the algorithm. In this section, data points can be vectorial or not, therefore we denote them xj

instead of xj.

1.3.3.1 Principle

Kernel methods are based on an implicit data representation transformation � : X ! F whereX denotes

the input space and F is called the feature space. F is usually of high or even infinite dimension and is

only constrained to be a Hilbert space, i.e., to dispose of a scalar product. The second principle of kernel

methods is that data are not handled directly in the feature space, which could lead to expensive costs

given its dimension; they are only handled through their scalar products that are computed using the initial

representation. To that aim, the so-called kernel function is used: it is a function k : X � X ! R, such that

8x; y 2 X ; h�ðxÞ; �ðyÞi ¼ kðx; yÞThus the function� is not needed to be known explicitly, scalar products

in the feature space only depend on the initial representation.

In order to apply this kernel trick, kernel methods are algorithms written only in terms of scalar

products between the data. The data representation enrichment then comes from using a scalar product

based on an implicit transformation of the data, instead of being only the Euclidean one. The possibility to

apply the algorithm to non-vectorial data only depends on the availability of a function k : X � X ! R

having the properties of a scalar product (Schölkopf and Smola, 2002).

1.3.3.2 Kernel Fuzzy Clustering

The kernel framework has been applied to fuzzy clustering and makes it possible to consider other distances

than the Euclidean one. It is to be underlined that fuzzy shell clustering, discussed in Section 1.3.2,

also takes into account other metrics, but it has an intrinsic difference: it aims at extracting prototypes that

have a different nature than the data points, and thus it modifies the distance between points and cluster

prototypes. In the kernel approach, the similarity is computed between pairs of data points and does not

involve cluster centers; the kernel function influences more directly that points are to be grouped in the same

clusters, and does not express a comparison with a cluster representative. Usually, cluster representatives

have no explicit representation as they belong to the feature space. Thus the kernel approach can be applied

independently of the data nature whereas fuzzy shell algorithms must be specified for each desired

prototype nature. On the other hand, kernel methods do not have an explicit representative of the cluster

and cannot be seen as prototype-based clustering methods.

The kernel variant of fuzzy clustering (Wu, Xie, and Yu, 2003) consists of transposing the objective

function to the feature space, i.e., applying it to the transformed data �ðxÞ. The cluster centers then belong

to the feature space, we therefore denote them c
�
i ; i ¼ 1; . . . ; c (c

�
i 2 F ). They are looked for in the form

of linear combinations of the transformed data, as

c
�
i ¼

Xn

r¼1

air�ðxrÞ: ð1:21Þ
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This formulation is coherent with the solution obtained with standard FCM. Optimization must then

provide the air values, together with the membership degrees. Due to the previous form of the centers, the

Euclidean distance between points and centers in the feature space can be computed as

d�2
ir ¼ jj�ðxrÞ � c

�
i jj

2 ¼ krr � 2
Xn

s¼1

aiskrs þ
Xn

s;t¼1

aisaitkst; ð1:22Þ

where we denote krs ¼ kðxr; xsÞ ¼ h�ðxrÞ; �ðxsÞi. Thus, the objective function becomes

J� ¼
Xc

i¼1

Xn

r¼1

um
ir krr � 2

Xn

s¼1

aiskrs þ
Xn

s;t¼1

aisaitkst

 !
: ð1:23Þ

The minimization conditions then lead to the following update equations

uir ¼
1

Pc

l¼1

d�2
ir

d�2
lr

� � 1
m�1

; air ¼
um

ir

Pn

s¼1

um
is

; i:e:; c
�
i ¼

Pn

r¼1

um
ir�ðxrÞ

Pn

s¼1

um
is

: ð1:24Þ

Thus the update equations, as well as the objective function, can be expressed solely in terms of the kernel

function, i.e., in terms of scalar products. Equation (1.24) shows that membership degrees have the same

form as in the standard FCM (see Equation (1.13)), replacing the Euclidean distance by the distance in the

feature space, as defined in Equation (1.22). The expression of the cluster centers is comparable to the

standard case (see Equation (1.14)), as the weighted mean of the data. The difference is that cluster centers

belong to the feature space and have no explicit representation, only the weighting coefficients are known.

There exist other variants for the kernelization of the fuzzy C-means, as for instance the one proposed

by Zhang and Chen (2003a,b). The latter is specific insofar as it only considers the Gaussian kernel

kðx; yÞ ¼ expð�dðx; yÞ2=�2Þ and exploits its properties to simplify the algorithm. More precisely it makes

the hypothesis that cluster centers can be looked for explicitly in the input space (ci 2 X ), and considers

its transformation to the feature space �ðciÞ. This differs from the general case, as presented above, where

cluster centers are only defined in the feature space. The objective function then becomes

J ¼
Xc

i¼1

Xn

r¼1

um
ir jj�ðciÞ � �ðxjÞjj2 ¼ 2

Xc

i¼1

Xn

r¼1

um
i ð1� e�dðci;xjÞ2=�2Þ; ð1:25Þ

exploiting the fact that the Gaussian kernel leads to d�2ðx; yÞ ¼ kðx; xÞ þ kðy; yÞ � 2kðx; yÞ ¼
2ð1� kðx; yÞÞ. Thus this method constitutes a special case of the FCM kernelization and cannot be

applied to any type of data independently of their nature. It is to be noted that this objective function

(Equation (1.25)) is identical to the one proposed by Wu and Yang (2002) in the framework of robust

variants of FCM, as described in the next section.

It should be noticed that the application of a kernel method needs to select the kernel and its parameters,

which may be difficult. This task can be seen as similar to the problem of feature selection and data

representation choice in the case of non-kernel methods.

1.4 OBJECTIVE FUNCTION VARIANTS

The previous variants of fuzzy C-means are obtained when considering different distance functions that

lead to a rewrite of the objective functions and in some cases modify the update equations. In this section,

we consider other variants that are based on deeper modifications of the objective functions. The

modifications aim at improving the clustering results in specific cases, for instance when dealing with

noisy data. It is to be noticed that there exists a very high number of variants for fuzzy clustering

algorithms, we only mention some of them.
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We organized them in the following categories: some variants are explicitly aimed at handling noisy

data. Others study at a theoretical level the role of the fuzzifier m in the objective function (see notations in

Equation (1.10)) and propose some modifications. Other variants introduce new terms in the objective

function so as to optimize the cluster number instead of having it fixed at the beginning of the process.

Lastly, we mention some variants that are aimed at improving the possibilistic C-means, in particular with

respect to the coinciding cluster problem (see Section 1.2.4).

It is to be noted that the limits between these categories are not clear-cut and that for instance the

modification of the fuzzifier can influence the noise handling properties. We categorize the methods

according to their major characteristics and underline their other properties.

When giving update equations for cluster prototypes, we consider only the case where the Euclidean

distance is used and when prototypes are reduced to cluster centers. Most methods can be generalized to

other representations, in particular those including size and form parameters. The interested reader is

referred to the original papers.

1.4.1 Noise Handling Variants

The first variants of fuzzy C-means we consider aim at handling noisy data. It is to be noticed that PCM is a

solution to this problem, but it has difficulty of its own as mentioned in Section 1.2.4 (cluster coincidence

problem, sensitivity to initialization). Therefore other approaches take FCM as the starting point and

modify it so as to enable it to handle noisy data. When giving the considered objective functions, we do not

recall the constraints indicated in Equations (1.8) and (1.9) that apply in all cases.

The aim of these variants is then to define robust fuzzy clustering algorithms, i.e., algorithms whose

results do not depend on the presence or absence of noisy data points or outliers1 in the data-set. Three

approaches are mentioned here: the first one is based on the introduction of a specific cluster, the so-called

noise cluster that is used to represent noisy data points. The second method is based on the use of robust

estimators, and the third one reduces the influence of noisy data points by defining weights denoting the

point representativeness.

1.4.1.1 Noise Clustering

The noise clustering (NC) algorithm was initially proposed by Davé (1991) and was later extended (Davé

and Sen, 1997, 1998). It consists in adding, beside the c clusters to be found in a data-set, the so-called

noise cluster; the latter aims at grouping points that are badly represented by normal clusters, such as

noisy data points or outliers. It is not explicitly associated to a prototype, but directly to the distance

between an implicit prototype and the data points: the center of the noise cluster is considered to be at a

constant distance, �, from all data points. This means that all points have a priori the same ‘probability’ of

belonging to the noise cluster. During the optimization process, this ‘probability’ is then adapted as a

function of the probability according to which points belong to normal clusters. The noise cluster is then

introduced in the objective function, as any other cluster, leading to

J ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij þ
Xn

k¼1

�2 1�
Xc

i¼1

uik

 !m

: ð1:26Þ

The added term is similar to the terms in the first sum: the distance to the cluster prototype is replaced by �
and the membership degree to this cluster is defined as the complement to 1 of the sum of all membership

degrees to the standard clusters. This in particular implies that outliers can have low membership degrees to

the standard clusters and high degree to the noise cluster, which makes it possible to reduce their influence

1Outliers correspond to atypical data points, that are very different from all other data, for instance located at a high
distance from the major part of the data. More formally, according to Hawkins (1980), an outlier is ‘an observation
that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism’.
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on the standard cluster: as PCM, the noise clustering approach relaxes the FCM normalization constraint

expressed in Equation (1.9) according to which membership degrees to good clusters must sum to 1.

Further comparison between NC and PCM (see Equations (1.26) and (1.16) shows that the algorithms

are identical in the case of a single cluster, with �2 corresponding to h (Davé and Sen, 1997, 1998). In the

case c > 1, the difference is that PCM considers one �i per cluster, whereas a single parameter is defined

in the NC case. This means that PCM has the advantage of having one noise class per good cluster,

whereas NC has only one (the NC generalization described hereafter overcomes this drawback). As a

consequence, the membership degrees to the noise cluster differ for the two methods: in the PCM case,

they are, for each noise cluster, the complement to 1 to the membership to the associated good cluster. In

noise clustering, as there is a single noise cluster, the membership degree to it is the complement to the

sum of all other memberships.

Another difference between PCM and NC comes from the fact that the PCM cost function can be

decomposed into c independent terms (one per cluster), whereas in the noise clustering approach such a

decomposition is not possible. This decomposition is one of the reasons why PCM leads to coinciding

clusters. Thus Davé and Krishnapuram (1997) interpret NC as a robustified FCM, whereas PCM behaves

like c independent NC algorithms.

The objective function (1.26) requires the setting of parameter �. In the initial NC algorithm, it was

set to

�2 ¼ l
1

c � n
Xc

i¼1

Xn

j¼1

d2
ij

 !
; ð1:27Þ

i.e., its squared value is a proportion of the mean of the squared distances between points and other cluster

prototypes, with l a user-defined parameter determining the proportion: the smaller the l, the higher the

proportion of points that are considered as outliers.

Noise clustering has been generalized to allow the definition of several �, and to define a noise scale per

cluster. To that aim, each point is associated to a noise distance �j, j ¼ 1; . . . ; n, the latter being defined as

the size of the cluster the point maximally belongs to, as in PCM: �j ¼ �i� for i� ¼ arg maxl ulj (Davé and

Sen, 1997, 1998). In this case, the difference between PCM and NC about distance scale vanishes, the only

remaining difference is the independence of clusters in the PCM objective function that does not appear in

the noise clustering case.

1.4.1.2 Robust Estimators

Another approach to handle noisy data-sets is based on the exploitation of robust estimators: as indi-

cated in Section 1.2.2, the fuzzy C-means approach is based on a least square objective function. It is well

known that the least square approach is highly sensitive to aberrant points, which is why FCM gives

unsatisfactory results when applied to data-sets contaminated with noise and outliers. Therefore, it has

been proposed to introduce a robust estimator in the FCM classic objective function (see Equation (1.10)),

leading to consider

J ¼
Xc

i¼1

Xn

j¼1

um
ij riðdijÞ; ð1:28Þ

where ri are robust symmetric positive definite functions having their minimum in 0 (Frigui and

Krishnapuram, 1996). According to the robust M-estimator framework, r should be chosen such that

rðzÞ ¼ logðJðzÞ�1Þ represents the contribution of error z to the objective function and J the distribution of

these errors. Choosing rðzÞ ¼ z2 as it is usually the case is equivalent to assuming a normal distribution of

the errors z and leads to constant weighting functions. That is, big errors have the same weight as small

errors and play too important a role on the correction applied to the parameters, making the objective

function sensitive to outliers. Therefore it is proposed to use another r, whose weighting functions tend to

0 for big values of z. Frigui and Krishnapuram (1996) design their own robust estimator to adapt to the

desired behaviour, defining the robust c-prototypes (RCP) algorithm.
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In the case where clusters are represented only by centers and a probabilistic partition is looked for (i.e.,

with constraint (1.9)), the update equations for the membership degrees and cluster prototypes derived

from Equation (1.28) then become (Frigui and Krishnapuram, 1996)

ci ¼

Pn

j¼1

um
ij fijxj

Pn

j¼1

um
ij fij

; uij ¼
1

Pc

k¼1

rðd2
ijÞ

rðd2
kjÞ

" # 1
m�1

; ð1:29Þ

where fij ¼ f ðdijÞ and f ¼ drðzÞ
dz

. It is to be noted that outliers still have membership degrees uij ¼ 1=c for

all clusters. The difference and advantage as compared with FCM comes from their influence on the

center, which is reduced through the fij coefficient (see Frigui and Krishnapuram (1996) for the fij
expression).

Other robust clustering algorithms include the method proposed by Wu and Yang (2002) that consider

the modified objective function

J ¼
Xc

i¼1

Xn

j¼1

um
ij ð1� e�bd2

ijÞ; ð1:30Þ

where b is a user-defined parameter that the authors propose to set to the inverse of the sample covariance

matrix. This function is first proposed as a replacement of the Euclidean distance by the more robust

exponential metric; yet, as pointed out by Zhang and Chen (2004), the mapping ðx; yÞ7! expð�bdðx; yÞÞ is
not a metric. Still, the analysis of the above objective function in the robust estimator framework holds and

shows that this function leads to a robust fuzzy clustering algorithm that can handle noisy data-sets Wu

and Yang (2002).

Davé and Krishnapuram (1996, 1997) show that PCM can be interpreted in this robust clustering

framework based on the M-estimator. They consider a slightly different formalization, where the

objective function for each cluster is written

J ¼
Xn

j¼1

rðxj � cÞ; leading to c ¼

Pn

j¼1

wðdijÞxj

Pn

j¼1

wðdijÞ
; where wðzÞ ¼ 1

z

dr
dz
: ð1:31Þ

Comparing with the update equations of PCM, this makes it possible to identify a weight function w and

by integration to deduce the associated estimator r. Davé and Krishnapuram (1996, 1997) show the

obtained r is indeed a robust function. This justifies at a formal level the qualities of PCM as regards noise

handling.

1.4.1.3 Weight Modeling

A third approach to handle outliers is exemplified by Keller (2000). It consists of associating each data

point a weight to control the influence it can have on the cluster parameters. The considered objective

function is

J ¼
Xc

i¼1

Xn

j¼1

um
ij

1

!q
j

d2
ij; under constraint

Xn

j¼1

!j ¼ !; ð1:32Þ

where the factor !j represents the weight for data point j, q a parameter to control the influence of the

weighting factor and ! a normalizing coefficient. The minimization conditions of this objective function

lead to the following update equations:

uij ¼
1

Pc

l¼1

d2
ij

d2
lj

 ! 1
m�1

; ci ¼

Pn

j¼1

um
ij

!q
j

xj

Pn

j¼1

um
ij

!q
j

; !j ¼

Pc

i¼1

um
ij d2

ij

� � 1
qþ1

Pn

l¼1

Pc

i¼1

um
il d2

il

� � 1
qþ1

!:
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Thus, the membership degrees are left unchanged, whereas the cluster centers take into account the

weights; points with high representativeness play a more important role than outliers. Representativeness

depends on the weighted average distance to cluster centers.

1.4.2 Fuzzifier Variants

Another class of FCM variants is based on the study of the fuzzifier, i.e., the exponent m in Equation

(1.10): as indicated in Section 1.2.2, FCM can be derived from the hard C-means algorithm by relaxing

the partition constraints, so that membership degrees belong to [0,1] and not {0,1}. To prevent member-

ship degrees from being restricted to the two values 0 and 1, the objective function must be modified and

the m fuzzifier is introduced.

Now as can be observed and proved (Klawonn and Höppner, 2003b; Rousseeuw, Trauwaert, and

Kautman, 1995), actually membership degrees do not exactly cover the range [0,1]: they never equal 0 or

1 (except in the special case where a data point coincides with a cluster center), i.e., in fact they belong to

]0,1[. In other words, membership functions have a core reduced to a single point (the cluster center) and

unbounded support. This is a drawback in the case of noisy data-sets, as in the case of clusters with

different densities (Klawonn and Höppner, 2003b; Rousseeuw, Trauwaert and Kautman, 1995): high

density clusters tend to influence or completely attract other prototypes (note that this problem can be

handled by using other distances than the Euclidean one).

To overcome this problem, Rousseeuw, Trauwaert and Kaufman, (1995) proposed replacing the

objective function by

J ¼
Xc

i¼1

Xn

j¼1

½auij þ ð1� aÞu2
ij�d2

ij; ð1:33Þ

where a is a user-defined weight determining the influence of each component. When a ¼ 1, the objective

function reduces to the hard C-means function (see Equation (1.1)), leading to a maximal contrast

partition (membership degrees take only values 0 or 1). On the contrary, a ¼ 0 leads to the fuzzy C-means

with m ¼ 2 and a low contrast partition (outliers for instance have the same membership degree as all

clusters). a makes it possible to obtain a compromise situation, where membership degrees in ]0,1[ are

reserved for points whose assignment is indeed unclear, whereas the others, and in particular outliers,

have degrees 0 or 1.

Klawonn and Höppner, (2003a,b) also take as their starting point the observation that membership

degrees actually never take the values 0 and 1. They perform the analysis in a more formal framework that

allows more general solutions: they proposed considering as objective function

J ¼
Xc

i¼1

Xn

j¼1

gðuijÞd2
ij: ð1:34Þ

Note that robust approaches proposed applying a transformation to the distances, whereas here a

transformation is applied to the membership degrees. Taking into account the constraints on uij normal-

ization (see Equation (1.9)), and setting the derivative to 0, the partial derivative of the associated

Lagrangian leads to

g0ðuijÞd2
ij � lj ¼ 0; ð1:35Þ

where lj is the Lagrange multiplier associated with the normalization constraint concerning xj. As it is

independent of i, this equation implies g0ðuijÞd2
ij ¼ g0ðukjÞd2

kj for all i; k. This explains why zero member-

ship degrees can never occur: the standard function gðuÞ ¼ um yields g0ð0Þ ¼ 0. Thus, in order to balance

the two terms, no matter how large d2
ij and how small d2

kj are, uij cannot be 0.

Therefore, they proposed replaceing the standard g function with other ones. The conditions g must

satisfy are gð0Þ ¼ 0 and gð1Þ ¼ 1, increasing and differentiable. Further, the derivative g0 must be
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increasing and must satisfy g0ð0Þ 6¼ 0. Klawonn and Höppner, (2003b) consider the same function as

Rousseeuw, Trauwaert, and Kautman (1995), i.e., gðuÞ ¼ au2 þ ð1� aÞu. Gaussian functions

gðuÞ ¼ ðeau � 1Þ=ðea � 1Þ were also suggested, since the parameter a has a similar effect to the fuzzifier

m in the standard fuzzy clustering: the smaller the a, the crisper the partition tends to be (Klawonn and

Höppner, 2003a). Klawonn (2004) proposesd dropping the differentiability condition and considering a

piecewise linear transformation to obtain more flexibility than with a single parameter a. For instance,

non-increasing functions that are flatter around 0.5 make it possible to avoid ambiguous membership

degrees forcing them to tend to 0 or 1.

1.4.3 Cluster Number Determination Variants

Partitioning clustering algorithms consist of searching for the optimal fuzzy partition of the data-set into c

clusters, where c is given as input to the algorithm. In most real data mining cases, this parameter is not

known in advance and must be determined. Due to the cluster merging phenomenon, the definition of an

appropriate c value for PCM is not so important as for FCM. Yet, as mentioned earlier, at a theoretical

level, PCM relies on an ill-posed optimization problem and other approaches should be considered. They

usually consist of testing several c values and comparing the quality of the obtained partition using

so-called validity criteria (see for instance Halkidi, Batistakis, and Vazirgiannis (2002); this solution is

computationally expensive. Other approaches, presented in this section, consist of considering the c value

as a parameter to be optimized.

Now with this respect the FCM objective function is minimal when c ¼ n, i.e., each cluster contains a

single point as in this case dij ¼ 0. Thus a regularization term is added, that is minimal when all points

belong to the same cluster, so as to penalize high c values. Then the combination of terms in the objective

function makes it possible to find the optimal partition in the smallest possible number of clusters.

Following this principle, Frigui and Krishnapuram (1997) proposed the competitive agglomeration

(CA) algorithm based on the objective function

J ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij � a
Xc

i¼1

Xn

j¼1

uij

 !2

: ð1:36Þ

The additional term is the sum of squares of cardinalities of the clusters, which is indeed minimal when all

points are assigned to a single cluster and all others are empty. The optimization process for this function

does not exactly follow the AO scheme and involves competition between clusters, based on their sizes

and distances to the points. Small clusters are progressively eliminated. A robust extension to CA has been

proposed in Frigui and Krishnapuram (1999): the first term in Equation (1.36) is then replaced by the term

provided in Equation (1.28) to exploit the robust estimator properties.

Sahbi amd Boujemaa (2005) proposed using as regularizer an entropy term, leading to

J ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij � a
1

n

Xn

j¼1

�
Xc

i¼1

uij log2ðuijÞ:

To verify the constraints on the memberships uij 2 ½0; 1�, they proposed considering Gaussian member-

ship functions in the form uij ¼ expð��ijÞ and estimating the �ij parameters. a then intervenes in the

parameter of the exponential and is to be interpreted as a scaling factor: when it is underestimated, each

point is a cluster; when it is overestimated, the membership functions are approximately constant, and one

gets a single big cluster. The number of clusters is then indirectly determined.

1.4.4 Possibilistic c-means Variants

As indicated in Section 1.24, the possibilistic C-means may lead to unsatisfactory results, insofar as the

obtained clusters may be coincident. This is due to the optimized objective function, whose global
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minimum is obtained when all clusters are identical (see Section 1.2.4). Hence the possibilistic C-means

can be improved by modifying its objective function. We mention here two PCM variants, based on the

adjunction of a penalization term in the objective function and the combination of PCM with FCM.

1.4.4.1 Cluster Repulsion

In order to hinder cluster merging, Timm and Kruse (2002) and Timm, Borgelt, Döreing, and Kruse

(2004) proposed including in the objective function a term expressing repulsion between clusters, so as to

force them to be distinct: the considered objective function is written

J ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij þ
Xc

i¼1

�i

Xn

i¼1

ð1� uijÞm þ
Xc

i¼1

gi

Xc

k¼1;k 6¼i

1

�dðci; cjÞ2
: ð1:37Þ

The first two terms constitute the PCM objective function (see Equation (1.16)), the last one expresses the

repulsion between clusters: it is all the bigger as the distance between clusters is small. gi is a parameter

that controls the strength of the cluster repulsion: it balances the two clustering objectives, namely the fact

that clusters should be both compact and distinct. This coefficient depends on clusters so that repulsion

can get stronger when the number of points associated with cluster i increases (Timm, Borgelt, Döring,

and Kruse, 2004). Parameter � makes repulsion independent of the normalization of data attributes. The

minimization conditions lead to the update equation

ci ¼

Pn

j¼1

um
ij xj � gi

Pc

k¼1;k 6¼i

1

dðci;ckÞ4
ck

Pn

j¼1

um
ij � gi

Pc

k¼1;k 6¼i

1

dðci;ckÞ4

ð1:38Þ

(the update equation for the membership degrees is not modified and is identical to Equation (1.17)).

Equation (1.38) shows the effect of repulsion between clusters: a cluster is attracted by the data assigned

to it and it is simultaneously repelled by the other clusters.

1.4.4.2 PCM Variants Based on Combination with FCM

Pal, Pal, and Bezdek (1997) and Pal, Pal, Keller, and Bezdek (2004) proposed another approach to

overcome the problems encountered with the possibilistic C-means: they argued that both possibilistic

degrees and membership degrees are necessary to perform clustering. Indeed, possibilistic degrees make

it possible to reduce the influence of outliers whereas membership degrees are necessary to assign points.

Likewise, Davé and Sen (1998) underlined that a good clustering result requires both the partitioning

property of FCM and the modeseeking robust property of PCM.

In Pal, Pal, and Bezdek (1997) the combination of FCM and PCM is performed through the optimiza-

tion of the following objective function:

J ¼
Xc

i¼1

Xn

j¼1

ðum
ij þ t

�
ijÞd2

ij; under the constraints

8j
Pc

i¼1

uij ¼ 1

8i
Pn

j¼1

tij ¼ 1
:

8
>><

>>:
ð1:39Þ

This means that uij is a membership degree, whereas tij corresponds to a possibilistic coefficient. Indeed, it

is not submitted to the normalization constraint on the sum across the clusters. The normalization

constraint it must hold aims at preventing the trivial result where tij ¼ 0 for all i; j. As pointed out in

several papers (Davé and Sen, 1998; Pal, Pal, Keller, and Bezdek, 2004) the problem is that the relative

scales of probabilistic and possibilistic coefficients are then different and the membership degrees

dominate the equations. Moreover, the possibilistic coefficients take very small values in the case of

big data-sets.

24 FUNDAMENTALS OF FUZZY CLUSTERING



Therefore Pal, Pal, Keller and Bezdek (2004) proposed another combination method, in the form

J ¼
Xc

i¼1

Xn

j¼1

ðaum
ij þ bt

�
ijÞd2

ij þ
Xc

i¼1

�i

Xn

j¼1

ð1� tijÞ�; ð1:40Þ

which uses the same constraint for tij as in the standard PCM (second term in J), and combines

possibilistic and membership degrees. a and b are user-defined parameters that rule the importance the

two terms must play. In the case where the Euclidean distance is used, the update equations are then

uij ¼
1

Pc

l¼1

d2
ij

d2
lj

� � 1
m�1

; tij ¼
1

1þ b
�i

d2
ij

� � 1
��1

; ci ¼

Pn

j¼1

ðaum
ij þ bt

�
ijÞxj

Pn

j¼1

ðaum
ij þ bt

�
ijÞ

:

Thus uij are similar to the membership degrees of FCM (see Equation (1.13)), and tij to the possibilistic

coefficients of PCM when replacing �i with �i=b (see Equation (1.17)). Cluster centers then depend on

both coefficients, parameters a, b, m; and � rule their relative influence. This shows that if b is higher than a

the centers will be more influenced by the possibilistic coefficients than the membership degrees. Thus, to

reduce the influence of outliers, a bigger value for b than a should be used. Still, it is to be noticed that

these four parameters are to be defined by the user and that their influence is correlated, making it

somewhat difficult to determine their optimal value. Furthermore the problem of this method is that it

loses the interpretation of the obtained coefficients; in particular, due to their interaction, tij cannot be

interpreted as typicality anymore.

1.5 UPDATE EQUATION VARIANTS: ALTERNATING CLUSTER
ESTIMATION

In this section, we study the fuzzy clustering variants that generalize the alternating optimization scheme

used by the methods presented up to now. The notion alternating cluster estimation (ACE) stands for a

distinguished methodology to approach clustering tasks with the aim of having the flexibility to tailor new

clustering algorithms that better satisfy application-specific needs. Instead of reformulating the clustering

task as a minimization problem by defining objective functions, the data analyst chooses cluster

prototypes that satisfy some desirable properties as well as cluster membership functions that have better

suited shapes for particular applications. This is possible, since the ACE framework generalizes the

iterative updating scheme for cluster models that stems from the alternating optimization approaches

(Equation (1.11 and 1.12)). However, the purpose of minimizing objective functions with expressions for

jU and jC is abandoned. Instead, the user chooses heuristic equations to re-estimate partitions and cluster

parameters by which the resulting algorithm iteratively refines the cluster model. Thus the classification

task is directly described by the chosen update equations, which do not necessarily reflect the minimiza-

tion of some criterion anymore.

Alternating cluster estimation is justified by the observation that convergence is seldom a problem in

practical examples (local minima or saddle points can be avoided). The ACE framework is particularly

useful when cluster models become too complex to minimize them analytically or when the objective

function lacks differentiability (Höppner, Klawonn, Kruse, and Runkler 1999). However, it is to be noted

that the ACE framework also encompasses all those algorithms that follow from the minimization of

objective functions as long as their respective update equations are chosen (which follow from the

necessary conditions for a minimum).

When clustering is applied to the construction of fuzzy rule-based systems, the flexibility of ACE

framework in choosing among different update equations is of particular interest. In such applications the

fuzzy sets carry semantic meaning, e.g., they are assigned linguistic labels like ‘‘low’’, ‘‘approximately

zero’’ or ‘‘high’’. Consequently the fuzzy sets, in fuzzy controllers for instance, are required to be convex,

or even monotonous (Zadeh, 1965). Furthermore, they have to have limited support, i.e., membership
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degrees different from zero are allowed only within a small interval of their universe. ACE provides the

flexibility to define fuzzy clustering algorithms that produce clusters �i whose corresponding fuzzy sets

��i
fulfil these requirements. The clusters and membership degrees ��i

ðxjÞ ¼ uij obtained with the

objective function-based clustering techniques contrarily do not carry the desired properties. The uij

obtained by AO as in the previous section can be interpreted as discrete samples of continuous member-

ship functions �i : Rp ! ½0; 1� for each cluster. The actual shape that is taken on by these membership

functions results from the respective update equations for the membership degrees. For the probabilistic

fuzzy AO algorithms the continuous membership function follows from Equation (1.13), with dij being

the Euclidian distance jj � jj:

�iðxÞ ¼
jjx� cijj�

2
m�1

Pc

l¼1

jjx� cljj�
2

m�1

: ð1:41Þ

Figure 1.11 shows the membership functions that would result from the probabilistic FCM algorithm for

two clusters. Obviously, the membership functions �i are not convex (i ¼ f1; 2g). The membership for

data points at first decreases the closer they are located to the other cluster center, but beyond the other

center membership to the first cluster increases again due to normalization constraint. Possibilistic

membership functions that result from a continuous extension according to Equation (1.17) are convex,

but they are not restricted to local environments around their centers (i.e., the memberships will never

reach zero for larger distances). Thus, if fuzzy sets with limited support as in fuzzy controllers are desired,

possibilistic membership functions are inadequate as well. The transformation of the membership

functions of the objective function-based techniques into the desired forms for the particular application

is possible, but often leads to approximation errors and less accurate models.

Therefore ACE allows you to choose other membership functions aside from those that stem from an

objective function-based AO scheme. Desired membership function properties can easily be incorporated

in ACE. The user can choose from parameterized Gaussian, trapezoidal, Cauchy, and triangular functions

(Höppner, Klawonn, Kruse, and Runkler, 1999). We present the triangular shaped fuzzy set as an example

in Figure 1.12, since it has all the desired properties considered above:

�iðxÞ ¼ 1� jjx�cijj
ri

� �a
if jjx� cijj � ri

0 otherwise;

(
ð1:42Þ

Figure 1.11 The membership functions obtained by probabilistic AO for two clusters at �0:5 and 0:5.

Figure 1.12 The parameterized triangular fuzzy set.
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where ri are the radii of the clusters, a 2 R>0. In an ACE algorithm using hypercone shaped clusters

(a ¼ 1) the memberships of data to fixed clusters are estimated using the above equation, such that

uij ¼ �iðxiÞ.
Deviating from alternating optimization of objective functions the user can also choose between

alternative update equations for the cluster prototypes. In ACE, a large variety of parameterized equations

stemming from defuzzification methods are offered for the re-estimation of cluster centers for fixed

memberships. The reference to defuzzification techniques arises, since a ‘‘crisp’’ center is computed from

fuzzily weighted data points. Also higher-order prototypes like lines, line segments, and elliptotypes have

been proposed for the ACE scheme (Höppner, Klawonn, Kruse, and Runkler, 1999). In the simplest case,

however, when clusters are represented by their centers only, new centers vectors could be calculated as

the weighted mean of data points assigned to them (like in the FCM; see Equation (1.14)).

After the user has chosen the update equations for U and C, memberships and cluster parameters are

alternatingly estimated (or updated, but not necessarily optimized w.r.t. some criterion function) as

defined. This leads to a sequence fðU1;C1Þ; ðU2;C2Þ; . . .g that is terminated after a predefined number of

iterations tmax or when the Ct have stabilized. Some instances of the ACE might be sensitive to the

initialization of the cluster centers. Thus determining C0 with some iterations of the probabilistic FCM

might be recommended. Notice that all conventional objective function-based algorithms can be

represented as instances of the more general ACE framework by selecting their membership functions

as well as their prototype update equations. An experimental comparison between ‘real’ ACE algorithms

that do not reflect the minimization of an objective function and classical AO algorithms as presented

above can be found in (Höppner, Klawonn, Kruse, and Runkler, 1999).

1.6 CONCLUDING REMARKS

In this chapter we attempted to give a systematic overview of the fundamentals of fuzzy clustering,

starting from the basic algorithms and underlining the difference between the probabilistic and possibi-

listic paradigms. We then described variants of the basic algorithms, adapted to specific constraints or

expectations. We further pointed out major research directions associated with fuzzy clustering. The field

is so broad that it is not possible to mention all of them. In this conclusion we briefly point out further

research directions that we could not address in the main part of the chapter due to length constraints.

1.6.1 Clustering Evaluation

An important topic related to clustering is that of cluster evaluation, i.e., the assessment of the obtained

clusters quality: clustering is an unsupervised learning task, which means data points are not associated

with labels or targets that indicate the desired output. Thus no reference is provided to which the obtained

results can be compared. Major cluster validity approaches include the evaluation of the trade off between

cluster compactness and cluster separability (Dunn 1974a; Rezaee, Lehieveldt and Reiber, 1998; Xie and

Beni, 1991) and stability based approaches (see e.g., Ben-Hur, Elisseeff, and Guyon (2002)).

Some criteria are specifically dedicated to fuzzy clustering: the partition entropy criterion for instance

computes the entropy of the obtained membership degrees,

PE ¼ �
X

i;j

uij log uij;

and must be minimized (Bezdek, 1975). Indeed, it takes into account that the fuzzy membership degrees

are degrees of freedom that simplify the optimization of the objective function, but that the desired

clustering output is still a crisp partition. A data partition that is too fuzzy rather indicates a bad adequacy

between the cluster number and the considered data-set and it should be penalized. Other fuzzy clustering

dedicated criteria can be found in Bezder (1974) or Windham (1981).

Such criteria can be used to evaluate quantitatively the clustering quality and to compare algorithms

one with another. They can also be applied to compare the results obtained with a single algorithm, when
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the parameter values are changed. In particular they can be used in order to select the optimal number of

clusters: applying the algorithm for several c values, the value c� leading to the optimal decomposition

according to the considered criterion is selected.

1.6.2 Shape and Size Regularization

As presented in Section 1.3.1, some fuzzy clustering algorithms make it possible to identify clusters of

ellipsoidal shapes and with various sizes. This flexibility implies that numerous cluster parameters are to

be adjusted by the algorithms. The more parameters are involved the more sensitive the methods get to

their initialization. Furthermore, the additional degrees of freedom lead to a lack of robustness.

Lately, a new approach has been proposed (Borgelt and Kruse, 2005) that relies on regularization to

introduce shape and size constraints to handle the higher degrees of freedom effectively. With a time-

dependent shape regularization parameter, this method makes it possible to perform a soft transition from

the fuzzy C-means (spherical clusters) to the Gustafson–Kessel algorithm (general ellipsoidal clusters).

1.6.3 Co-clustering

Co-clustering, also called bi-clustering, two mode clustering, two way clustering or subspace clustering,

has the specific aim of simultaneously identifying relevant subgroups in the data and relevant attributes

for each subgroup: it aims at performing both clustering and local attribute selection. It is in particular

applied in the bio-informatics domain, so as to detect groups of similar genes and simultaneously groups

of experimental conditions that justify the gene grouping. Other applications include text mining, e.g., for

the identification of both document clusters and their characteristic keywords (Kummamuru, Dhawale,

and Krishnapuram, 2003). Many dedicated clustering algorithms have been proposed, including fuzzy

clustering methods as for instance Frigui and Nasraoui (2000).

1.6.4 Relational Clustering

The methods described in this chapter apply to object data, i.e., consider the case where a description is

provided for each data point individually. In other cases, this information is not available, the algorithm

input takes the form of a pairwise dissimilarity matrix. The latter has size n� n, each of its elements

indicates the dissimilarity between point couples. Relational clustering aims at identifying clusters

exploiting this input. There exists a large variety of fuzzy clustering techniques for such settings (Bezdek,

Keller, Krishnapuram, and Pal, 1999; Hathaway and Bezdek, 1994) that are also based on objective

function optimization or the ACE scheme (runkler and Bezdek, 2003). The interested reader is also

referred to the respective chapter in Bezdek, Keller, Krishnapuram, and Pal (1999).

1.6.5 Semisupervised Clustering

Clustering is an unsupervised learning task. Yet it may be the case that the user has some a priori knowledge

about couples of points that should belong to the same cluster. Semisupervised clustering is concerned with

this learning framework, where some partial information is available : the clustering results must then

verify additional constraints, implied by these pieces of information. Specific clustering algorithms have

been proposed to handle these cases; the interested reader is referred to chapter 7 in this book.
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2
Relational Fuzzy Clustering

Thomas A. Runkler

Siemens AG, München, Germany

2.1 INTRODUCTION

Clustering is a method used to partition a set of objects into subsets, the so-called clusters. We consider

the case that the set of objects is specified by data. We distinguish between object data and relational

data. Object data contain a numerical vector of features for each object, for example, the length, width,

height, and weight of an object. Relational data quantify the relation between each pair of objects, for

example, the similarity of the two objects. For some sets of objects the object data representation is more

appropriate, for other sets of objects the relational data representation is more appropriate. In general,

object data can be transformed into relational data by applying a (pairwise) relational operator. For

example, the Euclidean distances between pairs of feature vectors can be interpreted as relations

between the corresponding objects. In the same way, each relational data-set can at least approximately

be represented by object data. For example, objects can be placed on a two-dimensional diagram, so that

more similar pairs of objects are placed closer together than less similar pairs of objects. Most chapters of

this book exclusively deal with object data. In this chapter we will explicitly focus on relational data and

how to find clusters in relational data. This chapter is organized as follows. In Section 2.2 we introduce

object and relational data in a more formalized way. In Section 2.3 we briefly review object clustering

models. In Section 2.4 we introduce the relational duals of these object clustering models and their

extensions. In Section 2.5 we consider relational clustering with non-spherical, higher-order prototypes.

In Section 2.6 we show that relational data can be clustered by just interpreting them as object data. In

Section 2.7 we present some illustrative application examples. Finally, in Section 2.8 we give some

conclusions.

2.2 OBJECT AND RELATIONAL DATA

A set of objects O ¼ fo1; . . . ; ong; n 2 Nþ, can be numerically specified by an object data-set

X ¼ fx1; . . . ; xng � Rp; p 2 Nþ. In this object data-set each of the n objects is numerically described

by p real-valued features. Notice that features on any subset ofR are included here, in particular (discrete)

features on (subsets of) N. Each object is represented as a point in the p-dimensional feature space, so an
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object data-set X can be visualized by plotting the feature vectors. If p 2 f1; 2; 3g then the vectors in X

can be directly plotted. If p > 3, then linear or nonlinear projection methods can be applied to produce

a visualization of X.

A set of objects O ¼ fo1; . . . ; ong, n 2 Nþ, can also be numerically specified by a relational dataset

R � Rn�n. In this relational data-set each pair of objects is numerically described by a real-valued

relation. Again, relations on any subset of R are included here, in particular (discrete) relations on

(subsets of) N. For convenience we do not distinguish between data-sets and matrices. For example, we

denote the ith component of the element xk from the set X as the element xki of the matrix X. Each entry

rjk; j; k 2 f1; . . . ; ng in the n� n relation matrix R then quantifies the relation between the pair of objects

ðoj; okÞ. Since a relational data-set R is equivalent to a square matrix, it can be easily visualized by a three-

dimensional plot on a rectangular n� n grid, where the third dimension is given by the elements of the

matrix R.

Often we consider positive relations where rjk � 0 for all j; k ¼ 1; . . . ; n, and symmetric relations

where rjk ¼ rkj for all j; k ¼ 1; . . . ; n. We distinguish between similarity and dissimilarity relations, and

require similarity relations to be reflexive, rjj ¼ 1 for all j ¼ 1; . . . ; n, and dissimilarity relations to be

irreflexive, rjj ¼ 0 for all j ¼ 1; . . . ; n.

A popular example for a relational dataset was given by Johnson and Wichern (1992). Consider the

words for the numbers 1 (‘one’) to 10 (‘ten’) in the 11 languages O ¼ f English, Norwegian, Danish,

Dutch, German, French, Spanish, Italian, Polish, Hungarian, Finnishg. The words for the same number in

two different languages are called concordant, if they have the same first letter. For example, the English

word ‘seven’ and the German ‘sieben’ are concordant, while the English ‘eight’ and the German ‘acht’ are

not. English and German have four concordant words for numbers between 1 and 10: 5, 6, 7, and 9 – so the

concordance between English and German is four. Since the concordances between two languages are

integers between 0 and 10, the distance between two languages is defined as 10 minus the concordance.

For O we obtain the distance matrix

D ¼

0 2 2 7 6 6 6 6 7 9 9

2 0 1 5 4 6 6 6 7 8 9

2 1 0 6 5 6 5 5 6 8 9

7 5 6 0 5 9 9 9 10 8 9

6 4 5 5 0 7 7 7 8 9 9

6 6 6 9 7 0 2 1 5 10 9

6 6 5 9 7 2 0 1 3 10 9

6 6 5 9 7 1 1 0 4 10 9

7 7 6 10 8 5 3 4 0 10 9

9 8 8 8 9 10 10 10 10 0 8

9 9 9 9 9 9 9 9 9 8 0

0

BBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCA

: ð2:1Þ

Notice that D is positive, symmetric, and irreflexive. In Johnson and Wichern (1992) the following crisp

clusters were reported:

c cluster structure

3 ffE;N;Da;Fr; I; Sp;Pg; fDu;Gg; fH;Figg
4 ffE;N;Da;Fr; I; Sp;Pg; fDu;Gg; fHg; fFigg
5 ffE;N;Dag; fFr; I; Sp;Pg; fDu;Gg; fHg; fFigg
7 ffE;N;Dag; fFr; I; Spg; fPg; fDug; fGg; fHg; fFigg
9 ffEg; fN;Dag; fFr; Ig; fSpg; fPg; fDug; fGg; fHg; fFigg
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Notice that these cluster structures are intuitively reasonable, even if they are only based on the very

simple concordance measure.

In general, relational data-sets can be manually or automatically generated. If the relational data-set is

manually generated, then a human expert has to rate (quantify) the relation between each pair of objects

based on some more or less subjective criteria. This is only feasible for a small number of objects. For a

larger number of objects this process is too expensive, because for n objects we have to quantify n� n

relation values. If the relational dataset is automatically generated, some (numerical) features have to be

identified to provide the necessary information about the relation between each pair of objects. These

features may be relational, but they may also be object features. To compute relational data from object

feature data, any norm jj:jj : Rp ! R can be used, for example,

rjk ¼ jjxj � xkjj: ð2:2Þ

In this case the relational data are dissimilarities. If we use a similarity measure (like cosine) instead, then

the relational data are similarities. The concordance measure presented above is an example of a

dissimilarity measure based on the character representation of the objects. In the following we will focus

on dissimilarities on numerical data, but dissimilarities on other data or similarities can be handled in a

similar way.

If we add constant vectors to each element of X, and/or rotate the vectors around an arbitrary center in

Rp, then the resulting relational dataset R produced by (2.2) will stay the same. Therefore, even if a

relational data-set R is generated from an object data-set X, then the original data-set X can in general not

be reconstructed from R. Moreover, in the general case, for a given data-set R there might not even exist an

object data-set X and a norm jj:jj that produces R using (2.2). It is, however, possible to at least

approximately produce a corresponding object data-set X from a given relational data-set R and a

norm jj:jj by Sammon mapping (Sammon, 1969). Sammon mapping produces an object data-set

Y ¼ fy1; . . . ; yng � Rq so that the distances

djk ¼ jjyj � ykjj; ð2:3Þ

j; k ¼ 1; . . . ; n, are as close as possible to the corresponding relational data rjk, i.e., djk � rjk for all

j; k ¼ 1; . . . ; n. If R is computed from an object data-set X, then this implies that X � Y . Sammon mapping

is done by minimizing the error functional

ESammon ¼
1

Pn

j¼1

Pn

k¼jþ1

rjk

Xn

j¼1

Xn

k¼jþ1

ðdjk � rjkÞ2

rjk

: ð2:4Þ

Minimization of ESammon can be done by gradient descent or Newton’s algorithm. The derivatives of

ESammon that are needed for these numerical optimization algorithms are

@ESammon

@xj

¼ 2

Pn

j¼1

Pn

k¼jþ1

rjk

X

j6¼k

djk � rjk

rjk

yk � yj

djk

ð2:5Þ

and

@2ESammon

@x2
j

¼ 2

Pn

j¼1

Pn

k¼jþ1

rjk

X

j6¼k

1

ðrjkÞ2
� 1

rjkdjk

þ ðyk � yjÞ2

rjkðdjkÞ3

 !
: ð2:6Þ

Notice that with each update of each object data vector xj; j ¼ 1; . . . ; n, all the distances djk ¼
jjxj � xkjj; k ¼ 1; . . . ; n, also have to be updated. In principle, Sammon mapping allows any object

data processing algorithm to be extended to relational data. In particular, we can apply Sammon

mapping to R and then apply a clustering algorithm to the resulting X. This approach was presented

in (Pal, Eluri, and Mandal, 2002) for the case of fuzzy clustering. This indirect approach will not

OBJECT AND RELATIONAL DATA 33



be pursued further here; instead we will focus on methods that explicitly process relational data in

Section 2.4. Before that, however, we will give a brief review of object clustering methods.

2.3 OBJECT DATA CLUSTERING MODELS

Clustering partitions a set of objects O ¼ fo1; . . . ; ong into c 2 f2; . . . ; n� 1g non-empty and pairwise

disjoint subsets C1; . . . ;Cc � O, so Ci 6¼ ; for all i 2 f1; . . . ; cg;Ci [ Cj ¼ ; for all i; j 2 f1; . . . ; cg, and

C1 [ . . . [ Cc ¼ O. The sets C1; . . . ;Cc can equivalently be described by a (hard) partition matrix

U 2 Mhcn, where

Mhcn ¼ U 2 f0; 1gc�nj
Xc

i¼1

uik ¼ 1; k ¼ 1; . . . ; n;
Xn

k¼1

uik > 0; i ¼ 1; . . . ; c

( )
: ð2:7Þ

2.3.1 Sequential Agglomerative Hierarchical Clustering

For object datasets X ¼ fx1; . . . ; xng � Rp finding good cluster partitions is guided by the similarities

between feature vectors. Objects with similar feature vectors should belong to the same cluster, and

objects with different feature vectors should belong to different clusters. A simple clustering algorithm is

sequential agglomerative hierarchical nonoverlapping (SAHN) clustering (Sneath and Sokal, 1973). The

SAHN algorithm starts with n clusters, each with one data point, so C1 ¼ fx1g; . . . ;Cn ¼ fxng. In each

step SAHN merges the pair of clusters with the lowest distance from each other, until the desired number

of clusters is achieved, or until finally all points are agglomerated in one single cluster. Depending on the

measure to compute the distances between pairs of clusters we distinguish three variants: single linkage

uses the minimum distance between all pairs of points from different clusters, complete linkage uses the

maximum distance, and average linkage uses the average distance.

2.3.2 (Hard) c-means

The drawback of all SAHN variants is their complexity that grows quadratically with the number of

objects. Hence, SAHN is not efficient for large data-sets. The complexity of SAHN can be significantly

reduced, if we do not compute all distances between pairs of points but if we represent each cluster by a

cluster center and only compute the distances between pairs of these points and centers. In this case, the

cluster structure is additionally specified by a set V ¼ fv1; . . . ; vcg � Rp, where vi is the center of cluster

i; i 2 f1; . . . ; cg. For a good cluster partition each data point should be as close as possible to the center of

the cluster it belongs to. This is the idea of the (hard) c-means (HCM) clustering model (Ball and Hall,

1965) that minimizes the objective function

JHCMðU;V ; XÞ ¼
Xc

i¼1

Xn

k¼1

uik jjxk � vijj2: ð2:8Þ

Optimization of the HCM clustering model can be done by alternating optimization (AO) through the

necessary conditions for extrema of JHCMðU;V ; XÞ.

uik ¼
�

1 ifjjxk � vijj ¼ minfjjxk � v1jj; . . . ; jjxk � vcjjg
0 otherwise;

ð2:9Þ

vi ¼

Pn

k¼1

uikxk

Pn

k¼1

uik

; ð2:10Þ
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i ¼ 1; . . . ; c; k ¼ 1; . . . ; n. There exist two versions of AO. The first version randomly initializes V and

then repeatedly updates U and V until some termination criterion on V holds, and the second version

randomly initializes U and then repeatedly updates V and U until some termination criterion on U holds.

If p < n then the first version is more efficient and if n < p then the second version is more efficient. Some

alternative ways to optimize clustering models are genetic algorithms (Bezdek and Hataway, 1994),

artificial life techniques (Runkler and Bezdek, 1997), ant colony optimization (ACO) (Runkler, 2005a),

and particle swarm optimization (PSO) (Runkler and Katz, 2006).

2.3.3 Fuzzy c-means

The main disadvantage of HCM is that it has to assign each point to exactly one cluster, also points that

partially belong to several overlapping clusters. This disadvantage is overcome by fuzzy clustering. In

analogy to (2.7) the set of fuzzy partitions is defined as

Mfcn ¼ U 2 ½0; 1�c�nj
Xc

i¼1

uik ¼ 1; k ¼ 1; . . . ; n;
Xn

k¼1

uik > 0; i ¼ 1; . . . ; c

( )
: ð2:11Þ

In analogy to (2.8) the fuzzy c-means (FCM) clustering model (Bezdek, 1981) is defined by the objective

function

JFCMðU;V ; XÞ ¼
Xc

i¼1

Xn

k¼1

um
ik jjxk � vijj2 ð2:12Þ

with a fuzziness parameter m 2 ð1;1Þwith a typical value of m ¼ 2. Optimization of the FCM clustering

model can be done by AO through the necessary conditions for extrema of JFCMðU;V ; XÞ.

uik ¼ 1

,
Xc

j¼1

jjxk � vijj
jjxk � vjjj

� � 2
m�1

; ð2:13Þ

vi ¼

Pn

k¼1

um
ikxk

Pn

k¼1

um
ik

: ð2:14Þ

Notice the similarity between Equations (2.10) and (2.14), and notice the difference between Equations

(2.9) and (2.13)!

2.3.4 Possibilistic c-means and Noise Clustering

A drawback of fuzzy partitions is that the some of memberships in all clusters has to be one for each data

point, also for noise points or remote outliers. This drawback is overcome by possibilistic partitions

Mpcn ¼ U 2 ½0; 1�c�nj
Xn

k¼1

uik > 0; i ¼ 1; . . . ; c

( )
: ð2:15Þ

Two clustering models that produce possibilistic partitions are possibilistic c-means (PCM) (Krishnapuram

and Keller, 1993) and noise clustering (NC) (Davé, 1991). The PCM objective function is

JPCMðU;V ; XÞ ¼
Xc

i¼1

Xn

k¼1

um
ik jjxk � vijj2 �

Xc

i¼1

�i

Xn

k¼1

ð1� uikÞm; ð2:16Þ
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with the cluster radii �1; . . . ; �c 2 Rþ. The necessary conditions for optima of PCM are Equation (2.14)

and (the Cauchy function)

uik ¼ 1

,
1þ jjxk � vijj2

�i

 ! 1
m�1

0
@

1
A: ð2:17Þ

The NC objective function is

JNCðU;V ; XÞ ¼
Xc

i¼1

Xn

k¼1

um
ik jjxk � vijj2 þ

Xn

k¼1

�2 1�
Xc

j¼1

ujk

 !m

; ð2:18Þ

with the parameter � 2 Rþ that represents the distance between each point and the center of a ‘‘noise’’

cluster. The necessary conditions for optima of NC are Equation (2.14) and

uik ¼ 1

,
Xc

j¼1

jjxk � vijj
jjxk � vjjj

� � 2
m�1

þ jjxk � vijj
�

� � 2
m�1

 !
: ð2:19Þ

2.3.5 Alternating Cluster Estimation

The AO algorithms of all four (HCM, FCM, PCM, and NC) and many other clustering models are special

cases of the alternating cluster extimation (ACE) (Runkler and Bezdek, 1999a). There exist two versions

of ACE, corresponding to the two versions of AO introduced before. The first version initializes V and

then alternatingly updates U and V . The second version initializes U and then alternatingly updates V and

U. Both ACE versions are defined by the update equations for U and V . The update equations for U may

be Equations (2.9), (2.13), (2.17), and (2.19) or, for example, exponential functions

uik ¼ e
� jjxk�vi jj

�i

� �a

; ð2:20Þ
�1; . . . ; �c; a > 0, or hyperconic functions (dancing cones)

uik ¼ 1� jjxk�vijj
ri

� �a
forjjxk � vijj � ri;

0 otherwise;

(
ð2:21Þ

r1; . . . ; rc; a > 0 (Runkler and Bezdek, 1999b). For X � ½�2; 2�;V ¼ f�1; 1g;m 2 f1:1; 1:5; 2; 3g;
a 2 f0:5; 1; 2; 4g; �1 ¼ �2 ¼ �1 ¼ �2 ¼ r1 ¼ r2 ¼ 1, the four classes of membership functions (2.13),

(2.17), (2.20), and (2.21) are displayed in Figure 2.1. Notice that these membership function families

share many similarities. For example, for m! 1 and for a! 0, they all become equal to the HCM

partitions u1k ¼ 1 and u2k ¼ 0 for x < 0 and u1k ¼ 0 and u2k ¼ 1 for x > 0, and for m!1 and for

a!1, they all have single peaks at v1 and v2. The update equations for V may be Equations (2.10),

(2.14) (which corresponds to a basic defuzzification distribution (BADD) (Filev and Yager, 1991)), or

other defuzzification operators like semi-linear defuzzification (SLIDE) (Yager and Filev, 1993) or

extended center of area (XCOA) (Runkler and Glesner, 1993). For a more extensive overview on

defuzzification see (Runkler, 1997). Notice that ACE is a family of generalized clustering algorithms

that may or may not optimize any clustering models. Depending on the choice of the update equations for

U and V , ACE may obtain different characteristics. For example, hyperconic membership functions lead

to a low sensitivity to noise and outliers.

2.3.6 Non-spherical Prototypes

All of the clustering models presented up to here are based on distances jjxk � vijj between data points and

cluster centers. If jj:jj is the Euclidean distance, then hyperspherical clusters are found. To extend a

36 RELATIONAL FUZZY CLUSTERING



(hyperspherical) clustering model to other cluster shapes, the Euclidean distance between data points and

cluster centers has to be replaced by a different distance measure. For example, instead of the Euclidean

distance we can use the local Mahalanobis distance. This means that for each cluster i ¼ 1; . . . ; c we

compute the local (fuzzy) covariance matrix

Si ¼
Xn

k¼1

um
ik � ðvi � xkÞT � ðvi � xkÞ; ð2:22Þ

compute the corresponding norm inducing matrix

Ai ¼ ðri det SiÞ1=p � ðST
i � SiÞ � ST

i ð2:23Þ

with the cluster volumes r1; . . . ; rc > 0, and set jjxk � vijj as the matrix norm ðvi � xkÞ � Ai � ðvi � xkÞT .

This distance measure leads to clustering models that find hyperellipsoidal clusters. If we use this distance

measure in the FCM model, then we call the resulting model the Gustafson–Kessel (GK) model

(Gustafson and Kessel, 1979). However, the same distance measure can be used in all of the clustering

models presented so far.
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Figure 2.1 Some membership function families for alternating clustering estimation.
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In the GK model, each cluster i ¼ 1; . . . ; c is represented by a cluster center vi and a norm inducing

matrix Ai. More generally, we can allow arbitrary geometrical parameters and the corresponding distance

measures. This leads to more complicated cluster prototypes. As examples for these more complicated

prototypes we briefly present linear varieties, so-called elliptotypes and circles. A linear variety can be

represented by an anchor point and one or more direction vectors. So, the prototypes of a c-varieties

model are ðvi; di;1; . . . ; di;qÞ 2 Rp�ðqþ1Þ; i ¼ 1; . . . ; c; q 2 f1; . . . ; p� 1g. The distance between data

point xk and the ith variety is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjxk � vijj2 �
Xq

j¼1

ððxk � viÞT dijÞ2
vuut ; ð2:24Þ

where the direction vectors dij are the largest eigenvectors of the local covariance matrices Si (2.22). If

these prototypes are used in the FCM model, then we obtain the fuzzy c-varieties (FCV) model (Bezdek,

Coray, Gunderson, and Watson, 1981a).

An elliptotype is a fuzzy set whose a cuts are (hyper-)ellipsoidals. An elliptotype is specified by

the same parameters as a variety, ðvi; di;1; . . . ; di;qÞ; i ¼ 1; . . . ; c; q 2 f1; . . . ; p� 1g, but the distance

between xk and the ith elliptotype is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjxk � vijj2 � a �
Xq

j¼1

ððxk � viÞT dijÞ2
vuut ; ð2:25Þ

a 2 ½0; 1�, which is a linear combination of the Euclidean distance between xk and vi and the distance

between xk and the variety according to (2.24). If these prototypes are used in the FCM model, then we

obtain the fuzzy c-elliptotypes (FCE) model (Bezdek, Coray, Gunderson, and Watson, 1981b).

As the last example for more complicated (object data) prototypes we present circles. A circle

is represented by a center and a radius, which yields to circle prototypes ðvi; riÞ; i ¼ 1; . . . ; c;
vi 2 Rp; ri 2 R. The distance between xk and the ith circle is

jjjxk � vijj � rij ð2:26Þ
and the radii can be updated by

ri ¼
Pn

k¼1 um
ikjjxk � vijjPn
k¼1 um

ik

; ð2:27Þ

i ¼ 1; . . . ; c. If these prototypes are used in the FCM model, then we obtain the fuzzy c-shells (FCS) model

(Davé, 1990).

In accordance with the fuzzy clustering models for these three cluster prototypes (FCV, FCE, and

FCS), we can define possibilistic clustering models, noise clustering models, and alternating cluster

estimation: PCV, PCE, PCS, NC–V, NC–E, NC–S, ACE–V, ACE–E, and ACE–S. The three prototype

families (varieties, elliptotypes, and shells) are only examples for possible prototypes. Clustering

algorithms for many other geometric forms can be obtained by just specifying the geometric cluster

prototype, the distance between data points and prototypes, and an algorithm to compute the free cluster

prototypes.

2.4 RELATIONAL CLUSTERING

The clustering models reviewed in the previous section are tailored to find clusters in object data. For all of

them, similar clustering models for relational data can be developed. In this section we review some of

these clustering models for relational data.

Let us first restrict ourselves to relational data clustering models specified by objective functions. The

relational data-set is denoted as R � Rn�n, and the goal is to compute a partition matrix U that minimizes
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the objective function JðU; RÞ. Notice that neither object data X nor cluster centers V are available in

relational clustering. Hence, the distances jjxk � vijj between data points and cluster prototypes that

appear in each of the clustering models from the previous section can in general not explicitly be

computed. There are (at least) three ways to overcome this problem: the restriction of the solution space,

the implicit computation of object data, and the explicit computation of object data. In the following we

present (at least) one representative for each of these three ways.

2.4.1 Relational Fuzzy c-medoids

The relational matrix R can be interpreted to contain distances between pairs of data points from X. In the

clustering models from the previous section we need to compute distances between points from X and

cluster centers from V . Hence, if we require V � X, i.e., each cluster center has to be on one of the data

points, then we can immediately use the information in R for the required distances. The cluster centers

V � X are called medoids. Therefore, the corresponding clustering model is called the (relational) fuzzy

c-medoids ((R)FCMdd) model (Krishnapuram, Joshi, Nasraoui, and Yi, 2001). (R)FCMdd has the same

objective function as FCM (2.12), but the additional restriction V � X. (R)FCMdd can be optimized by

alternating optimization. For simplicity we present the object data version FCMdd here, which can be

easily converted into the relational data version RFCMdd. The partition matrix U is computed according to

FCM using Equation (2.13), but the choice of V � X is a discrete optimization problem that has to be solved

using exhaustive search. The contribution of the ith cluster to the objective function JFCMdd ¼ JFCM is

J	i ¼
Xn

k¼1

um
ikjjxk � vijj2; ð2:28Þ

so J ¼
Pc

i¼1 J	i . If say vi ¼ xj, then we have jjvi � xkjj ¼ rjk, and so

J	i ¼ Jij ¼
Xn

k¼1

um
ikr2

jk: ð2:29Þ

So the best choice for each cluster center is vi ¼ xwi
; i ¼ 1; . . . ; n, with

wi ¼ argminfJi1; . . . ; Jing: ð2:30Þ

The exhaustive search is computationally expensive, so (R)FCMdd has a relatively high computational

complexity.

2.4.2 Relational Fuzzy c-means

The second approach to transform an objective function for object clustering into an objective function for

relational data clustering is to compute implicitly the cluster prototypes. This can be done by inserting the

equation to compute the cluster prototypes in AO into the objective function (for object data). This

process, called reformulation (Hathaway and Bezdek, 1995), yields an objective function for relational

data. For example, a reformulation of the FCM model is obtained by inserting Equation (2.14) into (2.12),

which leads to the relational fuzzy c-means (RFCM) (Bezdek and Hathaway, 1987) model with the

objective function

JRFCMðU; RÞ ¼
Xc

i¼1

Pn

j¼1

Pn

k¼1

um
ij um

ikr2
jk

Pn

j¼1

um
ij

: ð2:31Þ
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Optimization of JRFCM can be done by randomly initializing and then iteratively updating U using the

necessary conditions for extrema of RFCM:

uik ¼ 1

,
Xn

j¼1

Pn

s¼1

um
is rskPn

r¼1

um
ir

�
Pn

s¼1

Pn

t¼1

um
is um

it rst

2
Pn

r¼1

um
ir

� �2

Pn

s¼1

um
js

rsk

Pn

r¼1

um
jr

�
Pn

s¼1

Pn

t¼1

um
js

um
jt

rst

2
Pn

r¼1

um
jr

� �2

; ð2:32Þ

i ¼ 1; . . . ; c; k ¼ 1; . . . ; n, until some termination criterion holds. Notice that the optimization of the

RFCM is no alternating optimization (AO), but simply optimization, since the family V of optimization

variables has disappeared, so there remains only one family of optimization variables: U. Relational duals

for other object clustering models can be found in Hathaway, Davenport, and Bezdek (1989).

2.4.3 Non-Euclidean Relational Fuzzy c-means

If the relational data-set R is explicitly computed from object data X using the same norm jj:jj that is used

in the clustering model, then minimizing JFCMddðU;V ; XÞ will produce the same partition matrix U as

minimizing JRFCMddðU; RÞ, and minimizing JFCMðU;V ; XÞ will produce the same partition matrix U as

minimizing JRFCMðU; RÞ. However, different norms might have been used in the computation of R and in

clustering. Or the relational data-set may be obtained without any underlying object data-set, for example,

by manual rating. In these cases, we cannot match the object data versions with the relational data versions

of these algorithms any more. The RFCM model might even yield partition matrices U 62 Mfcn, in

particular we can have some uik < 0 or uik > 1, for non-Euclidean relational data-sets. To fix this

problem, Hathaway and Bezdek (1994) transformed the non-Euclidean distance matrix D into a

Euclidean distance matrix Db by applying a so-called b-spread transform

Db ¼ Dþ b � B; ð2:33Þ

with a suitable b 2 Rþ, where B 2 ½0; 1�n�n
is the off-diagonal matrix with bij ¼ 1 for all

i; j ¼ 1; . . . ; n; i 6¼ j, and bii ¼ 0 for all i ¼ 1; . . . ; n. In the non-Euclidean relational fuzzy c-means

(NERFCM) algorithm (Hathaway and Bezdek, 1994) the value of b is sucessively increased, i.e., higher

values ofb are added to the off-diagonal elements of R, until the Euclidean case is achieved, and we finally

have U 2 Mfcn.

2.4.4 Relational Alternating Cluster Estimation

In the same way as we extended AO of object clustering models to ACE, we can also extend the

optimization of relational data clustering models to relational alternating cluster estimation (RACE)

(Runkler and Bezdek, 1998). With the relational clustering methods presented above, the partitions were

computed from the relational data using the necessary conditions for extrema of an objective function (for

clustering relational data). For example, in RFCM we minimize JRFCMðU; RÞ (2.31) by subsequently

computing UðRÞ by (2.32), where (2.32) is derived from (2.31). In RACE, we abandon the objective

function and define a (relational) clustering algorithm by simply specifying a function UðRÞ to compute

the partition. The partition function used in (Runkler and Bezdek, 1998) was the Cauchy (or RPCM)

membership function

uik ¼ 1

,
1þ

r2
jk

�i

 ! 1
m�1

0
@

1
A: ð2:34Þ
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This model uses a medoid approach again. To find out which distance rjk corresponds to the membership

uik, i.e., which point xk is equal to which cluster center vj, an exhaustive search is applied again. Here, we

choose xk ¼ vj, so that the sum of the memberships of ok in all the other clusters is as low as possible.

k ¼ argmin
Xn

i¼1; i6¼j

ujk

( )
; ð2:35Þ

k ¼ 1; . . . ; n. Notice the similarity between Equations (2.34) and (2.17) and the similarity between

Equations (2.35) and (2.30) with (2.29). The choice of this partition function is just one out of infinitely

many possible RACE instances. Just as ACE, RACE may or may not optimize any clustering model,

depending on the choice of UðRÞ.

2.5 RELATIONAL CLUSTERING WITH NON-SPHERICAL
PROTOTYPES

The relational clustering models presented in the previous section are derived from object clustering

models that find spherical clusters. Therefore, they will find clusters that correspond to spherical clusters

in the associated object data. Notice that we assume that we can (at least approximately) associate any

relational data-set to an object data-set. If the (object) data-set contains clusters with more complicated

shapes, then the relational clustering models from the previous section will probably fail. In order to find

clusters in relational data that correspond to non-spherical prototypes in the associated object data we

present three approaches in this section: kernelization, projection, and local estimation of object data.

2.5.1 Kernelized Relational Clustering

Kernelization has gained a lot of interest in pattern recognition as an efficient way to transform a data-set

X ¼ fx1; . . . ; xng 2 Rp to a higher dimensional data-set Y ¼ fy1; . . . ; yng 2 Rq; q > p, so that the data

structure in Y is simpler than in X. For example, in support vector machines (SVM) (Müller et al., 2001),

the transformation theoretically maps not linearly separable data X to linearly separable data Y . The idea

in kernelized clustering is to map X to Y , so that the clusters can be better found in Y than in X. More

particularly, if X contains non-spherical clusters, then X can be mapped to Y , so that Y (theoretically)

contains spherical clusters. In this way, non-spherical clusters in X can be found by applying a spherical

clustering algorithm to Y .

According to Mercer’s theorem (Mercer, 1909; Schölkopf and Smola, 2002) there is a mapping

’ : Rp ! Rq such that

kðxj; xkÞ ¼ h’ðxjÞ; ’ðxkÞi ð2:36Þ

with the generalized dot product

hyj; yki ¼
Xq

i¼1

yjiyki: ð2:37Þ

This means that a dot product in Y can be simply computed by evaluating a kernel function in X. Hence,

replacing dot products with kernels is generally called the kernel trick. Some common kernel functions

are Gaussian kernels

kðxj; xkÞ ¼ e
�
jjxj � xkjj2

�2 ; ð2:38Þ

� 2 Rþ, hyperbolic tangent function kernels

kðxj; xkÞ ¼ 1� tanh
jjxj � xkjj2

�2

 !
; ð2:39Þ
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polynomial kernels

kðxj; xkÞ ¼ hxj; xkia; ð2:40Þ

a 2 Nþ, and radial basis function (RBF) (Powell, 1985) kernels

kðxj; xkÞ ¼ f ðjjxj � xkjjÞ: ð2:41Þ

Notice that Gaussian and hyperbolic tangent function kernels are special cases of RBF kernels. A

comparison between Equations (2.38) and (2.20) shows that kernel functions can be used as prototype

functions in ACE and vice versa.

Kernelization of a clustering model can be done by replacing dot products by kernels. This has been

done for HCM (Girolami, Smola, and Müller, 2002; Schölkopf, 1998; Zhang and Rudnicky, 2002), FCM

(Wu, Xie, and Yu, 2003; Zhang and Chen, 2002, 2003a), PCM (Zhang and Chen, 2003b), and NERFCM

(Hathaway, Huband, and Bezdek, 2005). Each entry in a relational data-set is a distance between a pair of

points. Following Mercer’s theorem this distance can be computed in Y by a kernel in X:

r2
jk ¼ jj’ðxjÞ; ’ðxkÞjj2 ð2:42Þ
¼ ð’ðxjÞ; ’ðxkÞÞTð’ðxjÞ; ’ðxkÞÞ ð2:43Þ
¼ ’ðxjÞT’ðxjÞ � 2’ðxjÞT’ðxkÞ þ ’ðxkÞT’ðxkÞ ð2:44Þ
¼ kðxj; xjÞ � 2 � kðxj; xkÞ þ kðxk; xkÞ ð2:45Þ
¼ 2� 2 � kðxj; xkÞ; ð2:46Þ

where we assume that kðx; xÞ ¼ 0 for all x 2 Rp. This means that kernelization of a relational clustering

algorithm is equivalent to transforming the relational data-set R into a relational data-set R0 by Equation

(2.46) and then simply applying the (unchanged) relational clustering algorithm to R0. In particular, for

Gaussian kernels (2.38) we obtain

r0jk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2 � e�
r2
jk

�2

r

; ð2:47Þ

and for hyperbolic tangent function kernels (2.39) we obtain

r0jk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � tanh
r2

jk

�2

 !vuut : ð2:48Þ

These two functions are visualized in Figure 2.2 for the parameters � 2 f0:5; 1; 2; 4g. Notice the close

similarity between the Gaussian and the hyperbolic tangent function kernels. Apparently, the effect of

kernelization in relational clustering is that large distances are clipped at the threshold of
ffiffiffi
2
p

, and that

smaller distances are scaled by an almost constant factor. We assume that the relational clustering

algorithm is invariant against scaling of the relational data by a constant factor c 2 Rþ. This means that

we obtain the same results whether we cluster the original data-set R or a scaled data-set R	with r	jk ¼ c � rjk

for all j; k ¼ 1; . . . ; n. In this case we can scale each of the transformation curves in Figures 2.2(a) and (b)

by a constant cð�Þ, so that the slope in the origin becomes equal to one, i.e., small distances remain (almost)

unchanged. This scaling yields the curves shown in Figures 2.2(c) and (d), which indicate that the effect of

the kernelization is essentially a clipping of the large distances at the threshold �.

2.5.2 Fuzzy Nonlinear Projection

At the end of Section 2.2 we presented an indirect relational clustering approach that first explicitly

produces a complete (approximate) object data-set by Sammon mapping and then applies object

clustering. We will not pursue this approach further here, but consider relational clustering methods

than either implicitly or locally construct approximate object data.
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An approach to implicitly construct approximate object data in clustering is fuzzy nonlinear projection

(FNP) (Runkler, 2003). The idea in FNP is to combine the objective functions of Sammon mapping (2.4)

and FCM (2.12). This yields the FNP objective function

JFNPðU; Y ; RÞ ¼ 1

Pn

j¼1

Pn

k¼jþ1

rjk

Xc

i¼1

Xn

j¼1

Xn

k¼jþ1

um
ij um

ik

ðdjk � rjkÞ2

rjk

; ð2:49Þ

where U 2 Mfcn (2.11) and djk as in (2.3). FNP maps the relational data-set R to an object data-set Y so that

objects belonging to the same cluster approximately have the same distance in X as in Y . Minimization of

JFNPðU; Y ; RÞ can be done by alternatingly performing one step of Newton optimization with respect to Y

yk ¼ yk �
@JFNP

@yk

� �,
@2JFNP

@y2
k

� �
; ð2:50Þ

where
@JFNP

@yk

¼ 2

Pn

j¼1

Pn

k¼jþ1

rjk

Xc

i¼1

X

j6¼k

um
ij um

ik

djk � rjk

rjk

yk � yj

djk

; ð2:51Þ

@2JFNP

@y2
k

¼ 2

Pn

j¼1

Pn

k¼jþ1

rjk

Xc

i¼1

X

j6¼k

um
ij um

ik

1

ðrjkÞ2
� 1

rjkdjk

þ ðyk � yjÞ2

rjkðdjkÞ3

 !
; ð2:52Þ
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Figure 2.2 Transformation of relational data by kernel functions.
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and finding the corresponding optimal U by solving

@JFNP=@uik ¼ 0; ð2:53Þ
where U 2 Mfcn, which leads to the update equation

uik ¼ 1

,
Xc

l¼1

P
j6¼k

um
ij
ðdjk�rjkÞ2

rjk

P
j6¼k

um
lj
ðdjk�rjkÞ2

rjk

0
BB@

1
CCA

1
m�1

: ð2:54Þ

Notice that in FNP, both Y and U have to be initialized, even if the order of the computation of Y and U is

reversed.

2.5.3 Relational Gustafson–Kessel Clustering

FNP performs an implicit construction of approximate object data. In this section we present an approach

to explicitly construct approximate object data, but only in a local environment: relational Gustafson–

Kessel clustering with medoids (RGKMdd) (Runkler, 2005b). For simplicity we present this algorithm

only for the two-dimensional case q ¼ 2. Just as FCMdd, RGKMdd requires that only data points can be

cluster centers, V � X. Therefore, the Euclidean distances between points and cluster centers

jjxk � vijj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk1 � vi1Þ � ðxk1 � vi1Þ þ ðxk2 � vi2Þ � ðxk2 � vi2Þ

p
ð2:55Þ

can be simply taken from R. If we want to use local Mahalanobis distances as in the GK model, however,

then the computation of the local covariance matrices Si (2.22) needs to compute

ðxk1 � vi1Þ � ðxk1 � vi1Þ ðxk1 � vi1Þ � ðxk2 � vi2Þ
ðxk2 � vi2Þ � ðxk1 � vi1Þ ðxk2 � vi2Þ � ðxk2 � vi2Þ

� �
; ð2:56Þ

and the entries of this matrix cannot be directly taken from R. They can, however, be locally computed by

a triangulation approach (Lee, Slagle, and Blum, 1977). In addition to xk and vi we then consider another

data point xj 2 X, where xj 6¼ vi and xj 6¼ xk, and form a triangle (Figure 2.3), so we have

jxk1 � vi1j ¼rik � cos aik; ð2:57Þ
jxk2 � vi2j ¼rik � sin aik; ð2:58Þ

where, following the cosine theorem,

cos a ¼
d2

ik þ d2
ij � r2

jk

2 � dik � dij

: ð2:59Þ

To determine the signs of the distance vectors another data point xl 2 X is chosen, where xl 6¼ vi; xl 6¼ xk,

and xl 6¼ xj. Now the sign of ðxk1 � vi1Þ � ðxk2 � vi2Þ is positive, if and only if

jaþ b� �j � g; ð2:60Þ

l

vi

xk

xj

x

Figure 2.3 Triangulation for the (R)GKMdd model.
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where the angles b and g can be computed using the cosine theorem again,

cos b ¼
r2

jl þ d2
ij � d2

il

2 � rjl � dij

; ð2:61Þ

cos g ¼
r2

jl þ r2
jk � r2

kl

2 � rjl � rjk

: ð2:62Þ

2.6 RELATIONAL DATA INTERPRETED AS OBJECT DATA

In the previous sections we have presented clustering algorithms for object and for relational data. We

assumed that object data are clustered by object clustering, and relational data are clustered by relational

clustering. In this section, however, we follow the idea introduced in Katz, Runkler, and Heesche (2005)

and apply object clustering models to relational data. This approach is illustrated for a simple example

here. The suitability of this approach to real world data is proven in the orginal paper (Katz, Runkler, and

Heesche, 2005). Consider a data-set with five objects, where objects o1; o2, and o4 have distance zero to

each other, objects o3 and o5 also have distance zero, and the distances between all the other pairs of

objects are equal to one. This yields the following (crisp) relational data-set:

R ¼

0 0 1 0 1

0 0 1 0 1

1 1 0 1 0

0 0 1 0 1

1 1 0 1 0

0
BBBB@

1
CCCCA
: ð2:63Þ

Let us now interpret R as an object dataset

X ¼ fð0; 0; 1; 0; 1ÞT ;
ð0; 0; 1; 0; 1ÞT ;
ð1; 1; 0; 1; 0ÞT ;
ð0; 0; 1; 0; 1ÞT ;
ð1; 1; 0; 1; 0ÞTg:

ð2:64Þ

Obviously, for c ¼ 2 we expect any object clustering algorithm to find the cluster centers

V ¼ fð0; 0; 1; 0; 1ÞT ;
ð1; 1; 0; 1; 0ÞTg:

ð2:65Þ

Notice that V ¼ X! This result corresponds to the partition matrix

Us ¼
1 1 0 1 0

0 0 1 0 1

� �
; ð2:66Þ

which corresponds to the natural clusters fo1; o2; o4g and fo3; o4g. Notice the correspondence between

the rows of U and the cluster centers that always occurs when binary relational data-sets are clustered!

This example shows that clusters in relational data cannot only be found by relational clustering but also

by object clustering. If object clustering is applied to relational data, then each row (or column) of the

relational dataset is interpreted as a ‘‘relation pattern’’ that indicates the correspondence to all other

objects. This leads to the correlation between the rows of the partition matrix and the cluster centers.

Notice that there is no straightforward approach to apply relational clustering to object data!
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2.7 SUMMARY

In this chapter we have provided a survey of existing approaches for relational clustering. The various

relational clustering models can be distinguished using the following six criteria:


 The partition function used might be derived from a given clustering model and the corresponding set

of admissible partitions, or it might be specified by the user. The fuzzy, possibilistic, and noise

clustering models lead to the fuzzy (RF), possibilistic (RP), and noise (RN) partition functions. In

general, the alternating cluster estimation (RACE) scheme allows arbitrary functions such as Gaussian

or triangular functions to be used as partition functions.


 Non-Euclidean relational data might lead to problems in relational clustering. These problems can be

avoided by applying a b-spread transformation to the relational data until they become Euclidean.


 Kernelization corresponds to another transformation of the relational data that can be interpreted as a

transformation of the corresponding object data to a (much) higher-imensional space.


 Nonlinear projection combines clustering with projection. Objects that belong to the same cluster have

the same distance in the original as in the projected space. Nonlinear projection not only provides a

cluster partition but also object data that correspond to the original relational data.


 Various cluster prototypes can be used in relational clustering, for example, points or C-means (CM),

c-medoids (CMdd), points with local covariance matrices or Gustafson–Kessel (GK) prototypes,

Gustafson–Kessel medoids (GKMdd), c-varieties (CV), c-elliptotypes (CE), or c-shells (CS).


 Relational clustering models were designed for relational data, but even object clustering algorithms

may be used for clustering relational data.

Using this taxonomy, a clustering algorithm can be simply specified using the check box form shown in

Figure 2.4. For example, if you tick the second box in rows 1 through 3, and the first box in row 4 through

6, then you obtain kNERFCM. This check box form allows you to specify 2 � 2 � 2 � 4 � 7 � 2 ¼ 448

different relational clustering algorithms, and most of them may be useful. Notice that using this

taxonomy the RFNP algorithm should actually be called RFCMP, but for convenience we keep the

original name RFNP here.

2.8 EXPERIMENTS

In order to illustrate the different algorithms for relational fuzzy clustering described in this chapter we

select 10 out of the 448 algorithms whose taxonomy was presented in the previous section and apply these

10 algorithms to the language concordance data introduced in Section 2.2. In particular, we consider the

RACE, NERFCM, RFNP, RGKMdd, and FCM algorithms and their kernelized variants kRACE,

kNERFCM, kRFNP, kRGKMdd, and kFCM. Kernelization was done using Gaussian kernels (2.47)

using � ¼ 10. This maps the relational data from ½0; 10� to ½0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 � e�1
p

� � ½0; 1:124�, so the effect is

similar to a normalization. In each experiment the algorithm searched for c ¼ 3 clusters. Remember that

in the original paper by Johnson and Wichern (1992) the optimal crisp solution was given as

ffE;N;Da;Fr; I; Sp;Pg; fDu;Gg; fH;Figg. Each algorithm was started with random initialization

and then run for t ¼ 100 steps. A quick analysis of the objective functions showed that for the language

� non–kernelized � kernelized (k)
� Euclidean � non–Euclidean (NE)
� object � relational (R)
� F � P � N � ACE
� CM � CMdd � GK � GKMdd � CV � CE � CS � other
� non–projection � projection (P)

Figure 2.4 A clustering form: check one box in each row to specify a clustering algorithm!
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concordance data-set all of the considered algorithms had come close to convergence after 100 steps.

Notice that this analysis could not be performed for (k)RACE, since the ACE algorithms usually do not

possess an objective function to be minimized. Fuzziness was always set to m ¼ 2, and the projection

methods (k)FNP and (k)RGKMdd used two-dimensional projections.

Figure 2.5 shows the results for RACE and kRACE. The three membership functions are shown as

solid, dashed, and dotted curves over the 11 objects (languages). RACE produces one cluster that is

dominated by Du and has the second largest membership for G, one cluster that is dominated by P and has

relatively large memberships for Fr; Sp, and I, and one cluster that is dominated by Fi and has the second

largest membership for H. Notice that this correlates quite well with the originally proposed crisp partion

above. Also notice that this is obviously not a fuzzy partition in the sense that the sum of memberships is

equal to one for each datum, U 62 Mfcn with Mfcn as in (2.11). The kRACE memberships in Figure 2.5(b)

are very similar to the RACE memberships in Figure 2.5(a), but the memberships are almost linearly

transformed from ½0; 1� to ½0:5; 1�. This effect is caused by the normalization of the memberships due to

kernelization.

Figure 2.6 shows the results for NERFCM and kNERFCM. NERFCM produces one cluster that mainly

includes E, N, and Da and one cluster that mainly includes Fr; Sp; I, and P, so these two clusters

correspond to the big crisp cluster reported above. The third cluster basically contains the remaining

objects (language) and thus corresponds to the two small crisp clusters. The kNERFCM membership
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Figure 2.5 RACE and kRACE membership functions obtained for the language concordance data.
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Figure 2.6 NERFCM and kNERFCM membership functions obtained for the language concordance data.
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functions are almost the same as the NERFCM membership functions, so for � ¼ 10, kernelization does

not change the NERFCM results much.

Figure 2.7 shows the results for RFNP and kRFNP. The RFNP and kRFNP partitions in Figure 2.7(a)

and (b), respectively, are almost crisp and do not match the crisp clusters presented in the original work.

However, if we look at the projections produced by RFNP in Figure 2.7(c), then we can observe a

meaningful arrangement of the objects E, N, and Da at the top left corner, Fr; I; Sp, and P at the top-right

corner, and the remaining objects distributed around these, with Fi and H furthest away. This correlates

well with the (k)NERFCM results. In the projections produced by kRFNP in Figure 2.7(d) the objects are

moved much closer together, so apparently the effect of kernelization is a higher concentration of the

RFNP object projections.

Figure 2.8 shows the results for RGKMdd and kRGKMdd. The RGKMdd partition is crisp and does not

match our expectations. The reason is that one of the local covariance matrices becomes degenerate

because it is not covered by sufficient data points. This is a general problem with all members of the GK

family when applied to very small data-sets. However, the kRGKMdd partition looks much more

reasonable, so kernelization seems to be able to overcome this GK problem.

Figure 2.9 finally shows the results for the object–data algorithms FCM and kFCM. The partitions are

very similar to the partitions that were obtained by RFCM and kRFCM which corroborates the claim in
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Figure 2.7 RFNP and kRFNP results obtained for the language concordance data.
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Katz, Runkler, and Heesche (2005) that object data clustering can produce reasonable results even in

relational clustering.

2.9 CONCLUSIONS

In this chapter we have presented a multitude of different algorithms for clustering relational data and

discussed the specific characteristics of some of these. Which of these algorithms is most appropriate for a

given application is usually a highly application-specific question. Here are some general guidelines for

selecting a clustering model:


 In general it is useful to start with a simple clustering model and then successively try more complicated

clustering models. This means that in the beginning the checks in Figure 2.4 should be as far left as

possible, and only after some experiments should be moved to the right.


 If the data are very noisy, then possibilistic (P), noise (N), or other ACE models should be preferred.


 If the data contain outliers, possibilistic (P), noise (N), or other ACE models might be more suitable that

fuzzy (F) models. Moreover, kernelization is recommendable, since it clips high distances.
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Figure 2.8 RGKMdd and kRGKMdd membership functions obtained for the language concordance data.
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Figure 2.9 FCM and kFCM membership functions obtained for the language concordance data.

CONCLUSIONS 49




 If the data come from a non-Euclidean process, then the b transform should be used, i.e., a non-

Euclidean (NE) version.


 If the clusters in the data are assumed to be non-hyperspherical, then there are several ways to exploit

this information: if the geometrical cluster shape is explicitly known, then the corresponding cluster

prototypes should be used, such as c-varieties (CV), c-elliptotypes (CE), or c-shells (CS). If the clusters

are roughly (but not exactly) hyperspherical, then local covariance matrices as in the Gustafson–Kessel

(GK) model are recommendable. If no information about the cluster shape is available, then kerneliza-

tion or projection might be a good choice.
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3.1 INTRODUCTION

Since Ruspini (1969) first proposed the idea of fuzzy partitions, fuzzy clustering has grown to be an

important tool for data analysis and modeling. Especially after the introduction of the fuzzy c-means

algorithm (Bezdek, 1973; Dunn, 1973), objective function-based fuzzy clustering has received much

attention from the scientific community as well as the practitioners of fuzzy set theory (Baraldi and

Blonda, 1999a,b; Bezdek and Pal, 1992; Höppner, Klawonn, Kruse and Runkler, 1999; Yang, 1993).

Consequently, fuzzy clustering has been applied extensively for diverse tasks such as pattern recognition

(Santoro, Prevete, Cavallo, and Catanzariti, 2006), data analysis (D’Urso, 2005), data mining (Crespo

and Weber, 2005), image processing (Yang, Zheng and Lin, 2005), and engineering systems design

(Sheu, 2005). Objective function-based fuzzy clustering has also become one of the key techniques in

fuzzy modeling, where it is used for partitioning the feature space from which the rules of a fuzzy system

can be derived (Babuška, 1998).

In general, objective function-based fuzzy clustering algorithms partition a data-set into overlapping

groups by minimizing an objective function derived from the distance between the cluster prototypes and

the data points (or objects). The clustering results are largely influenced by how this distance is computed,

since it determines the shape of the clusters. The success of fuzzy clustering in various applications may

depend very much on the shape of the clusters. As a result, there is a significant amount of literature on

fuzzy clustering, which is aimed at investigating the use of different distance functions in fuzzy

clustering, leading to different cluster shapes.

One way of influencing the shape of the clusters is to consider prototypes with a geometric structure.

The fuzzy c-varieties (FCV) algorithm uses linear subspaces of the clustering space as prototypes

(Bezdek, Coray, Gunderson, and Watson, 1981a), which is useful for detecting lines and other linear

structures in the data. The fuzzy c-elliptotypes (FCE) algorithm takes convex combinations of fuzzy
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c-varieties prototypes with fuzzy c-means prototypes to obtain localized clusters (Bezdek, Coray,

Gunderson, and Watson, 1981b). Kaymak amd Setnes (2002) proposed using volumes in the clustering

space as the cluster prototypes. Liang, Chou, and Han (2005) introduced a fuzzy clustering algorithm that

can also deal with fuzzy data.

Another way for influencing the shape of the clusters is modifying the distance measure that is used in the

objective function. Distances in the well known fuzzy c-means algorithm of Bezdek (1973) are measured

by the squared Euclidean distance. Gustafson and Kessel (1979) use the quadratic Mahanalobis norm to

measure the distance. Jajuga (1991) proposed using the L1-distance and Bobrowski and Bezdek (1991) also

used the L1-distance. Bargiela and Pedrycz (2005) applied the L1-distance to model granular data.

Further, Hathaway, Bezdek, and Hu (2000) studied the Minkowski semi-norm as the dissimilarity function.

In this chapter, we consider fuzzy clustering with the more general case of the Minkowski distance and

the case of using a root of the squared Minkowski distance. The Minkowski norm provides a concise,

parametric distance function that generalizes many of the distance functions used in the literature. The

advantage is that mathematical results can be shown for a whole class of distance functions, and the user

can adapt the distance function to suit the needs of the application by modifying the Minkowski

parameter. By considering the additional case of the roots of the squared Minkowski distance, we

introduce an extra parameter that can be used to control the behavior of the clustering algorithm with

respect to outliers. This root provides an additional way of dealing with outliers, which is different from

the ‘‘noise cluster’’ approach proposed in Dave (1991).

Our analysis follows the approach that Groenen and Jajuga (2001) introduced previously. Minimiza-

tion of the objective function is partly done by iterative majorization. One of the advantages of iterative

majorization is that it is a guaranteed descent algorithm, so that every iteration reduces the objective

function until convergence is reached. The algorithm in Groenen and Jajuga (2001) was limited to the case

of a Minkowski parameter between 1 and 2, that is, between the L1-distance and the Euclidean distance.

Here, we extend their majorization algorithm to any Minkowski distance with Minkowski parameter

greater than (or equal to) 1. This extension also includes the case of the L1-distance. We also explore the

behaviour of our algorithm with an illustrative example using real-world data.

The outline of the chapter is as follows. We expose the formalization of the clustering problem in

Section 3.2. The majorizing algorithm for fuzzy c-means with Minkowski distances is given in Section

3.3, while the influence of a robustness parameter is considered in Section 3.4. We discuss in Section 3.5

the behavior of our algorithm by using an illustrative example based on empirical data concerning

attitudes about the Internet. Finally, conclusions are given in Section 3.6.

3.2 FORMALIZATION

In this chapter, we focus on the fuzzy clustering problem that uses a root of the squared Minkowski

distance. This problem can be formalized by minimizing the objective (or loss) function

LðF;VÞ ¼
Xn

i¼1

XK

k¼1

f s
ikd2l

ik ðVÞ ð3:1Þ

under the constraints

0 � fik � 1; i ¼ 1; . . . ; n k ¼ 1; . . . ;K
PK

k¼1 fik ¼ 1; i ¼ 1; . . . ; n
ð3:2Þ

where n is the number of objects, K is the number of fuzzy clusters, fik is the membership grade of object i

in fuzzy cluster k, s is the weighting exponent larger than 1. The distance between object i given by the ith

row of the n� m data matrix X and fuzzy cluster k of the K � m cluster coordinate matrix V is given by

d2l
ik ðVÞ ¼

Xm

j¼1

jxij � vkjjp
 !2l=p

; 1 � p � 1; 0 � l � 1; ð3:3Þ

where l is the root of the squared Minkowski distance d2l
ik ðVÞ with 1 � p � 1.
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The introduction of the root l allows the control of the loss function against outliers. Figure 3.1 shows

how the root of the (normalized) squared Minkowski distance varies for different values of l. For large l,

e.g., l ¼ 1, the difference between the large distance values and the small distance values is emphasized.

Hence, outliers may dominate the loss function, whereas the loss function will be more robust if l is small,

because the relative difference between the large distance values and small distance values is reduced.

The use of Minkowski distances allows you to vary the assumptions of the shape of the clusters by

varying p. The most often used value is p ¼ 2;which assumes a circular cluster shape. Using p ¼ 1 assumes

that the clusters are in the shape of a (rotated) square in two dimensions or a diamond like shape in three or

more dimensions. For p ¼ 1, the clusters are assumed to be in the form of a box with sides parallel to the

axes. Both p ¼ 1 and p ¼ 1 can be used in cases where the data structures have ‘‘boxy’’ shapes, that is,

shapes with sharp ‘‘edges’’ (Bobrowski and Bezdek, 1991). A summary of combinations of l and p and

some properties of the distances are presented in Table 3.1 (taken from Groenen and Jajuga, 2001).

Groenen and Jajuga (2001) note that (3.1) has several known fuzzy clustering models as a special

case. For example, for p ¼ 2 and l ¼ 1, the important member of fuzzy ISO DATA, a well-known family

of fuzzy clustering, is obtained that corresponds to squared Euclidean distances (while assuming the

identity metric). A fuzzy clustering objective function that is robust against outliers can be obtained by

choosing l ¼ 1=2 and p ¼ 1 so that the L1-norm is used. Note that this choice implicitly assumes a

‘‘boxy’’ shape of the clusters. A robust version of fuzzy clustering with a circular shape can be specified by

l ¼ 1=2 and p ¼ 2, which implies the unsquared Euclidean distance. Thus, l takes care of robustness
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Figure 3.1 Root of the normalized squared Minkowski distance for different values of l.

Table 3.1 Special distances obtained by specific choice of l and p and some of their properties.

p l Distance Assumed cluster shape Robust

1 1.0 Squared L1 Box/diamond No

1 0.5 L1 Box/diamond Yes

2 1.0 Squared Euclidean Circular No

2 0.5 Unsquared Euclidean Circular Yes

1 1.0 Squared dominance Box No

1 0.5 Dominance Box Yes
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issues and p of the shape of the clusters. Dodge and Rousson (1998) named the cluster centroids

for l ¼ 1=2 and p ¼ 1 ‘‘L1-medians,’’ for l ¼ 1 and p ¼ 1 ‘‘L1-means,’’ for l ¼ 1=2 and p ¼ 2

‘‘L2-medians,’’ and for l ¼ 1 and p ¼ 2 the well known ‘‘L2-means.’’

3.3 THE MAJORIZING ALGORITHM FOR FUZZY C-MEANS
WITH MINKOWSKI DISTANCES

Depending on the particular function, the minimization method of iterative majorization has some nice

properties. The most important one is that in each iteration of the iterative majorization the loss function is

decreased until this value converges. Such guaranteed descent methods are useful because no step in the

wrong direction can be taken. Note that this property does not imply that a global minimum is found

unless the function exhibits a special property such as convexity. Some general papers on iterative

majorization are De Leeuw (1994), Heiser (1995), Lange, Hunter and Yang (2000), Kiers (2002), and

Hunter and Lange (2004). An introduction can be found in Borg and Groenen (2005).

The majorization algorithm of Groenen and Jajuga (2001) worked for all 1 � p � 2. Below we expand

their majorization algorithm to the situation of all p � 1. Each iteration of their algorithm consists of two

steps: (1) update the cluster memberships F for fixed centers Vand (2) update V for fixed F. For Step (2)

we use majorization. Below, we start by explaining some basic ideas of iterative majorization. Then, the

update of the cluster memberships is given. This is followed by some derivations for the update of the

cluster centers V in the case of 1 � p � 2. Then, the update is derived for 2 < p <1 and a special update

for the case of p ¼ 1.

3.3.1 Iterative Majorization

Iterative majorization can be seen as a gradient method with a fixed step size. However, iterative

majorization can also be applied to functions that are at some points nondifferentiable. Central to iterative

majorization is the use of an auxiliary function similar to the first-order Taylor expansion used as an

auxiliary function in a gradient method and second-order expansion for Newton’s method. The unique

feature of the auxiliary function in iterative majorization – the so-called majorizing function – is that it

touches the original function or is located above it. In contrast, the auxiliary functions of the gradient

method or Newton’s method can be partially below and above the original function.

Let the original function be presented by ’ðXÞ, the majorizing function by ’̂ðX;YÞ, where Y is the

current known estimate. Then, a majorizing function has to fulfil the following three requirements: (1)

’̂ðX;YÞ is a more simple function in X than’ðXÞ, (2) it touches’ðXÞ at the known supporting point Y so

that ’ðYÞ ¼ ’̂ðY;YÞ, and (3) ’̂ðX;YÞ is never smaller than ’ðXÞ, that is, ’ðXÞ � ’̂ðX;YÞ for all X.

Often, the majorizing function is either linear or quadratic.

To see how a single iteration reduces ’ðXÞ, consider the following. Let Y be some known point and let

the minimum of the majorizing function ’̂ðX;YÞ be given by Xþ. Note that for a majorizing algorithm to

be sufficiently fast, it should be easy to compute Xþ. Because the ’̂ðX;YÞ is always larger than or equal to

the ’ðXÞ, we must have ’ðXþÞ � ’̂ðXþ;YÞ. This property is essential for the so-called sandwich

inequality, that is, the chain

’ðXþÞ � ’̂ðXþ;YÞ � ’̂ðY;YÞ ¼ ’ðYÞ; ð3:4Þ
which proves that the update Xþ never increases the original function. For the next iteration, we simply

set Yequal to Xþ and compute a new majorizing function. For functions that are bounded from below or

are sufficiently constrained, the majorization algorithm always gives a convergent sequence of non-

increasing function values, see, for example, Borg and Groenen (2005).

One property that we use here is that if a function consists of a sum of functions and each of

these functions can be majorized, then the sum of the majorizing functions also majorizes the

original functions. For example, suppose that ’ðXÞ ¼
P

i ’iðXÞ and ’iðXÞ � ’̂iðX;YÞ then

’ðXÞ �
P

i ’̂iðX;YÞ.

56 FUZZY CLUSTERING WITH MINKOWSKI DISTANCE FUNCTIONS



3.3.2 Updating the Cluster Membership

For fixed cluster centers V, Groenen and Jajuga (2001) derive the update of the cluster memberships F as

fik ¼
d2l

ik ðVÞ
� ��1=ðs�1Þ

PK
l¼1 d2l

il ðVÞ
� ��1=ðs�1Þ ð3:5Þ

for fixed Vand s > 1, see also Bezdek (1973). These memberships are derived by taking the Lagrangian

function, setting the derivatives equal to zero, and solving the equations.

There are two special cases. The first one occurs if s is large. The larger s, the closer �1=ðs� 1Þ
approaches zero. As a consequence ½d2l

ik ðVÞ�
�1=ðs�1Þ � 1 for all ik so that update (3.5) will yield

fik � 1=K. Numerical accuracy can produce equal cluster memberships, even for not too large s, such

as s ¼ 10. If this happens for all fik, then all cluster centers collapse into the same point and the algorithm

gets stuck. Therefore, in practical applications s should be chosen quite small, say s � 2. The second

special case occurs if s approaches 1 from above. In that case, update (3.5) approaches the update for hard

clustering, that is, setting

fik ¼
1 if dik ¼ minl dil

0 if dik 6¼ minl dil;

�
ð3:6Þ

where it is assumed that minl dil is unique.

3.3.3 Updating the Cluster Coordinates

We follow the majorization approach of Groenen and Jajuga (2001) for finding an update of the cluster

coordinates V for fixed F. Our loss function LðF;VÞ may be seen as a weighted sum of the lth root of

squared Minkowski distances. Because the weights f s
ik are nonnegative, it is enough for now to consider

d2l
ik ðVÞ, the root of squared Minkowski distances. Let us focus on the root for a moment. Groenen and

Heiser (1996) proved that for root l of a, with 0 � l � 1, a � 0 and b > 0, the following majorization

inequality holds:

al � ð1� lÞbl þ lbl�1a; ð3:7Þ

with equality if a ¼ b. Using (3.7), we can obtain the majorizing inequality

d2l
ik ðVÞ � ð1� lÞd2l

ik ðWÞ þ ld
2ðl�1Þ
ik ðWÞd2

ikðVÞ; ð3:8Þ

where W is the estimate of V from the previous iteration and we assume for the moment that dikðWÞ > 0.

Thus, the root l of a squared Minkowski distance can be majorized by a constant plus a positive weight

times the squared Minkowski distance.

The next step is to majorize the squared Minkowski distance. To do so, we distinguish three cases: (a)

1 � p � 2, (b) 2 < p <1, and (c) p ¼ 1.

For the case of 1 � p � 2, Groenen and Jajuga (2001) use Hölder’s inequality to prove that

d2
ikðVÞ �

Pm
j¼1ðxij � vkjÞ2jxij � wkjjp�2

d
p�2
ik ðVÞ

¼
Xm

j¼1

a
ð1�p�2Þ
ijk ðxij � vkjÞ2;

¼
Xm

j¼1

a
ð1�p�2Þ
ijk v2

kj � 2
Xm

j¼1

b
ð1�p�2Þ
ijk vkj þ c

ð1�p�2Þ
ik ; ð3:9Þ
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where

a
ð1�p�2Þ
ijk ¼ jxij � wkjjp�2

d
p�2
ik ðVÞ

;

b
ð1�p�2Þ
ijk ¼a

ð1�p�2Þ
ijk xij;

c
ð1�p�2Þ
ik ¼

Xm

j¼1

a
ð1�p�2Þ
ijk x2

ij:

For p � 2, (3.9) is reversed, so that it cannot be used for majorization. However, Groenen, Heiser,

and Meulman (1999) have developed majorizing inequalities for squared Minkowski distances

with 2 < p <1 and p ¼ 1. We first look at 2 < p <1. They proved that the Hessian of the squared

Minkowski distance always has the largest eigenvalue smaller than 2ðp� 1Þ. By numerical experimenta-

tion they even found a smaller maximum eigenvalue of ðp� 1Þ21=p but they were unable to prove this.

Knowing an upper bound of the largest eigenvalue of the Hessian is enough to derive a majorizing

inequality if it is combined with the requirement of touching at the supporting point (that is, at this point

the gradients of the squared Minkowski distance and the majorizing function must be equal and the same

must hold for their function values).

This majorizing inequality can be derived as follows. For notational simplicity, we express the squared

Minkowski distance as d2ðtÞ ¼ ð
P

j jtjj
pÞ2=p

. The first derivative @d2ðtÞ=@tj can be expressed as

2tjjtjjp�2=dp�2ðtÞ. Knowing that the largest eigenvalue of the Hessian of d2ðtÞ is bounded by 2ðp� 1Þ,
a quadratic majorizing function can be found (Groenen, Heiser, and Meulman, 1999) of the form

d2ðtÞ � 4ðp� 1Þ
Xm

j¼1

t2
j � 2

Xm

j¼1

tjbj þ c;

with

bj ¼ 4ðp� 1Þuj �
1

2

@d2ðuÞ
@uj

¼ uj 4ðp� 1Þ � jujjp�2

dp�2ðuÞ

" #
;

c ¼ d2ðuÞ þ 4ðp� 1Þ
Xm

j¼1

u2
j �

Xm

j¼1

uj

@d2ðuÞ
@uj

¼ 4ðp� 1Þ
Xm

j¼1

u2
j � d2ðuÞ;

and u the known current estimate of t. Substituting tj ¼ xij � vkj and uj ¼ xij � wkj gives the majorizing

inequality

d2
ikðVÞ � 4ðp� 1Þ

Xm

j¼1

ðxij � vkjÞ2

� 2
Xm

j¼1

ðxij � vkjÞðxij � wkjÞ½4ðp� 1Þ � jxij � wkjjp�2=d
p�2
ik ðWÞ�

þ 4ðp� 1Þ
Xm

j¼1

ðxij � wkjÞ2 � dikðWÞ:

Some rewriting yields

d2
ikðVÞ � að2<p<1Þ

Xm

j¼1

v2
kj � 2

Xm

j¼1

b
ð2<p<1Þ
ijk vkj þ

Xm

j¼1

c
ð2<p<1Þ
ijk ; ð3:10Þ
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where

að2<p<1Þ ¼ 4ðp� 1Þ;

b
ð2<p<1Þ
ijk ¼ að2<p<1Þwkj � ðxij � wkjÞjxij � wkjjp�2=d

p�2
ik ðWÞ;

c
ð2<p<1Þ
ik ¼ að2<p<1Þ

Xm

j¼1

w2
kj � d2

ikðWÞ þ 2
Xm

j¼1

xijðxij � wkjÞjxij � wkjjp�2=d
p�2
ik ðWÞ:

If p gets larger, að2<p<1Þ also becomes larger, thereby making the majorizing function steeper. As a result,

the steps taken per iteration will be smaller. For the special case of p ¼ 1, Groenen, Heiser, and Meulman

(1999) also provided a majorizing inequality. This one can be (much) faster than using (3.10) with a large

p. It depends on the difference between the two largest values of jxij � wkjj over the different j.

Let us for the moment focus on d2ðtÞ again. And let ’j be an index that orders the values jtjj
decreasingly, so that jt’1

j � jt’2
j � . . . � jt’m

j. The majorizing function for p ¼ 1 becomes

d2ðtÞ � a
Xm

j¼1

t2
j � 2

Xm

j¼1

tjbj þ c;

with

a ¼

ju’1
j

ju’1
j � ju’2

j if ju’1
j � ju’2

j > ";

�þ ju’1
j

"
ifju’1

j � ju’2
j � ";

8
>><

>>:

bj ¼
a
ju’2
juj

jujj
if j ¼ ’1;

auj if j 6¼ ’1;

8
<

:

c ¼ d2ðuÞ þ 2
X

j

ujbj � a
X

j

u2
j :

Note that the definition of a for ju’1
j � ju’2

j � " takes care of ill conditioning, that is, values of a getting

too large. Strictly speaking, majorization is not valid anymore, but for small enough � the monotone

convergence is retained.

Backsubstitution of tj ¼ xij � vkj and uj ¼ xij � wkj gives the majorizing inequality

d2
ikðVÞ � a

ðp¼1Þ
ik

X

j

ðxij � vkjÞ2 � 2
X

j

ðxij � vkjÞbðp¼1Þijk þ c
ðp¼1Þ
ik

¼ a
ðp¼1Þ
ik

X

j

v2
kj � 2

X

j

vkjb
ðp¼1Þ
ijk þ c

ðp¼1Þ
ik ;

ð3:11Þ

where

a
ðp¼1Þ
ik ¼

jxi’1
� wk’1

j
jxi’1
� wk’1

j � jxi’2
� wk’2

j if jxi’1
� wk’1

j � jxi’2
� wk’2

j > ";

"þ jxi’1
� wk’1

j
"

if jxi’1
� wk’1

j � jxi’2
� wk’2

j � ";

8
>><

>>:

b
ðp¼1Þ
ijk ¼

a
ðp¼1Þ
ik xij �

jxi’2
� wk’2

jðxi’1
� wk’1

Þ
jxi’1
� wk’1

j

� �
if j ¼ ’1;

a
ðp¼1Þ
ik wkj if j 6¼ ’1;

8
><

>:

c
ðp¼1Þ
ik ¼ d2

ikðWÞ � 2
X

j

b
ðp¼1Þ
ijk ðxij � wkjÞ �

X

j

a
ðp¼1Þ
ik w2

kj þ 2
X

j

a
ðp¼1Þ
ik x2

ij:
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Recapitulating, the loss function is a weighted sum of the root of the squared Minkowski distance. The

root can be majorized by (3.8) that yields a function of squared Minkowski distances. For the case

1 � p � 2, (3.9) shows how the squared Minkowski distance can be majorized by a quadratic function in

V (see Figure (3.2), (3.10) shows how this can be done for 2 < p <1 and (3.11) for p ¼ 1. These results

can be combined to obtain the following majorizing function for LðF;VÞ, that is,

LðF;VÞ � l
Xm

j¼1

XK

k¼1

v2
kj

Xn

i¼1

aijk � 2l
Xm

j¼1

XK

k¼1

vkj

Xn

i¼1

bijk þ cþ
Xn

i¼1

XK

k¼1

cik; ð3:12Þ

where

aijk ¼

f s
ikd

2ðl�1Þ
ik ðWÞað1�p�2Þ

ijk if 1 � p � 2;

f s
ikd

2ðl�1Þ
ik ðWÞað2<p<1Þ if 2 < p <1;

f s
ikd

2ðl�1Þ
ik ðWÞaðp¼1Þik if p ¼ 1;

8
>>>><

>>>>:

bijk ¼

f s
ikd

2ðl�1Þ
ik ðWÞbð1�p�2Þ

ijk if 1 � p � 2;

f s
ikd

2ðl�1Þ
ik ðWÞbð2<p<1Þ

ijk if 2 < p <1;

f s
ikd

2ðl�1Þ
ik ðWÞbðp¼1Þijk if p ¼ 1;

8
>>>><

>>>>:

cik ¼

f s
ikd

2ðl�1Þ
ik ðWÞcð1�p�2Þ

ik if 1 � p � 2;

f s
ikd

2ðl�1Þ
ik ðWÞcð2<p<1Þ

ik if 2 < p <1;

f s
ikd

2ðl�1Þ
ik ðWÞcðp¼1Þik if p ¼ 1;

8
>>><

>>>:

c ¼
Xn

i¼1

XK

k¼1

f s
ikð1� lÞd2l

ik ðWÞ:

It is easily recognized that (3.12) is a quadratic function in the cluster coordinate matrix V that reaches

its minimum for

vþkj ¼
Pn

i¼1 bijkPn
i¼1 aijk

: ð3:13Þ

3.3.4 The Majorization Algorithm

The majorization algorithm can be summarized as follows.

1. Given a data-set X. Set 0 � l � 1, 1 � p � 1, and s � 1. Choose ", a small positive constant.

2. Set the membership grades F ¼ F0 with 0 � f 0
ik � 1 and

PK
k¼1 f 0

ik ¼ 1 and the cluster coordinate

matrix V ¼ V0. Compute Lprev ¼ LðF;VÞ.
3. Update F by (3.5) if s > 1 or by (3.6) if s ¼ 1.

4. Set W ¼ V. Update V by (3.13).

5. Stop if ðLprev � LðF;VÞÞ=LðF;VÞÞ < ".
6. Set Lprev ¼ LðF;VÞ and go to Step 3.

3.4 THE EFFECTS OF THE ROBUSTNESS PARAMETER k

The parameter l in the fuzzy clustering algorithm determines how robust the algorithm is with respect to

outliers. To show the effects of l on the solution, we generated a two-dimensional artificial data-set of 21
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Figure 3.2 The original function d2ðtÞ and the majorizing functions for p ¼ 1, p ¼ 3, and p ¼ 1 using supporting

point u ¼ ½2;�3�0.
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observations as follows. Two clusters of 10 observations each have their cluster centers at coordinates

(2,2) and (6,2), respectively. The coordinates of the observations in these clusters are normally distributed

with a variance of 1 and mean equal to their cluster centers. The final observation is an outlier and is

located at (4,13). The resulting configuration of observations is shown in Figure 3.3(a).

Any robust clustering algorithm with K ¼ 2 should find the two clusters that were used to generate this

data-set. However, if the clustering algorithm is not robust, one cluster may have its center at the outlying

observation and the other cluster may contain the remaining data points. To study for what values of l our

algorithm is robust, we ran our fuzzy clustering algorithm for l ¼ 0:01; 0:02; . . . ; 0:99; 1:00 using p ¼ 2

and s ¼ 1:2.

For values of l < 0:87, we find that the cluster centers found by the algorithm are close to the centers

used to construct the data, see Figure 3.3(b) for the solution of l ¼ :8. For l � 0:87, we found one cluster

center at the coordinates of the outlier, and the other cluster was located at the center of the remaining

observations, see Figure 3.3(c) for the solution of l ¼ 1. As expected, we find that the clustering

algorithm is more robust with respect to outliers if the parameter l is set to a low value.

3.5 INTERNET ATTITUDES

To show how fuzzy clustering can be used in practice, we apply it to an empirical data-set. Our data-set is

based on a questionnaire on attitudes toward the Internet.1 It consists of evaluations of 22 statements about

the Internet by respondents gathered around 2002 before the wide availability of broadband Internet

access. The statements were evaluated using a seven-point Likert scale, ranging from 1 (completely

disagree) to 7 (completely agree). Respondents who had a missing value on at least one of the statements

were removed from the analysis yielding 193 respondents in our analysis.

The respondents are clustered using the fuzzy clustering algorithm to study their attitudes toward the

Internet. We use K ¼ 3. The convergence criterion " of the majorization algorithm was set to 10�8. The

0 2 4 6 8
0

5

10

15

0 2 4 6 8
0

5

10

15

0 2 4 6

(a) (b) (c)

8
0

5

10

15

Figure 3.3 Results of fuzzy clustering algorithm in artificial data-set. (a) shows the original data-set. (b) and (c) show

the results for l ¼ 0:8 and l ¼ 1:0, respectively. The cluster centers are marked using dots and the data points usingþ
and � signs, depending on which cluster they belong to.

1We would like to thank Peter Verhoef for making these data available. The data can be found at http://people.
few.eur.nl/groenen/Data.
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monotone convergence of the majorization algorithm generally leads to a local minimum. However,

depending on the data and the different settings of p, s, and l, several local minima may exist. Therefore,

in every analysis, we applied 10 random starts and report the best one. We tried three different values of p

(1; 2;1) to examine the cluster shape, two values of s (1.2, 1.5) to study the sensitivity for the fuzziness

parameter s, and two values for l (0.5, 1.0) to check the sensitivity for outliers.

Table 3.2 shows some results for this data-set using different values for l; s, and p. The final value of the

loss function and the volumes of the three clusters are calculated in every instance. As there is no natural

standardization for LðF;VÞ, the values can only be used to check for local minima within a particular

choice of l; s, and p.

The labeling problem of clusters refers to possible permutations of the clusters among different runs. To

avoid this problem, we took the Vobtained by l ¼ 1; p ¼ 1, and s ¼ 1:2 as a target solution V� and tried

all permutation matrices P of the rows of V (with VðPermÞ ¼ PV) for other combinations of l; p, and s and

chose the one that minimizes the sum of the squared residuals
X

k

X

j

ðv�kj � v
ðPermÞ
kj Þ2 ¼ jjV� � PVjj2: ð3:14Þ

The permutation P that minimizes (3.14) is also applied to the cluster memberships, so that FðPermÞ ¼ FP0.
By using this strategy, we assume that the clusters are the same among the different analyses.

To compare the size of the clusters in solutions for different settings of l; s, and p, we do not want to use

LðF;VÞ as it depends on these settings. Therefore, we define a volume measure for the size of a cluster. To

do so, we need the cluster covariance matrix with elements

Gk ¼
Pn

i¼1 f s
ikðxi � vkÞ0ðxi � vkÞPn

i¼1 f s
ik

;

where xi is the 1� j row vector of row i of X and vk row i of V. Then, as a measure of the volume of cluster

k one can use detðGkÞ. However, we take detðGkÞ1=m
, which can be interpreted as the geometric mean of

the eigenvalues of Gk and has the advantage that it is not sensitive to m. Note that Gk still depends on s so

that it is only fair to compare cluster volumes for fixed s. If outliers are a problem in this data-set, we expect

that the cluster volumes will be larger for the nonrobust case of l ¼ 1 than for the robust case of l ¼ 0.

Table 3.2 shows that for s ¼ 1:5 the cluster volumes are nearly all the same with a slight difference

among the clusters of p ¼ 1. For s ¼ 1:2, Cluster 2 is generally the largest and the other two have about the

same size. The more robust setting of l ¼ 0:5 generally shows slightly larger clusters, but the effect does

not seem large. Therefore, outliers do not seem to be a problem in this data-set.

To interpret the clusters, we have to look at V. As it is impossible to show the clusters in a

22-dimensional space, they are represented by parallel coordinates (Inselberg, 1981, 1997). Every cluster

Table 3.2 Results of fuzzy clustering for Internet data-set using K ¼ 3.

Cluster volumes

l s p LðF;VÞ Cluster 1 Cluster 2 Cluster 3

0.5 1.2 1 4087 1.315 1.411 1.267

0.5 1.2 2 1075 1.227 1.326 1.268

0.5 1.2 1 421 1.355 1.408 1.341

0.5 1.5 1 2983 0.965 0.965 0.979

0.5 1.5 2 773 0.920 0.920 0.920

0.5 1.5 1 310 0.973 0.973 0.973

1 1.2 1 103 115 1.281 1.363 1.236

1 1.2 2 7358 1.177 1.328 1.173

1 1.2 1 1123 1.257 1.588 1.284

1 1.5 1 83 101 0.965 0.997 0.979

1 1.5 2 5587 0.920 0.920 0.920

1 1.5 1 878 0.977 0.977 0.977
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k defines a line through the cluster centers vkj, see Figure 3.4 for s ¼ 1:2 and l ¼ 1. Note that the order of

the variables is unimportant. This figure can be interpreted by considering the variables that have different

scores for the clusters. The patterns for p ¼ 1; 2 and1 are similar and p ¼ 1 shows them the clearest.

For p ¼ 1 and l ¼ 1, each cluster center is a (weighted) median of a cluster. Because all elements of the

Internet data-set are integers, the cluster centers necessarily have integer values. Figure 3.4 shows the

parallel coordinates for p ¼ 1. The solid line represents Cluster 1 and is characterized by respondents

saying that the Internet is easy, safe, addictive and who seem to form an active user community (positive

answers to variables 16 to 22). However, the strongest difference of Cluster 1 to the others is given by their

total rejection of regulation of content on the Internet. We call this cluster the experts. Cluster 2 (the

dashed line) refers to respondents that are not active users (negative answers to variables 18 to 22), find

the Internet not user-friendly, unsafe to pay, not addictive, and they are neutral on the issue of regulation

of, the content of Web sites. This cluster is called the novices. Cluster 3 looks in some respects like Cluster

1 (surfing is easy, paying is not so safe) but those respondents do not find the Internet addictive, are neutral

on the issue of the speed of the Internet connection, and seem to be not such active users as those of Cluster

1. They are mostly characterized by finding the costs of Internet high and allowing for some content

regulation. This cluster represents the cost-aware Internet user.

As we are dealing with three clusters and the cluster memberships sum to one, they can be plotted in a

triangular two-dimensional scatterplot – called a triplot – as in Figure 3.5. To reconstruct the fuzzy

memberships from this plot, the following should be done. For Cluster 1, one has to project a point along

a line parallel to the axis of Cluster 3 onto the axis of Cluster 1. We have done this with dotted lines for

respondent 112 for the case of p ¼ 1, s ¼ 1:2, and l ¼ 1. We can read from the plot that this respondent

has fuzzy memberships fi1 of about 0.20. Similarly, for Cluster 2, we have to draw a line horizontally

(parallel to the axis of Cluster 1) and project it onto the axis of Cluster 2 showing fi2 of about 0.65. Finally,

fi3 is obtained by projecting onto the axis of Cluster 3 along a line parallel to Cluster 2, yielding fi3 of about

0.15. In four decimals, these values are 0.2079, 0.6457, and 0.1464. Thus, a point located close to a corner

implies that this respondent has been almost solely assigned to this cluster. Also, a point exactly in the

middle of the triangle implies an equal memberships of 1/3 to all three clusters. Finally, points that are on a

straight line from a corner orthogonal to a cluster axis have equal cluster memberships of two clusters. For

Disagree
strongly

Neutral

(a) (b) (c)

Disagree
strongly

Neutral Agree
strongly

Disagree
strongly

Neutral Agree
strongly

1. Paying using Internet is safe
2. Surfing the Internet is easy
3. Internet is unreliable
4. Internet is slow
5. Internet is user-friendly
6. Internet is the future’s means of communication
7. Internet is addictive
8. Internet is fast
9. Sending personal data using the Internet is unsafe
10. The prices of Internet subscriptions are high
11. Internet offers many possibilities for abuse
12. The costs of surfing are high
13. Internet offers unbounded opportunities
14. Internet phone costs are high
15. The content of web sites should be regulated
16. Internet is easy to use
17. I like surfing
18. I often speak with friends about the Internet
19. I like to be informed of important new things
20. I always attempt new things on the Internet first
21. I regularly visit websites recommended by others
22. I know much about the Internet

p = 1 p = 2 p = ∞

Agree
strongly

Figure 3.4 Parallel coordinates representation of clusters with l ¼ 1, p ¼ 1, and s ¼ 1:2. The lines correspond to

Cluster 1 (solid line), Cluster 2 (dashed line), and Cluster 3 (dotted line).
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the case of p ¼ 1, Figure 3.5 shows a vertical line (starting in Cluster 2 and orthogonal to the Cluster 1

axis), implying that the memberships for Clusters 1 and 3 are the same for those respondents.

For the choice s ¼ 1:5 and p ¼ 2 or1, all clusters centers are in close proximity to each other in the

center. In other words, all fuzzy memberships are about 1/3 and consequently the three cluster centers are

the same. Therefore, s ¼ 1:5 is too large for p ¼ 2 or 1. This finding is an indication of overlapping

clusters. For a value of s ¼ 1:2, the triplot for p ¼ 1 shows more pronounced clusters because most of the

respondents are in the corners. For p ¼ 2 and s ¼ 1:2, the memberships are more evenly distributed over

the triangle although many respondents are still located in the corners. For p ¼ 1 and s ¼ 1:2, some

respondents are on the vertical line (combining equal memberships to Clusters 1 and 3 for varying

membership of Cluster 2). The points that are located close to the Cluster 1 axis at 0.5 have a membership

of 0.5 for Clusters 1 and 3, those close to 0.5 at the Cluster 2 axis have 0.5 for Clusters 1 and 2, those close

to the Cluster 3 axis at 0.5 have 0.5 for Clusters 2 and 3.

For the robust case of l ¼ 1=2, the triplots of the fuzzy memberships are given in Figure 3.6. One of the

effects of setting l ¼ 1=2 seems to be that the fik are more attracted to the center and, hence, respondents

are less attracted to a single cluster than in the case of l ¼ 1. Again, for s ¼ 1:5 and p ¼ 2 and1, all

clusters merge into one cluster and the parallel coordinates plots of the clusters would show a single line.

For s ¼ 1:2, the parallel coordinates plots of the clusters resemble Figure 3.5 reasonably well. For s ¼ 1:2
and p ¼ 2, the lines in the parallel coordinates plot are closer together than for l ¼ 1.

For this data-set, the clusters cannot be well separated because for a relatively small s of 1.5, the clusters

coincide (except for p ¼ 1). The cluster centers seem to be better separated when p is small, especially for

p ¼ 1. The fuzziness parameter s needs to be chosen small in this data-set to avoid clusters collapsing into

a single cluster. The effect of varying l seems to be that the cluster memberships are less extreme for

l ¼ 1=2 than for l ¼ 1.

3.6 CONCLUSIONS

We have considered objective function based fuzzy clustering algorithms using a generalized distance

function. In particular, we have studied the extension of the fuzzy c-means algorithm to the case of the
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Figure 3.5 Triplot showing the cluster membership in F for each respondent for s ¼ 1:2; 1:5, l ¼ 1, and p ¼ 1; 2;1.
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parametric Minkowski distance function and to the case of the root of the squared Minkowski distance

function. We have derived the optimality conditions for the membership values from the Lagrangian

function. For cluster centers, however, we have used iterative majorization to derive the optimality

conditions. One of the advantages of iterative majorization is that it is a guaranteed descent algorithm, so

that every iteration reduces the objective function until convergence is reached. We have derived suitable

majorization functions for the distance function that we studied. Extending results from Groenen and

Jajuga (2001), we have given a majorization algorithm for any Minkowski distance with Minkowski

parameter greater than (or equal to) 1. This extension also included the case of the L1-distance and the

roots of the squared Minkowski distance.

By adapting the Minkowski parameter p, the user influences the distance function to take specific

cluster shapes into account. We have also introduced an additional parameter l for computing the roots of

the squared Minkowski distance. This parameter can be used to protect the clustering algorithm against

outliers. Hence, more robust clustering results can be obtained.

We have illustrated some key aspects of the behavior of our algorithm using empirical data regarding

attitudes about the Internet. With this particular data-set, we have observed extremely overlapping

clusters, already with a fuzziness parameter of s ¼ 1:5. This finding deviates from the general practice

in fuzzy clustering, where this parameter is often selected equal to 2. Apparently, the choice of s and p has

to be done with some care for a given data-set.
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4.1 INTRODUCTION

Cluster ensembles is a ‘knowledge reuse’ framework for combining multiple clusterings of a set of

objects without accessing the original features of the objects. This problem was first proposed in Strehl

and Ghosh (2002) where the authors applied it for improving the quality and robustness of clustering, and

in distributed clustering. A related problem of consensus clustering also exists in the marketing literature

(Kreiger and Green, 1999) where often a set of individuals is segmented in multiple ways based on

different criteria (needs-based, demographics, etc.) and one is interested in obtaining a single, unified

segmentation.

The idea of combining multiple models is well established in the classification and regression scenarios

where it has led to impressive improvements in a wide variety of domains (Breiman, 1999; Freund and

Schapire, 1996; Ghosh, 2002). Combining clusterings is, however, a more difficult problem than

combining the results of multiple classifiers, since clusterings are invariant to cluster label permutations.

In other words, all partitions of a set of objects that differ only in the cluster labeling are identical. As a

result, before combining the clusterings one has to identify which clusters from different clusterings

correspond to each other. This sub-problem of identifying cluster correspondences is further complicated

by the fact that the number of clusters in the individual solutions might vary significantly. These

differences, along with wide variations in the clustering algorithms and features of data used for

underlying clustering algorithms, make solving cluster ensembles a very challenging problem. Even

so, the ability to combine clusterings in an ensemble is very useful.

Cluster ensembles have been shown to be useful in many application scenarios. Some of the principal

ones are

� Knowledge reuse. An important application of cluster ensembles is combining knowledge encoded in

multiple clusterings. An example of this is exploiting the knowledge in legacy clusterings while re-

clustering the data. We might not have access to the features that were originally used while creating the

legacy clusterings; they might even have been created manually by a domain expert. Also, in many

cases the number of clusters in the original data might have changed or new features might now be
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available. In these cases, re-clustering all the data with the new features may not be possible. Cluster

ensembles can be employed to combine multiple clusterings in these feature/object distributed

scenarios (Ghosh, Strehl, and Merugu, 2002; Strehl and Ghosh, 2002).

� Multi-view clustering. A set of objects can be clustered multiple times using different attributes/

criteria. For example, in marketing applications, customers can be segmented based on their needs,

psychographic or demographic profiles, brand choices, etc.. Consensus clustering can be used to

combine all such partitions into one, which is often easier to act on (Kreiger and Green, 1999).

� Distributed computing. In many applications, the data to be clustered is distributed over many sites, and

data sharing is prohibited. In the case of distributed computing, communication costs make sharing all

the data with a central site prohibitively expensive, but communicating clustering results is cheaper. In

other cases, while sharing actual features of data might be prohibited because of privacy reasons, the

sharing of clustering results might be permissible, as in Merugu and Ghosh (2003). Both these

scenarios can be handled by locally clustering data present at each site, and then transferring only

the clustering solutions to a central site. Cluster ensemble algorithms can then be used to combine these

clusterings into a composite clustering at the central site.

� Improved quality of results. Each clustering algorithm has its own search biases and uses different

types of features. Combining the results of multiple different clusterings algorithms could give

improvements over their individual solutions, as the combined solution would take into account all

their biases. It has been seen that using cluster ensembles to combine diverse clustering solutions leads

to more accurate results on average (Hadjitodorov, Kuncheva, and Todorova, 2006; Kuncheva and

Hadjitodorov, 2004).

� Robust solutions. Many clustering algorithms suffer from initialization problems, often finding local

minima of their objective functions. The cluster ensembles framework can be used to alleviate these

problems of unstable clustering results. Multiple runs of a clustering algorithm, obtained with different

initializations or with different sets of features, can be combined in order to obtain a robust final

solution (Fern and Brodley, 2003; Fred and Jain, 2002).

There have been several attempts to solve cluster ensembles in the recent past. Strehl and Ghosh (2002)

proposed three graph-theoretic approaches for finding the consensus clustering. A bipartite graph

partitioning based approach has been proposed by Fern and Brodley (2004). Topchy, Jain, and Punch

(2004) proposed the use of a mixture of multinomial distributions to model the ensemble of labels along

the lines of classical latent class analysis in marketing literature. Some of these approaches will be

described in detail in Section 4.2. While these techniques are very varied in the algorithms they employ,

there is a common thread that they only work with hard constituent clusterings. It is the goal of this chapter

to investigate soft cluster ensembles.

4.1.1 Ensembles of Soft Clusterings

There are several clustering algorithms, such as EM (Dempster, Laird, and Rubin, 1977) and fuzzy

c-means (Bezdek and Pal, 1992; Dunn, 1973), that naturally output soft partitions of data. A soft partition

assigns a value for the degree of association of each instance to each output cluster. So instead of a label

vector for all the instances, we have a matrix of values in which each instance is associated with every

cluster with some membership value; often these values are the posterior probabilities and add up to one.

In order to solve an ensemble formed of soft clusterings using one of the existing algorithms mentioned

above, we would have to ‘harden’ the clusterings. This process involves completely assigning each

instance to the cluster to which it is most associated. This results in the loss of the information

contained in the uncertainties of the cluster assignments. This is especially true for application settings

where underlying clustering algorithms access partial views of the data, such as in distributed data

mining. A landmark work on ‘collaborative’ fuzzy clustering was done by Pedrycz (2002). The author

considered a vertical partitioning scenario, and captured the collaboration between multiple partitionings

via pairwise interaction coefficients. This resulted in an extended cost function to accommodate the
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collaboration effect in the optimization process. This approach is restricted in scope in many ways: each

partition needs to have the same number of clusters; the difficult cluster correspondence problem is

assumed to be already solved; and the distances between each point and its representative in each of the

solutions need to be known. Despite these constraints, it was illustrated that, at least for simple two and

three cluster problems, collaboration had a positive effect on cluster quality. This further motivates the

present study, where we propose flexible frameworks for combining multiple soft clusterings directly

without ‘hardening’ the individual solutions first. We introduce a new consensus function (ITK) based on

the information-theoretic k-means algorithm (Dhillon, Mallela, and Kumar, 2003b) that is more efficient

and effective than existing approaches. For evaluation purposes, we create a large number of ensembles of

varying degrees of difficulty, and report clustering results achieved by the various existing and new

algorithms on them. In order to objectively evaluate ITK we extend existing algorithms to operate on soft

cluster ensembles as well.

4.1.2 Organization of this Chapter

In Section 4.2 we first define the hard cluster ensemble problem formally, and then go on to describe the

various consensus functions that have been proposed in literature. The soft cluster ensembles are then

formally introduced in Section 4.3 followed by several new consensus functions that operate on them. The

experimental setup for our extensive evaluation of these algorithms and the empirical results then follow

in Section 4.4 and Section 4.5, respectively. Finally, in Section 4.6 we conclude the chapter and briefly

mention possible directions for future research.

4.2 CLUSTER ENSEMBLES

In this section, we will first define the hard cluster ensemble problem formally, and then present graph-

theoretic solutions proposed by Strehl and Ghosh (2002) and Fern and Brodley (2004). We will also

present some related work on robust clustering by Fred and Jain (2002), and on generative models for

ensembles by Topchy, Jain, and Punch (2004). Other methods such as Voting-Merging (Dimitriadou,

Weingessel, and Hornik, 2001) and GA-Search (Gablentz, Koppen, and Dimitriadou, 2000) are not

presented as they are either not competitive or too restrictive in their scope. We will end the section with a

brief discussion on past work on the role of diversity in the cluster ensembles problem.

4.2.1 The Hard Cluster Ensemble Problem

Let X ¼ fx1; x2; . . . ; xng denote a set of instances/objects. Each partitioning of the data (called

a clustering) is represented as a vector of labels over the data. Let lðqÞ 2 f1; 2; . . . kðqÞgn
denote the label

vector of the qth constituent clustering of X; i.e., lðqÞi is the label of xi in the qth partitioning. A set of r

such clusterings lð1;2;...;rÞ is called a cluster ensemble (for an example, see Table 4.1). The goal is to

find a consensus function � that would combine the r clusterings lð1;2;...;rÞ into a single clustering/labeling

l.

It is instructive, for presentation later in this section, to consider that every hard clustering can be

mapped to a hypergraph. A hypergraph consists of vertices and hyperedges. While an edge connects two

vertices of a graph, a hyperedge can connect any number of vertices. For each clustering vector lðqÞ a

binary indicator matrix HðqÞ can be defined with n rows and kðqÞ columns. H
ðqÞ
i;j is 1 if xi was placed in

cluster j in clustering lðqÞ. The entire ensemble of clusterings can hence be represented by a concatenation

of individual indicator matrices as H ¼ ðHð1Þ; . . . ;HðrÞÞ. The matrix H, now, defines a hypergraph with n

vertices and
Pr

q¼1 kðqÞ hyperedges. Each hyperedge connects all the vertices that have a value 1 in the

corresponding column. This transformation of lð1;2;...;rÞ to H is shown in Tables 4.1 and 4.2.
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4.2.2 Graph-theoretic Approaches

Upon formulating the cluster ensemble problem, Strehl and Ghosh (2002) proposed three graph-theoretic

approaches (CSPA, HGPA, and MCLA) for finding the consensus clustering. Later Fern and Brodley

(2004) proposed the HBGF algorithm that is based on bipartite graph partitioning. All these approaches

use the efficient graph partitioning algorithm METIS by Karypis and Kumar (1998) to partition graphs

induced by the cluster ensemble and find the consensus clustering. Note that there is implicitly an

additional constraint in these solutions, namely that the consensus clusters obtained should be of

comparable size. We describe these and other algorithms in the following subsections.

4.2.2.1 Cluster-based Similarity Partitioning Algorithm (CSPA)

In CSPA the similarity between two data points is defined to be directly proportional to the number of

constituent clusterings of the ensemble in which they are clustered together. The intuition is that the more

similar two data points are the higher is the chance that constituent clusterings will place them in the same

cluster. Hence, in this approach an n� n similarity matrix is computed as W ¼ 1
r
HHT . This similarity

matrix (graph) can be clustered using any reasonable pairwise similarity based clustering algorithm to

obtain the final clustering. In CSPA the authors chose METIS to partition the similarity graph to obtain the

desired number of clusters. Because CSPA constructs a fully connected graph its computational and

storage complexity are Oðn2Þ. Hence it is more expensive in terms of resources than algorithms that will

be introduced below.

4.2.2.2 Hypergraph Partitioning Algorithm (HGPA)

The HGPA algorithm seeks directly to partition the hypergraph defined by the matrix H in Table 4.2.

Hypergraph partitioning seeks to cluster the data by eliminating the minimal number of hyperedges. This

Table 4.1 A set of three clusterings.

lð1Þ lð2Þ lð3Þ

x1 1 2 1

x2 1 2 1

x3 1 3 2

x4 2 3 2

x5 2 3 3

x6 3 1 3

x7 3 1 3

Table 4.2 Hypergraph representation of clusterings.

Hð1Þ Hð2Þ Hð3Þ

h1 h2 h3 h4 h5 h6 h7 h8 h9

v1 1 0 0 0 1 0 1 0 0

v2 1 0 0 0 1 0 1 0 0

v3 1 0 0 0 0 1 0 1 0

v4 0 1 0 0 0 1 0 1 0

v5 0 1 0 0 0 1 0 0 1

v6 0 0 1 1 0 0 0 0 1

v7 0 0 1 1 0 0 0 0 1
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partitioning is performed by the package HMETIS by Karypis, Aggarwal, Kumar, and Shekhar (1997).

In the HGPA algorithm all the vertices and hyperedges are weighted equally. In our experiments,

HGPA displayed a lack of robustness and routinely performed worse than the CSPA and MCLA

algorithms. Hence, we will not discuss this algorithm or report any results for it in the remainder of

this chapter.

4.2.2.3 Meta-clustering Algorithm (MCLA)

The MCLA algorithm takes a slightly different approach to finding the consensus clustering than the

previous two methods. First, it tries to solve the cluster correspondence problem and then uses voting to

place data points into the final consensus clusters. The cluster correspondence problem is solved by

grouping the clusters identified in the individual clusterings of the ensemble.

As we have seen earlier, the matrix H represents each cluster as n-length binary vectors. In MCLA,

the similarity of cluster ci and cj is computed based on the number of data points that are clustered into

both of them, using the Jaccard measure Wi; j ¼ jci\cjj
jci[cjj. This similarity matrix (graph), with clusters as

nodes, is partitioned into meta-clusters using METIS.

The final clustering of instances is produced in the following fashion. All the clusters in each meta-

cluster are collapsed to yield an association vector for the meta-cluster. This association vector for a meta-

cluster is computed by averaging the association of instances to each of the constituent clusters of that

meta-cluster. The instance is then clustered into the meta-cluster that it is most associated to.

Computing the cluster similarity matrix exhibits a quadratic time complexity on the number of clusters

in the ensemble. This is often significantly less than n2. Furthermore, the averaging and voting operations

are linear in n. This makes MCLA computationally very efficient.

4.2.2.4 Hybrid Bipartite Graph Formulation (HBGF)

This method was introduced by Fern and Brodley (2004) with an aim to model the instances and clusters

simultaneously in a graph. The CSPA algorithm models the ensemble as a graph with the vertices

representing instances in the data, while the MCLA algorithm models the ensemble as a graph of clusters.

The HBGF technique combines these two ideas and represents the ensemble by a bipartite graph in which

the individual data points and the clusters of the constituent clusterings are both vertices. The graph is

bipartite because there are no edges between vertices that are both either instances or clusters. The

complete set of rules to assign the weights on the edges is as follows:

� Wði; jÞ ¼ 0 if i; j are both clusters or both instances;

� Wði; jÞ ¼ 0 if instance i doesn’t belong to cluster j;

� Wði; jÞ ¼ 1 if instance i belongs to cluster j.

This bipartite graph is partitioned into k parts yielding the consensus clustering. The clustering

is performed using METIS and spectral clustering (Ng, Jordan, and Weiss, 2001). The clusters in the

consensus clustering contain both instances and the original clusters. Hence, the method yields a co-

clustering solution. This method has also been previously used to simultaneously cluster words and

documents by Dhillon (2001).

The computational complexity of HBGF is Oðn� tÞ, where t is the total number of clusters

in the ensemble. While this is significantly less than quadratic in the number of instances (as in

CSPA), in practice we observe the algorithm to be fairly resource hungry both in terms of CPU time

and storage.

4.2.2.5 Evidence Accumulation Framework

Evidence accumulation (Fred and Jain, 2001, 2002) is a simple framework, very similar to the cluster

ensemble framework, for combining the results of multiple weak clusterings in order to increase
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robustness of the final solution. The framework uses a k-means type algorithm to produce several

clusterings each with a random initialization. The number of clusters specified in each k-means clustering

is typically much larger than the true number of clusters desired. The data instances are then mapped into

the similarity space where the similarity between two instances i and j is the fraction of clusterings in

which they ended up in the same cluster. A minimum spanning-tree based clustering algorithm is then

used to obtain the final clustering. In practice any appropriate clustering technique could be employed.

This framework and the consensus function that it uses are very similar to the cluster ensemble framework

and the CSPA algorithm (Strehl and Ghosh, 2002).

A similar framework for obtaining robust clustering solutions has been proposed by Frossyniotis,

Pertselakis, and Stafylopatis (2002). The actual consensus function used in this algorithm only works on

heavily restricted type of ensembles; each constituent clustering has the same number of clusters. Also,

Fern and Brodley (2003) extended this approach to accept soft clusterings as input. The details of this

approach are presented in Section 4.3.4.

4.2.3 Ensemble as a Mixture of Multinomials

Topchy, Jain, and Punch (2004) modeled the ensemble, lð1;2;...;rÞ, using a generative model and used EM to

estimate the parameters of the model. The EM procedure along with the parameters provides us with a soft

final clustering.

In this approach, it is assumed that the ensemble has been generated from a mixture of multidimensional

multinomial distributions. Each data point is generated by first picking a multinomial distribution according to

the priors. After picking a component of the mixture, the cluster label in each clustering is picked from a

multinomial distribution over the cluster labels. The cluster labels of different constituent clusterings are

assumed to be i.i.d..

The number of parameters to be estimated increases with both the number of constituent

clusterings as well as with the number of clusters in them. Experiments in Topchy, Jain, and

Punch (2004) did not include experiments on data-sets that have more than three clusters. In this

chapter we will evaluate the performance of this consensus function on more complex real-life

data-sets.

One advantage of this approach is that it is easy to model final clusters of different sizes using this

method. Graph partitioning methods tend to yield roughly balanced clusters. This is a disadvantage in

situations where the data distribution is not uniform. Using the priors in the mixture model the distribution

of data can be accommodated conveniently.

4.2.4 Diversity in Cluster Ensembles

Diversity among the classifiers in an ensemble has been shown to improve its accuracy (Hansen and

Salamon, 1990; Melville and Mooney, 2003). Here, we recount some research on the impact of diversity

on cluster ensembles.

Ghosh, Strehl, and Merugu (2002) examined the problem of combining multiple clusters of varying

resolution and showed that it is possible to obtain robust consensus even when the number of clusters

in each of the individual clusterings is different. They also described a simple scheme for selecting a

‘good’ number of clusters k for the consensus clustering by observing the variation in average normalized

mutual information with different k. Fern and Brodley (2003) reported on some experiments on

diversity of ensembles. They found that the consensus function’s accuracy increased as the ensemble

is made more diverse. Kuncheva and Hadjitodorov (2004) studied the diversity of ensembles using

multiple measures like the Rand Index, Jaccard measure, etc.. Based on this study they proposed a variant

of the Evidence Accumulation framework where the number of over-produced clusters is randomly
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chosen. This randomization in ensemble generation is shown to increase the diversity of the ensembles

thereby leading to better consensus clustering. In a recent follow-up work Hadjitodorov, Kuncheva, and

Todorova (2006) reported that selecting constituent clusterings based on median diversity leads to better

ensembles.

4.3 SOFT CLUSTER ENSEMBLES

In this section we will formally define the soft cluster ensemble problem and provide intuition on

why we expect soft cluster ensembles to yield better results than their corresponding hard versions. We

will then introduce a new algorithm based on Information Theoretic k-means (Dhillon, Mallela and

Kumar, 2003b) to solve ensembles of soft clusterings. In order to evaluate our new approach

objectively, we will describe changes to existing techniques mentioned in Section 4.2 to enable

them to handle soft ensembles.

4.3.1 The Soft Cluster Ensemble Problem

In order to facilitate the explanation of various algorithms later in this section, we now define the soft

cluster ensemble problem formally.

As in the case of hard ensembles, let X ¼ fx1; x2; . . . ; xng denote a set of instances/objects.

Also, let lðqÞ 2 f1; 2; . . . kðqÞgn
denote the label vector of the qth clustering of X; i.e., lðqÞi is the label

of xi in the qth clustering. This is the hard labeling defined in Section 4.2.1. In cases where

the underlying clustering algorithm outputs soft cluster labels, lðqÞi is defined as argmaxjPðCjjxiÞ,
where PðCjjxiÞ is the posterior probability of instance xi belonging to cluster Cj. A soft cluster

ensemble is shown in Table 4.3, and its corresponding hard version in Table 4.1.

Instead of hardening the posterior probabilities into cluster labels, we construct a matrix SðqÞ

representing the solution of the qth soft clustering algorithm. SðqÞ has a column for each cluster

generated in the clustering and the rows denote the instances of data with S
ðqÞ
ij being the probability

of xi belonging to cluster j of the qth clustering. Hence, the values in each row of SðqÞ sum up to 1.

There are r such clusterings (Sð1;...;rÞ) each with kðqÞ clusters. Just as in the hard ensemble problem,

our goal is to find a consensus function � that combines these clusterings into a combined

labeling, l, of the data. It should be noted that the cluster ensemble framework does not specify

whether the final clusterings should be hard or soft. In this chapter we only work with algorithms

that output hard final clusterings.

Table 4.3 Ensemble of soft clusterings.

Sð1Þ Sð2Þ Sð3Þ

s1 s2 s3 s4 s5 s6 s7 s8 s9

x1 0.7 0.2 0.1 0.1 0.7 0.2 0.6 0.3 0.1

x2 0.9 0.1 0.0 0.0 0.8 0.2 0.8 0.2 0.0

x3 0.9 0.0 0.1 0.1 0.4 0.5 0.5 0.5 0.0

x4 0.2 0.6 0.2 0.1 0.2 0.7 0.2 0.7 0.1

x5 0.1 0.9 0.0 0.0 0.1 0.9 0.0 0.5 0.5

x6 0.0 0.2 0.8 0.8 0.1 0.1 0.1 0.2 0.7

x7 0.1 0.2 0.7 0.7 0.1 0.2 0.1 0.3 0.6
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4.3.2 Intuition behind Soft Ensembles

It is fairly obvious from the above definition that hardening a soft cluster ensemble entails a loss of

information. However, it is not at all obvious that this additional information is useful. The goal of this

study is to show empirically that algorithms designed for soft ensembles improve upon the accuracy of

those that operate on the hardened versions of the ensembles. Here, we will try to explain intuitively why

we expect this.

For the sake of discussion consider a cluster ensemble where individual clusterings are working on

vertically partitioned data. In such a scenario, the underlying clustering algorithms have access to

different and often incomplete sets of features. Incomplete data could result from distributed computing

constraints (Ghosh, Strehl and Merugu, 2002), random projections in order to facilitate high-dimensional

clustering (Fern and Brodley, 2003), or multi-view data-sets as used in (Kreiger and Green, 1999). Under

such circumstances there is an increased chance that the underlying clustering algorithms will not be able

to assign some objects into clusters with much certainty. If the combining procedure were to accept only

hard clusterings, these objects would have to be assigned to the cluster they most belong to (one with the

highest posterior probability).

Consider the soft ensemble depicted in Table 4.3. The solution Sð2Þ assigns x3 to clusters s4, s5, and s6

with probabilities 0.1, 0.4, and 0.5, respectively. If the consensus function were to only accept hard

clusterings it would be provided with a vector where lð2Þi is s6. The combining algorithm would have no

evidence that the second underlying clustering algorithm was unsure about the assignment of x3. It would

accept this observation with the same amount of certainty as any other observation that assigns a data

point xi to a cluster sj with 0.9 probability. If, however, the combining function were to accept soft

clusterings, it could potentially use this information to make appropriate cluster assignment of x3 in the

combined clustering. Since it is more likely that clustering algorithms are unsure of their assignments

while operating with an incomplete set of features, it is important that the combining function has access

to the cluster assignment probabilities, and not just the hard assignments themselves.

4.3.3 Solving Soft Ensembles with Information-Theoretic
k-means (ITK)

Information-Theoretic k-means was introduced by Dhillon, Mallela, and Kumar (2003b) as a way to

cluster words in order to reduce dimensionality in the document clustering problem. This algorithm is

very similar to the k-means algorithm, differing only in the fact that as a measure of distance it uses the

KL-divergence (Kullback and Leibler, 1951) instead of the Euclidean distance. The reader is referred to

the original paper for more details. Here we just describe the mapping of the soft cluster ensemble

problem to the Information-Theoretic k-means problem.

Each instance in a soft ensemble is represented by a concatenation of r posterior membership

probability distributions obtained from the constituent clustering algorithms (see matrix S in Table 4.3).

Hence, we can define a distance measure between two instances using the Kullback–Leibler (KL)

divergence (Kullback and Leibler, 1951), which calculates the ‘distance’ between two probability

distributions. The distance between two instances xa and xb can be calculated as

K Lxa;xb
¼
Xr

q¼1

wðqÞ
XkðqÞ

i¼1

S
ðqÞ
xai log

S
ðqÞ
xai

S
ðqÞ
xbi

 !
ð4:1Þ

where, wðqÞ are clustering specific weights, such that
Pr

q¼1

wðqÞ ¼ 1.

Equation (4.1) computes the pairwise distance by taking an average of the KL divergence between the

two instances in individual constituent clusterings. Here we note that this is equivalent to computing the

KL divergence between instances represented by a matrix S in which each row adds up to one. This

normalization can be performed by multiplying each value in SðqÞ by wðqÞ=
Pr

q¼1 wðqÞ. Now that we have a
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distance measure between instances based on KL-divergence, we can use existing information-theoretic

k-means software mentioned above to solve the soft ensemble.

Computing Equation (4.1) with wðqÞ ¼ 1=r assumes that all the clusterings are equally important. We

can, however, imagine a scenario where we have different importance values for the constituent

clusterings. These values could, for instance, be our confidence in the accuracy of these clusterings,

possibly based on the number of features they access. These confidence values can easily be integrated

into the cost function using the weights wðqÞ.

4.3.4 Soft Version of CSPA (sCSPA)

The CSPA algorithm proposed by Strehl and Ghosh (2002) works by first creating a co-association matrix

of all objects, and then using METIS (Karypis and Kumar, 1998) to partition this similarity space to

produce the desired number of clusters. This algorithm is described in Section 4.2.

sCSPA extends CSPA by using values in S to calculate the similarity matrix. If we visualize each object

as a point in
Pr

q¼1 kðqÞ-dimensional space, with each dimension corresponding to the probability of its

belonging to a cluster, then SST is the same as finding the dot product in this new space. Thus the

technique first transforms the objects into a label-space and then interprets the dot product between

the vectors representing the objects as their similarity. In our experiments we use Euclidean distance in the

label space to obtain our similarity measure. The dot product is highly co-related with the Euclidean

measure, but Euclidean distance provides for cleaner semantics. Euclidean distance between xa and xb is

calculated as

dxa ;xb
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xr

q¼1

XkðqÞ

i¼1

S
ðqÞ
xai � S

ðqÞ
xbi

� �2

vuut :

This can be interpreted as a measure of the difference in the membership of the objects for each cluster.

This dissimilarity metric is converted into a similarity measure using sxa;xb
¼ e�d2

xa ;xb .

Another distance measure can be defined on the instances in a soft ensemble using KL, divergence

(Kullback and Leibler, 1951) as in Section 4.3.3. In our results we observed that all versions of the sCSPA

(with Euclidean distance, KL divergence and cosine similarity) gave very similar results. The results

obtained while using Euclidean distance were sometimes better, so here we will report results based on

only that version of the sCSPA. sCSPA (like CSPA) is impractical for large data-sets, and hence we will

only report results for data-sets with less than 2000 data points.

Fern and Brodley (2003) proposed a variant of the evidence accumulation framework that accepts soft

clusterings. In this scenario, the similarity of two instances is calculated as the average dot product of the

probability distributions describing them. Hence,

simðxa; xbÞ ¼
1

r

XkðqÞ

i¼1

S
ðqÞ
xai � S

ðqÞ
xbi :

The similarity matrix that results is then clustered using a complete-link agglomerative algorithm. The

input matrix used by this framework is essentially equivalent to the one used by sCSPA (using cosine

similarity). The only difference is in the combining function. Hence, we will not experiment with this

technique further in this chapter.

4.3.5 Soft Version of MCLA (sMCLA)

In MCLA each cluster is represented by an n-length binary association vector. The idea is to group and

collapse related clusters into meta-clusters, and then assign each object to the meta-cluster in which it

belongs most strongly. The clusters are grouped by graph partitioning based clustering.
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sMCLA extends MCLA by accepting soft clusterings as input. sMCLA’s working can be divided into

the following steps (similar steps are followed in MCLA too):

Construct soft meta-graph of clusters. All the
Pr

q¼1 kðqÞ clusters or indicator vectors sj (with weights),

the hyperedges of S, can be viewed as vertices of another regular undirected graph. The edge weights

between two clusters sa and sb is set as Wa; b ¼ Euclidean distðsa; sbÞ. The Euclidean distance is a

measure of the difference of membership of all objects to these two clusters. As in the sCSPA

algorithm, the Euclidean distance is converted into a similarity value.

Group the clusters into meta-clusters. The meta-graph constructed in the previous step is partitioned

using METIS to produce k balanced meta-clusters. Since each vertex in the meta-graph represents a

distinct cluster label, a meta-cluster represents a group of corresponding cluster labels.

Collapse meta-clusters using weighting. We now collapse all the clusters contained in each meta-

cluster to form its association vector. Each meta-cluster’s association vector contains a value for

every object’s association to it. This association vector is computed as the mean of the association

vectors for each cluster that is grouped into the meta-cluster. This is a weighted form of the step

performed in MCLA.

Compete for objects. Each object is assigned to the meta-cluster to which it is most associated. This

can potentially lead to a soft final clustering, since the ratio of the winning meta-cluster’s association

value to the sum of association values of all final meta-clusters can be the confidence of assignment

of an object to the meta-cluster.

There is, however, one problem with this approach. Because we are using soft clusterings as inputs, the

co-association graph of the clusters (meta-graph) is almost complete. More specifically, even clusters

from the same clusterings have non-zero similarity to each other. This is not the case with MCLA since it

uses a binary Jaccard measure, and for hard clusterings Jaccard similarity between clusters in the same

clusterings is necessarily zero. We obtain better consensus clustering results after making the co-

association matrix r-partite. Hence, sMCLA forces the similarity of hyperedges coming from the same

clustering to be zero. This is, however, only done when the number of clusters in all the constituent

clusterings is equal to the desired final number of clusters. In ensembles where the number of clusters in

each underlying clustering vary the algorithm does not force the co-association matrix to be r-partite.

4.3.6 Soft Version of HBGF (sHBGF)

HBGF represents the ensemble as a bipartite graph with clusters and instances as nodes, and edges

between the instances and the clusters they belong to. This approach can be trivially adapted to consider

soft ensembles since the graph partitioning algorithm METIS accepts weights on the edges of the graph to

be partitioned. In sHBGF, the graph has nþ t vertices, where t is the total number of underlying clusters.

The weights on the edges are set as follows:

� Wði; jÞ ¼ 0 if i; j are both clusters or both instances;

� Wði;jÞ ¼ Si;j otherwise, where i is the instance and j is the cluster.

4.4 EXPERIMENTAL SETUP

We empirically evaluate the various algorithms presented in Sections 4.2 and 4.3 on soft cluster

ensembles generated from various data-sets. In this section we describe the experimental setup in detail.
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4.4.1 Data-sets Used

We perform the experimental analysis using the six real-life data-sets and one artificial data-set. Some

basic properties of these data-sets are summarized in Table 4.4. These data-sets were selected so as to

present our algorithms with problems of varying degrees of difficulty – in terms of the number of desired

clusters, the number of attributes, and the number of instances. All these data-sets, with the exception of

8D5K and HyperSpectral, are publicly accessible from the UCI data repository (Black and Merz, 1998).

� 8D5K. This isanartificiallygenerateddata-setcontaining1000points. Itwasgeneratedfromfivemultivariate

Gaussian distributions (200 points each) in eight-dimensional space. The clusters all have the same

variancebutdifferentmeans.Themeansweredrawnfromauniformdistributionwithin theunithypercube.

This data-set was used in (Strehl and Ghosh, 2002) and can be obtained from http://www.strehl.com.

� Vowel. This data-set contains data on the pronunciation of vowels. We removed some nominal features

that corresponded to the context like sex, name, etc., and only retained the 10 real valued features.

There are 11 classes in the data and an average of 93 instances per class.

� Pendigits. This data-set was generated for the problem of pen-based recognition of handwritten digits.

It contains 16 spatial features for each of the 10 992 instances. There are 10 classes of roughly equal

sizes corresponding to the digits 0 to 9. In order to get better clustering results, we normalized the

columns (features) to sum to one.

� Glass. The instances in this data-set are samples of glass used for different purposes. Real-valued

features corresponding to their chemical and optical properties describe the instances. There are 214

instances categorized into six classes such as tableware, containers, etc. based on nine attributes.

� Hyper Spectral. This data-set contains 5211 labeled pixels from a HyperSpectral snapshot of the

Kennedy Space Center. Each data point is described by a set of 30 HyperSpectral signatures pruned

from an initial set of 176 features. The pruning was performed by a best-basis feature extraction

procedure (Kumar, Ghosh, and Crawford, 2001). The data-set has 13 classes describing the geogra-

phical features apparent in the pixel.

� Yeast. The Yeast data-set contains information about proteins within yeast cells with the class attribute

denoting the localization within the cell. This is a fairly hard problem, and this shows in the clustering

results we obtain. The 1484 instances are each characterized by eight attributes, and there are 10 classes

in the data-set.

� Vehicle. This data-set was designed for the purpose of learning to classify a given silhouette as one of

the four types of vehicles, using a set of 18 features extracted from the silhouette. The vehicle may be

viewed from one of many different angles. The 846 silhouette instances are classified into four vehicle

categories: Opel, Saab, bus, and van.

4.4.2 Ensemble Test-set Creation

In order to compare the hard and soft ensemble methods, as well as to evaluate the k-means Information-

Theoretic (ITK) based approach, we created soft cluster ensembles of varying degrees of difficulty. Note

Table 4.4 Data-sets used in experiments.

Name Type of features #features #classes #instances

8D5K Real 8 5 1000

Vowel Real 10 11 990

Pendigits Real 16 10 10 992

Glass Real 9 6 214

HyperSpectral Real 30 13 5211

Yeast Real 8 10 1484

Vehicle Real 18 4 846
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here that for each soft cluster ensemble we also stored its corresponding hardened version to evaluate

methods that only accept hard clusterings.

The individual clusterings in our ensembles were created using the EM algorithm (Dempster, Laird,

and Rubin, 1977) with a mixture of Gaussian distribution models, but any algorithm that outputs soft

probabilities could have been used. Further, each constituent clustering was created using vertically

partitioned subsets of the data-sets. This partial view of the data as well as the dependence of EM on

initialization resulted in the diversity in the individual clustering solutions in an ensemble.

As mentioned above, we wanted to evaluate our algorithms on ensembles of varying degrees of difficulty.

For this purpose we created ensembles by varying two parameters that controlled the degree of difficulty.

The first parameter is the number of attributes that the EM algorithm accesses while creating the constituent

clusterings. We expected the difficulty of an ensemble containing clusterings created from less attributes to

be higher. The second parameter is the number of constituent clusterings in the ensemble. In general, we

expected that as the number of constituent clusterings increased the consensus clusterings obtained should

be more accurate. For most data-sets the number of clusterings in the ensembles is varied from two to 10, and

in some cases to 15. The entire set of options for all the data-sets is listed in Table 4.5. The column labeled

‘Numalts options’ in Table 4.5 describes the different settings for a number of features used to create

clusterings. For instance, for the 8D5K data-set we can obtain ensembles with constituent clusterings

created using 3,4,5, or 6 attributes. Also, for each of these settings we can select from 10 clusterings to form

an ensemble. Of course, each of these 10 clusterings is created with a randomly selected set of attributes.

Hence, while creating an ensemble we specify three parameters: the data-set name, the number of

attributes, and the number of clusterings. For each set of parameter values, we create multiple ensembles

by randomly selecting the clusterings to combine. Also, nondeterministic consensus functions are run

multiple times in order to average out variations in results due to initialization.

Here we must note that each individual clustering as well as the consensus function is given the true

number of clusters to find. The use of ensembles for finding the true number of clusters, or the effect of

different k in constituent clusterings on ensemble accuracy, is not investigated in this study.

4.4.3 Evaluation Criteria

In order to evaluate the final consensus clusterings obtained we use two different criteria. Both these

criteria compare the obtained clustering to the true labels of the instances. We also use the geometric mean

ratio to present an overall score for the performance of each algorithm.

4.4.3.1 Normalized Mutual Information (NMI)

The first criterion we use was introduced by Strehl and Ghosh (2002). and is called normalized mutual

information (NMI).

The NMI of two labelings of instances can be measured as

NMIðX; YÞ ¼ IðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðXÞHðYÞ

p ð4:2Þ

Table 4.5 Data-set specific options for creating ensembles.

Name # attributes Numatts options #clusterings/Numatts-option

8D5K 8 3,4,5,6 10

Vowel 10 3,4,5,6,7 10

Pendigits 16 3,4,6,9,12 15

Glass 9 3,4,5,6,7 10

HyperSpectral 30 5,10,15,20,25 15

Yeast 8 2,3,4,5 10

Vehicle 18 4,5,8,11 15
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where IðX; YÞ denotes the mutual information between two random variables X and Y and HðXÞ denotes

the entropy of X. In our evaluation, X will be consensus clustering while Y will be the true labels.

NMI has some nice properties such as NMIðX;XÞ ¼ 1 and if Y has only one cluster label for all

instances NMIðX; YÞ ¼ 0. With these properties NMI is extensively used for evaluating clustering

algorithms in literature.

Another measure of clustering accuracy is adjusted RAND (Hubert and Arabie, 1985). The adjusted

RAND compares two labelings based on whether pairs of objects are placed in the same or different

clusters in them. The maximum value it takes is 1, and its expected value is 0. We computed the adjusted

RAND score for each solution and found it to be highly correlated to the NMI score. Hence we will only

report the NMI score in this chapter.

4.4.3.2 Classification via Clustering (CVC)

The CVC is a measure of the purity of the clusters obtained w.r.t. the ground truth. The CVC is calculated

by the following procedure:

� To each cluster, assign the label that corresponds to the majority of points.

� Each instance is now labeled by its cluster’s label.

� CVC is the fraction of misclassified instances in such a classification of instances.

The CVC measure weighs the contribution of a cluster to the average by its size. This ensures that very

small pure clusters do not compensate for large impure ones.

There are other issues with this measure, however. The CVC measure is biased toward solutions with a

large number of very small pure clusters. This is not an issue in our evaluation since the number of output

clusters is kept constant across all the consensus functions being compared. Also, the CVC measure is not

very well defined in the case of empty clusters in the clustering solution. Since we ignore the purity of

empty clusters in our calculation of CVC, if all the instances were clustered into one cluster, CVC would

be the fraction of instances that belong to the class with the largest number of instances. NMI would have

been zero in such a case. This is not a problem for most data-sets since many algorithms are based on

graph partitioning approaches and output balanced clusters. However, like most existing literature on

cluster ensembles, we will use NMI as our principal measure of goodness.

4.4.3.3 Geometric Mean Ratio

Since we are varying the ensemble parameters over a very wide range for each data-set, we end up with a

lot of different points of comparison. In order to report some sort of overall score for each algorithm on

all the ensembles used, we use the geometric mean ratio (Webb, 2000). The GMR is calculated as

follows. Suppose we have n ensembles that we tested our algorithms on, and NMIA and NMIB are vectors

of the average NMI values w.r.t. to true labels obtained by algorithms A and B on these runs. GMR

is calculated as

GMRðA;BÞ ¼
Yn

i¼1

NMIBi

NMIAi

 !1
n

: ð4:3Þ

In later sections we display the GMR values in tables with rows and columns representing the

algorithms being compared. In these tables element ði; jÞ represents the value GMRðalgoðiÞ; algoðjÞÞ,
where algoðiÞ and algoðjÞ are the algorithms represented in row i and column j, respectively. Hence,

values> 1 along a column mean that the algorithm corresponding to the column performs better than the

other algorithms. Similarly, the values< 1 along the rows indicate that the algorithm corresponding to the

row scores better than the other algorithms.
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4.5 SOFT VS. HARD CLUSTER ENSEMBLES

In this section we present results from our evaluation of the algorithms we described in earlier sections

using the experimental setup described Section 4.4. In Section 4.5.1 we will compare the performance of

algorithms accepting soft ensembles as input and those that run on hardened versions of the ensembles.

After analyzing these experiments we will compare the Information-Theoretic k-means (ITK) approach

with the best performing algorithms from Section 4.5.1. Finally, in Section 4.5.3 and Section 4.5.4, we

will examine the variation in performance of algorithms on ensembles of varying difficulty.

4.5.1 Soft Versions of Existing Algorithms

In this section we evaluate the performance of CSPA, MCLA, and HBGF, their soft counterparts, and the

mixture of multinomials method. The evaluation measure we employ is the geometric mean ratio (GMR),

which is calculated over all the ensembles that were created as described in Section 4.4.2. There were,

however, some exceptions to the direct application of the GMR formula over all data-sets. HBGF, CSPA,

and their soft versions were not run on the HyperSpectral and Pendigits data-sets because these data-sets

are too large to expect solutions in a reasonable time. Hence, when we compare one of these algorithms to

the others we do not consider ensembles of these large data-sets. Also, in certain cases (for hard

ensembles) the consensus functions output clusterings that score 0 on the NMI measure. This would

happen, for example, if all the instances were placed in a single cluster. In such cases the GMR either

becomes 0 or1 depending on where the zero score appears. Hence, we assign a very small nominal value

(0.00001) to the NMI score whenever it is zero. The effect of this nominal score vanishes because we

normalize by taking the nth root of the product.

Table 4.6 shows the GMR values of the NMI measure comparing the three original algorithms as well

as their soft versions. We can see that for each algorithm the soft version performs better than the

corresponding hard version. Keep in mind that algorithm with values < 1 on the rows are performing

better than the others. Table 4.6 shows that averaged over all the ensembles we created, the soft versions of

the algorithms are slightly better than their hard counterparts. This shows that the soft versions of the

algorithms are able to use the extra information in the soft ensembles to obtain better consensus

clusterings.

We notice that the mixture of multinomials algorithm (MixMns) performs worse than all other

algorithms other than MCLA. This may be because many of the data-sets we used had a large number

of clusters, causing parameter estimation problems for the mixture model. Topchy, Jain and Punch (2004)

only evaluated their algorithm on real data-sets with very low number of clusters.

Another key observation is the dramatic difference in the performance of the sMCLA and MCLA

algorithms. The performance improvement of sMCLA over MCLA is much larger than the improve-

ments by other soft versions like sCSPA and sHBGF. This is because MCLA’s performance is very bad

when the input clusterings are not accurate. This can be seen by its performance values over tough

Table 4.6 Geometric mean ratio of NMI score over all ensembles. The value tablei;j indicates ratio

of algorithms j=i.

CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.05 0.718 0.999 0.978 1.02 0.802

sCSPA 0.94 1 0.68 0.948 0.928 0.967 0.76

MCLA 1.163 1.22 1 1.17 1.136 1.18 0.913

sMCLA 1.00 1.05 0.56 1 0.978 1.019 0.77

HBGF 1.02 1.076 0.73 1.02 1 1.04 0.82

sHBGF 0.98 1.03 0.705 0.98 0.959 1 0.787

MixMns 1.25 1.31 0.73 1.297 1.219 1.269 1
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ensembles (Table 4.8) as well as ensembles with a very low number of attributes in constituent

clusterings (Figure 4.1). sMCLA is not misled during the meta-clustering phase because the distances

between the clusters are now determined from soft probabilities. Hence, an error in an input clustering

that assigns an instance into the wrong cluster could be alleviated in sMCLA’s case if the posterior

probabilities of the wrong assignment are small. This phenomenon, however, needs to be investigated

further since sMCLA performs on a par with the best algorithms shown in Table 4.6.

Table 4.7 shows the GMR value table for the CVC measure. As we can see from the table the GMR

values closely correspond to the values in Table 4.6. Since the values in the two tables closely agree we

will henceforth only report results using the NMI measure.

In order to evaluate the intuition that the information obtained from soft ensembles is especially useful

when dealing with tough ensembles, we have populated Table 4.8 with GMR values calculated over only

the tough ensembles. Tough ensembles are defined as those comprising a small number of clusterings,

each of which are obtained using very few features. In our experiments, tough ensembles contained only

2–4 clusterings, which were obtained using the minimum Numatts option number of features for each

data-set shown in Table 4.5. For example, a tough ensemble for the 8D5K data-set might contain three

clusterings, each obtained using only three features. As we can see from Table 4.8, soft versions of

algorithms perform better than their hard counterparts and the difference in their performance is slightly

higher than those in Table 4.6. The fact that the differences in performances are higher shows that the extra

information in soft clusterings is useful in tough situations.

4.5.2 Information-Theoretic k-means (ITK)

We compare the Information-Theoretic k-means algorithm with only two of the best algorithms from the

analysis in the previous section. Table 4.9 displays the GMR values for the ITK, sHBGF, and sMCLA

algorithm over all the ensembles. As we can see the ITK algorithm performs appreciably better than both

Table 4.7 Geometric mean ratio of CVC score over all ensembles. The value tablei;j indicates ratio

of algorithms j=i.

CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.02 0.795 1.17 0.99 1.01 0.964

sCSPA 0.976 1 0.777 1.146 0.97 0.99 0.94

MCLA 1.015 1.039 1 1.197 1.01 1.03 0.99

sMCLA 0.85 0.873 0.53 1 0.85 0.87 0.80

HBGF 1.004 1.029 0.799 1.179 1 1.02 0.97

sHBGF 0.98 1.009 0.78 1.156 0.98 1 0.95

MixMns 1.037 1.06 0.66 1.24 1.03 1.05 1

Table 4.8 Geometric mean ratio of NMI score over tough ensembles. The value tablei;j indicates ratio of

algorithms j=i.

CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.085 0.652 0.997 0.97 1.06 0.655

sCSPA 0.92 1 0.60 0.919 0.897 0.98 0.604

MCLA 1.53 1.665 1 1.47 1.49 1.63 0.922

sMCLA 1.003 1.088 0.46 1 0.976 1.06 0.627

HBGF 1.028 1.113 0.67 1.025 1 1.09 0.673

sHBGF 0.94 1.024 0.62 0.94 0.92 1 0.618

MixMns 1.53 1.656 0.73 1.59 1.485 1.617 1
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Figure 4.1 Performance of CSPA, MCLA, HBGF, sCSPA, sMCLA, and sHBGF while varying the number of

attributes used in constituent clusterings.
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sHBGF and sMCLA. The sHBGF and sMCLA algorithms are fairly similar to each other in overall

performance. The geometric mean ratio matrix for the CVC score is identical to the one for the NMI score,

and we do not report those results.

In order to find whether ITK performs better for tougher or simpler ensembles we calculate GMR over

only the tough ensembles. Here again the tough ensembles are defined as in Section 4.5.1. The results of

this experiment are listed in Table 4.10. As we can see from the two tables the improvement in ITK

algorithm’s performance over sHBGF/sMCLA is higher for the subset of tougher ensembles.

In the set of data-sets selected for this chapter some present tougher challenges to the clustering

algorithms than others. In terms of the NMI score of clusterings 8D5K is the simplest data-set while Yeast

is the toughest. We display in Tables 4.11 and 4.12 the GMR value matrix for ensembles of data-sets

8D5K and Yeast, respectively. As we can see from these tables, in the case of the Yeast data-set ITK is by

far the best performing algorithm. However, for the 8D5K data-set all algorithms are fairly comparable

with sHBGF slightly better than the rest. One reason is that for soft ensembles where most probability

values are close to 1 or 0, more complex algorithms like ITK do not perform better than simple graph-

theoretic approaches.

Another explanation for ITK’s performance on the Yeast data-set can be provided based on the

characteristics of the algorithms. The graph partitioning based consensus algorithms are constrained to

provide roughly balanced clusters. This can be a problem in cases where the underlying data do not have

balanced classes. The 8D5K data-set has perfectly balanced clusters (200 instances each) while the Yeast

data-set has classes that range from five instances to 463 instances in size. The ITK algorithm is not

constrained to find balanced clusters and hence can adapt the clustering solution better to the natural

Table 4.9 Geometric mean ratio of NMI score over all

ensembles. The value tablei;j indicates ratio of algorithms j=i.

ITK 10K sHBGF sMCLA

ITK 10K 1 0.856 0.875

sHBGF 1.167 1 0.98

sMCLA 1.142 1.012 1

Table 4.10 Geometric mean ratio of NMI score over tough

ensembles. The value tablei;j indicates ratio of algorithms j=i.

ITK 10K sHBGF sMCLA

ITK 10K 1 0.816 0.798

sHBGF 1.226 1 0.94

sMCLA 1.253 1.06 1

Table 4.11 Geometric mean ratio of NMI score for only the

8D5K data-set. The value tablei;j indicates ratio of algorithms j=i.

ITK 10K sHBGF sMCLA

ITK 10K 1 1.03 0.97

sHBGF 0.968 1 0.944

sMCLA 1.025 1.05 1
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distribution of instances in the data. This is why we see the ITK algorithm outperform sHBGF and

sMCLA on the Yeast data-set by a large margin.

4.5.3 Performance Variation with Increasing Attributes

In this section we examine how the performances of different consensus functions change as the number

of attributes used for the constituent clusterings is changed. The number of attributes is an ad hoc measure

of the quality of clustering obtained and hence the difficulty of the ensemble. In general, the fewer the

number of attributes in the constituent clusterings the more the confusion in the clustering solutions

obtained and, hence, the more the difficulty of obtaining a consensus labeling using these clustering

solutions.

Figure 4.1 shows the variation in the performance of the existing ensemble methods and their soft

variations on two data-sets. The mixture of multinomial model method is not shown since its performance

was much lower than the others. The data-sets selected for these plots are of intermediate difficulty. As we

can see, as we increase the number of attributes in the constituent clusterings the accuracy of all

algorithms increases in general. For Pendigits, Figure 4.1(a) only has curves for MCLA and sMCLA

since we did not run HBGF and CSPA on it.

Figure 4.2 displays curves for the ITK, sHBGF, and sMCLA. As we can see the ITK algorithm

outperforms the other algorithms over the whole range of attributes, but as the number of attributes is

increased the accuracies of all algorithms tend to saturate.

Fern and Brodley (2003) show experimentally that for high-dimensional domains combining cluster-

ings on subspace projections of the data outperforms clustering on the whole data. They also found that

the impact of subspace clustering is more prominent if the number of dimensions is higher (> 60). We

have not experimented with data-sets that have very high dimensionality, and hence we did not observe

the reduction in accuracy when using the full set of attributes.

4.5.4 Performance Variation with Increasing Ensemble Size

In this section we examine the effect of increasing the number clusterings used in the ensemble on the

accuracy of final clustering. Say, we set the number of attributes used to create constituent clusterings to

some constant value. We would then expect that as more clusterings are added to the ensemble the

combining function would have more information available to create the final clustering. This has been

seen previously in the classifier ensemble literature where increasing the size of the ensemble increases

the accuracy until a saturation point is reached (Hansen and Salamon, 1990; Melville and Mooney, 2003;

Opitz and Maclin, 1999). Hence, the number of clusterings in an ensemble can also be said to be a measure

of the difficulty of the task of combining them.

Figure 4.3 shows the variation in accuracy as the number of clusterings is increased in the ensembles.

We can see that as the ensembles become easier to solve, the accuracy of all algorithms increases. We can

also see that the increasing accuracy of most algorithms reaches a plateau once the number of clusterings

grows very large. Figure 4.4 shows the variation in accuracy of the ITK, sMCLA, and sHBGF over the

Table 4.12 Geometric mean ratio of NMI score for only the yeast

data-set. The value tablei;j indicates ratio of algorithms j=i.

ITK 10K sHBGF sMCLA

ITK 10K 1 0.84 0.68

sHBGF 1.18 1 0.817

sMCLA 1.454 1.222 1
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Figure 4.2 Performance of ITK, sMCLA, and sHBGF while varying the number of attributes used in constituent

clusterings.
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Figure 4.4 Performance of ITK, sMCLA, and sHBGF while varying the number of constituent clusterings.
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Pendigits and Vowel data-sets as we increase the size of the ensembles. The accuracy of all the algorithms

rises but the ITK algorithm performs significantly better than the others.

4.6 CONCLUSIONS AND FUTURE WORK

In this chapter we presented several approaches to solving ensembles of soft clusterings. We introduced a

new approach based on Information-Theoretic k-means, and also presented simple extensions of existing

approaches for hard ensembles (like sCSPA, sMCLA, and sHBGF). These approaches were extensively

evaluated using data-sets and ensembles of varying degrees of difficulty. Some principal conclusions we

made were that soft ensembles contain useful information that can be exploited by our algorithms to

obtain better consensus clusterings, especially in situations where the constituent clusterings are not very

accurate. Also, ITK significantly outperforms existing approaches over most data-sets, with the improve-

ment in performance being especially large when dealing with tough ensembles.

Though the experimental results given in this chapter all assume the same number of clusters in each

solution, the approaches do allow for varying resolution in the individual solutions. Moreover, the match

of the consensus solution at different resolutions with respect to the individual solutions along the lines of

Ghosh, Strehl, and Merugu, (2002) provides a good method of model selection. A challenge to the readers

of this book is to identify scenarios where the use of soft ensembles provides significantly improved

performance over hard ensembles, and if needed devise specialized algorithms to deal with these

domains.

While partitioning instances we can also imagine a grouping of the clusters into meta-clusters.

Algorithms based on MCLA and HBGF already compute these co-clusterings, albeit using graph

partitioning based approaches. There is a significant body of research on co-clustering or bi-clustering

using other approaches (Dhillon, Mallela, and Modha, 2003a; Madeira and Oliveira, 2004), and it will be

worthwhile to investigate specialized co-clustering approaches for obtaining a consensus of soft

clusterings.
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Most fuzzy clustering algorithms attempt to partition a data-set into self-similar groups (clusters) and

describe the geometric structure of the clusters using prototypical cluster shapes such as volumetric

clouds, hyperspherical shells, regression models, etc.. The main benefit of the application of these

clustering algorithms is that the clustering algorithm not only partitions the data, but in some cases the

main result of the clustering is the set of the generated cluster prototypes. Hence, prototype generator

clustering methods are widely used in the initial steps of complex knowledge discovery in databases

(KDD) processes. This is because clustering can be used for the segmentation of the data and this can be

very useful at the data selection and preprocessing steps, while they can also be used to initialize a data

mining model based on the generated prototypes. According to this field of application several new fuzzy

clustering algorithms have been developed tailored to handle classification (Pach, Abonyi, Nemeth, and

Arva, 2004; Pedrycz and Sosnowski, 2001), regression (Abonyi, Babuska, and Szeifert, 2002; Johansen

and Babuska, 2002; Kim, Park, and Kim, 1998), time-series prediction, and segmentation (Abonyi, Feil,

Nemeth, and Arva, 2005; Baldwin, Martin, and Rossiter, 1998; Geva, 1999; Wong 1998) problems.

The performance of prototype based fuzzy clustering methods is highly determined by how the selected

prototypes are consistent with the data, how the assumed number of the clusters is correct, which justifies

the study of cluster validity techniques, which attempt to assess the correctness of a particular set of

clusters in a given data-set. As the large number of the applications of fuzzy clustering techniques and the

increasing number of the special prototype based algorithms show, the analysis of the performance of

these algorithms is a significant practical and theoretical problem.

Clustering algorithms always fit the clusters to the data, even if the cluster structure is not adequate for

the problem. To analyze the adequacy of the cluster prototypes and the number of the clusters, cluster

validity measures are used. Appendix 5A.1 will give a short review of these measures. It will be shown
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that conventional cluster validity techniques represent all the validity information by a single number,

which in some cases does not provide as much information about results as needed; namely, how correct

the cluster prototypes are, what the required number of clusters could be in case of the applied cluster

prototype, which clusters could be merged, or which cluster should be splitted into sub-clusters to get

more reliable partitioning of the data and cluster prototypes that locally describe the data.

Since validity measures reduce the overall evaluation to a single number, they cannot avoid a certain

loss of information. To avoid this problem, this chapter suggests the approach of the visualization of fuzzy

clustering results, since the low-dimensional graphical representation of the clusters could be much more

informative than such a single value of the cluster validity. Hence, the aim of this chapter is to give a

critical overview about the existing cluster visualization techniques, propose new approaches for the

visualization of cluster validity, and show how these tools can be applied.

The impact of visualization of fuzzy clustering results has already been realized in Klawonn,

Chekhtman, and Janz (2003), when the membership values of the data obtained by the clustering

algorithm were simply projected into the input variables, and the resulted plots served for the same

purpose as validity measures.

Bezdek and Hathaway (2002) have updated the method of Johnson and Wichern is based in inter-data

distances and developed a set of VATalgorithms for the visual assessment of (cluster) tendency. VAT uses a

digital intensity image of the reorganized inter-data distance matrix obtained by efficient reorganization

schemes, and the number of dark diagonal blocks on the image indicates the number of clusters in the data.

The different VAT modifications can be used to detect how the data are clustered since the algorithm used

to reorganize the distance matrix is based on the Prim’s algorithm applied to graph-theoretic minimal

spanning tree based clustering. The original VAT algorithm will be described in Section 5.4.1. To detect

information about the performance of prototype generator clustering methods the same authors proposed a

visual cluster validity (VCV) algorithm by a minor modification of VAT. Cluster prototype based clustering

algorithms minimize the distances between the cluster and the data, where different cluster prototypes

define different distance metrics. Since VAT is based on the reorganization and visualization of the inter-

data distance matrix, this tool cannot be directly applied since fuzzy clustering algorithms operate only

based on the distances between the cluster and the data. The key idea of VCV is to calculate the missing

inter-datum distances based on the triangular inequality property (Hathaway and Bezdeck, 2002). The

details of this algorithm will be presented in Section 5.4.2 of this chapter. Beside the critical analysis of this

method some minor modifications will also be presented based on the similarity analysis of the clusters.

The ideas behind the cluster validity measures, the VATand the VCValgorithms already illustrated that

a good approach for the cluster validity analysis is the analysis of the cluster-prototype data distances. In

higher-dimensional problems this analysis is not possible. One of the approaches applied to the

visualization of high-dimensional spaces is the distance preserving mapping of the higher-dimensional

space into a lower, usually two-dimensional map. Two general approaches for dimensionality reduction

are: (i) feature extraction, transforming the existing features into a lower-dimensional space, and (ii)

feature selection, selecting a subset of the existing features without a transformation.

Feature extraction means creating a subset of new features by combination of existing features.

These methods can be grouped based on linearity (see Figure 5.1). A linear feature extraction or

Topology
preserving

(SOM)

Dimensionality Reduction Methods

Linear methods Nonlinear methods

PCA,
Factor Analysis

Discriminant Analysis Signal
preserving
(M-PCA)

Distance
preserving
(Sammon)

Koontz &
Fukunaga

Figure 5.1 Taxonomy of dimensionality reduction methods (Jain and Dubes, 1988).
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projection expresses the new features as linear combination of the original variables. The type of linear

projection used in practice is influenced by the availability of category information about the patterns in

the form of labels on the patterns. If no category information is available, the eigenvector projection

(also called principal component analysis (PCA)) is commonly used. Discriminant analysis is a popular

linear mapping technique when category labels are available. In many cases, linear projection cannot

preserve the data structure because of its complexity. In these cases nonlinear projection methods

should be used.

Among the wide range of clustering tools, the self-organizing map (SOM) is often visualized by

principal component analysis (PCA) and Sammon mapping to give more insight into the structure of high-

dimensional data. Usually, with the use of these tools the cluster centers (the codebook of the SOM) are

mapped into a two-dimensional space (Vesanto, 2000). Fuzzy C-means cluster analysis has also been

combined with similar mappings and successfully applied to map the distribution of pollutants and to

trace their sources to access potential environmental hazard on a soil database from Austria (Hanesch,

Scholger and Dekkers, 2001).

While PCA attempts to preserve the variance of the data during the mapping, Sammon’s mapping tries

to preserve the interpattern distances (Mao and Jain, 1995; Pal and Eluri, 1998). Hence, this chapter

focuses on the application of Sammon mapping for the visualization of the results of clustering, as the

mapping of the distances is much closer to the task of clustering than preserving the variances. There are

two main problems encountered in the application of Sammon mapping to the visualization of fuzzy

clustering results:

� The aim of cluster analysis is the classification of objects according to similarities among them, and

organizing data into groups. In metric spaces, similarity is often defined by means of distance from a

data vector to some prototypical object of the cluster. The prototypes are usually not known beforehand,

and are sought by the clustering algorithm simultaneously with the partitioning of the data. The

prototypes may be vectors (centers) of the same dimension as the data objects, but they can also be

defined as ‘‘higher-level’’ geometrical objects, such as linear or nonlinear subspaces or functions.

Hence, classical projection methods based on the variance of the data (PCA) or based on the

preservation of the Euclidean interpoint distance of the data (Sammon mapping) are not applicable

when the clustering algorithm does not use the Euclidean distance norm.

� As Sammon mapping attempts to preserve the structure of high n-dimensional data by finding N points

in a much lower q-dimensional data space, such that the interpoint distances measured in the

q-dimensional space approximate the corresponding interpoint distances in the n-dimensional space,

the algorithm involves a large number of computations as in every iteration step it requires the

computation of NðN � 1Þ=2 distances. Hence, the application of Sammon mapping becomes imprac-

tical for large N (de Ridder and Duin, 1997).

To avoid these problems this chapter also proposes a new algorithm. By using the basic properties of fuzzy

clustering algorithms the proposed tool maps the cluster centers and the data such that the distances

between the clusters and the datapoints will be preserved. During the iterative mapping process, the

algorithm uses the membership values of the data and minimizes an objective function that is similar to

the objective function of the original clustering algorithm.

5.1 PROBLEM DEFINITION

Since clusters can formally be seen as subsets of the data-set, one possible classification of clustering

methods can be according to whether the subsets are fuzzy or crisp (hard). Hard clustering methods are

based on classical set theory, and require that an object either does or does not belong to a cluster. Hard

clustering in a data set X ¼ fxkjk ¼ 1; 2; . . . ;Ng means partitioning the data into a specified number of

mutually exclusive subsets of X. The number of subsets (clusters) is denoted by c. Fuzzy clustering

methods allow objects to belong to several clusters simultaneously, with different degrees of membership.
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The data-set X is thus partitioned into c fuzzy subsets. In many real situations, fuzzy clustering is more

natural than hard clustering, as objects on the boundaries between several classes are not forced to fully

belong to one of the classes, but rather are assigned membership degrees between 0 and 1 indicating their

partial memberships. The discrete nature of hard partitioning also causes analytical and algorithmic

intractability of algorithms based on analytic functionals, since these functionals are not differentiable.

The objective of clustering is to partition the data set X into c clusters. For the time being, assume that c

is known, based on prior knowledge, for instance. Fuzzy and possibilistic partitions can be seen as a

generalization of hard partitioning. Possibilistic partition is similar to fuzzy one because a data point can

belong to several clusters simultaneously but it does not require that the sum of memberships of one data

point is equal to 1. It is able to deal with outliers better than fuzzy clustering but it raises several problems

in the definition and minimization of the objective function. This chapter deals only with fuzzy clustering.

A c� N matrix U ¼ ½�i;k� represents the fuzzy partitions, where �i;k denotes the degree of the

membership of the xkth observation belongs to the 1 � i � cth cluster, so the ith row of U contains

values of the membership function of the ith fuzzy subset of X. The matrix U is called the fuzzy partition

matrix. Conditions for a fuzzy partition matrix are given by:

�i;k 2 ½0; 1�; 1 � i � c; 1 � k � N; ð5:1Þ
Xc

i¼1

�i;k ¼ 1; 1 � k � N; ð5:2Þ

0 <
XN

k¼1

�i;k < N; 1 � i � c: ð5:3Þ

Fuzzy partitioning space. Let X ¼ ½x1; x2; . . . ; xN � be a finite set and let 2 � c < N be an integer. The

fuzzy partitioning space for X is the set

Mfc ¼ U 2 Rc�N j�i;k 2 ½0; 1�; 8i; k;
Xc

i¼1

�i;k ¼ 1; 8k; 0 <
XN

k¼1

�i;k < N; 8i
( )

: ð5:4Þ

Equation (5.2)} constrains the sum of each column to 1, and thus the total membership of each xk in X

equals 1. The distribution of memberships among the c fuzzy subsets is not constrained.

A large family of fuzzy clustering algorithms is based on minimization of the sum-of-squared error or

minimum variance objective function (Duda, Hart, and Stork, 2001) formulated as:

JðX; U;VÞ ¼
Xc

i¼1

XN

k¼1

ð�i;kÞmdðxk; �iÞ2 ð5:5Þ

where U ¼ ½�i;k� is a fuzzy partition matrix of X, �i is the ith cluster prototype, which has to be

determined, and dðxk; �iÞ2 is a squared inner-product distance norm between the kth sample and the

ith prototype. In the classical fuzzy C-means (FCM) algorithm, the prototypes are centers,

V ¼ ½v1; v2; . . . ; vc�; vi 2 Rn; therefore, the distance can be formed in the following way:

dðxk; viÞ2 ¼k xk � vi k2
A¼ ðxk � viÞT Aðxk � viÞ ð5:6Þ

where A is the distance measure (if there is no prior knowledge, A ¼ I), and m 2 h1;1Þ is a weighting

exponent which determines the fuzziness of the resulting clusters. The measure of dissimilarity in

Equation (5.5) is the squared distance between each data point xk and the cluster prototype �i. This

distance is weighted by the power of the membership degree of that point ð�i;kÞm. The value of the cost

function Equation (5.5) is a measure of the total weighted within-group squared error incurred by the

representation of the c clusters defined by their prototypes vi. Statistically, Equation (5.5) can be seen as a

measure of the total variance of fxk from �i. If the prototypes are known, the membership degrees can be

determined in the following way:

�i;k ¼
1

Pc
j¼1ðdðxk; �iÞ=dðxk; �jÞÞ2=ðm�1Þ ; 1 � i � c; 1 � k � N: ð5:7Þ
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As was mentioned above, prototype generator clustering methods always produce clusters. They do it

even if there is no (cluster) structure in the data. This chapter deals with other types of problems: how can

the user know whether:

� the given partition;

� the number of clusters; or

� the applied type of cluster prototypes are consistent with the analysed data.

The given partition (the partition matrix U) may be inadequate even if the number of clusters and the used

prototype are consistent. This is because the clustering methods may be stuck in a local optimum in the

search space – or it may happen if the applied method for minimizing the cost function Equation (5.5) is

alternating optimization. This problem can be solved by global search (e.g., genetic or evolutionary

algorithms). In practice, a simpler approach is used: the clustering algorithm is run several times but from

different initial points, and the fuzzy partition with the minimal cost function value (see Equation (5.5)) is

chosen as the optimal solution.

5.2 CLASSICAL METHODS FOR CLUSTER VALIDITY AND
MERGING

Cluster validity refers to the problem whether a given fuzzy partition fits to all the data, and it is often

referred to as the problem of the appropriate number of clusters (especially if the optimal fuzzy partitions

are compared). Two main approaches to determine the appropriate number of clusters in data can be

distinguished:

� Clustering data for different values of c, and using validity measures to assess the goodness of the

obtained partitions. This can be done in two ways:

– The first approach is to define a validity function which evaluates a complete partition. An upper

bound for the number of clusters must be estimated (cmax), and the algorithms have to be run with

each c 2 f2; 3; . . . ; cmaxg. For each partition, the validity function provides a value such that the

results of the analysis can be compared indirectly.

– The second approach consists of the definition of a validity function that evaluates individual clusters

of a cluster partition. Again, cmax has to be estimated and the cluster analysis has to be carried out for

cmax. The resulting clusters are compared to each other on the basis of the validity function. Similar

clusters are collected in one cluster, very bad clusters are eliminated, so the number of clusters is

reduced. The procedure can be repeated until there are no ‘‘bad’’ clusters.

� Starting with a sufficiently large number of clusters, and successively reducing this number by merging

clusters that are similar (compatible) with respect to some predefined criteria. This approach is called

compatible cluster merging.

Appendix 5A.1 gives an overview of the applicable validity measures. Most validation indices proposed

during the last decades have focused on two properties: compactness and separation. Compactness is used

as a measure of the variation or scattering of the data within a cluster, and separation is used to account for

inter-cluster structural information. The basic aim of validation indices has been to find the clustering that

minimizes the compactness and maximizes the separation. However, the classical indices are limited in their

ability to compute these properties because there are several ways to define compactness and separation, and

there is no index that can take into account more viewpoints and also other viewpoints besides these ones,

e.g., the aim of clustering (partition, regression, classification, etc.). In other words, there is no general

validity index and it can be more effective if the results of clustering are visualized because it can give more

and detailed information and the user needs can also be taken into account (see also Section 5.4).

The recursive cluster merging technique evaluates the clusters for their compatibility (similarity) and

merges the clusters that are found to be compatible. During this merging procedure the number of clusters
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is gradually reduced. This procedure can be controlled by a fuzzy decision-making algorithm based on the

similarity of (fuzzy) clusters. Because the compatibility criterion quantifies various aspects of the

similarity of the clusters, the overall cluster compatibility should be obtained through an aggregation

procedure. A fuzzy decision-making algorithm can be used for this purpose (Babuska, 1998). In this work

two criteria were combined and it can be applied to clustering algorithms where the clusters are described

by centers and covariance matrices. Let the centers of two clusters be vi and vj. Let the eigenvalues of the

covariance matrices of two clusters be fli1; . . . ; ling and flj1; . . . ; ljng, both arranged in descending

order. Let the corresponding eigenvectors be f�i1; . . . ; �ing and f�j1; . . . ; �jng. The following compat-

ibility criteria were defined in Babuska (1998):

c1
ij ¼ j�in � �jnj; c1

ij close to1; ð5:8Þ
c2

ij ¼ jjvi � vj k; c2
ij close to 0: ð5:9Þ

The first criterion assesses whether the clusters are parallel, and the second criterion measures the distance

of the cluster centers. These criteria are evaluated for each pair of clusters. The most similar pair of

adjacent clusters has to be merged as long as the value of the corresponding similarity is above a user

defined threshold g. Clusters can be merged in several ways (see, for example, Babuska 1998; Kelly, 1994;

Marcelino, Nunes, Lima, and Ribeiro, 2003). A similar compatible cluster merging method was applied

to time-series segmentation in Abonyi, Feil, Nemeth, and Arva (2005).

5.3 SIMILARITY OF FUZZY CLUSTERS

The main problem of these approaches is that the similarity of the clusters is measured based on the

comparison of certain parameters of the cluster prototypes (e.g., centers and orientation (eigenvectors) of

the clusters).

As it will be show in this chapter, for both cluster aggregation and visualization there is a need to determine

how similar the resulted clusters are. For that purpose, a fuzzy set similarity measure can be used because

fuzzy clusters can be seen as fuzzy sets. The similarity of two sets, A and B can be expressed as follows:

SðA;BÞ ¼ jA
T

Bj
jA
S

Bj : ð5:10Þ

For fuzzy sets, instead of conjunction
T

, several logic operators exist, the so-called t-norms (see, for

example, Nellas, 2001). Two of them are:

Min : A AND B ¼ minð�A; �BÞ; ð5:11Þ
Product : A AND B ¼ �A�B; ð5:12Þ

where �A and �B are the membership functions of set A and B, respectively. For the disjunction, several

logic operators also exist, the so-called t-conorms. Two of them are:

Max : A OR B ¼ maxð�A; �BÞ; ð5:13Þ
Algebraic sum : A OR B ¼ �A þ �B � �A�B: ð5:14Þ

In this way, all i; j pairs of clusters can be compared to each other in the following ways:

Sði; jÞ ¼
PN

k¼1 minð�i;k; �j;kÞPN
k¼1 maxð�i;k; �j;kÞ

; ð5:15Þ

or

Sði; jÞ ¼
PN

k¼1 �i;k�j;kPN
k¼1 �i;k þ �j;k � �i;k�j;k

: ð5:16Þ

In this chapter Equation (5.15) is used. Based on the obtained symmetric similarity matrix S, a dendrogram

can be drawn to visualize and hierarchically merge the fuzzy clusters based on a hierarchical clustering

procedure (in this chapter a single-linkage algorithm was applied). Using this diagram, the human data
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miner can gain an idea how similar the clusters are in the original space and is able to determine which

clusters should be merged if it is needed. This will be illustrated by the three data-sets used below. In all the

cases, the classical fuzzy C-means algorithm was used. The parameters of the algorithm: the number of

clusters c was 10, the weighting exponent m was equal to 2, and the termination tolerance � was 10�4.

In the following sections, three examples were used to illustrate the detailed methods, one synthetic two-

dimensional data set, and the well-known Iris and Wine data-sets from UCI Machine Learning Repository.

The synthetic data-set can be seen in Figure 5.2. This data-set contains 267 data samples. The Iris data-set

contains measurements on three classes of Iris flower. The data-set was made by measurements of sepal

length and width and petal length and width for a collection of 150 irises (so it is four-dimensional). The

problem is to distinguish the three different types (Iris setosa, Iris versicolor, and Iris virginica). These data

have been analyzed many times to illustrate various methods. The Wine data-set contains the chemical

analysis of 178 wines grown in the same region in Italy but derived from three different cultivars. The

problem is to distinguish the three different types based on 13 continuous attributes derived from chemical

analysis: alcohol, malic acid, ash, alckalinity of ash, magnesium, total phenols, flavanoids, nonflavanoid

phenols, proanthocyaninsm, colour intensity, hue, OD280/OD315 of diluted wines and proline.

Example 5.1 Merging similar clusters for the synthetic data-set In the case of the synthetic data-set,

more than 10 clusters are needed to ’cover the data’ (based on validity indices, about 15–20). Despite that,

only 10 clusters are used because this example wants to illustrate the proposed approach and 10 clusters can

easily be overviewed in two dimensions. In Figure 5.3 can be seen the results of the fuzzy C-means

algorithm, the contour lines represent equal membership values. As it can be seen on the figure, 3-4-9-6th

clusters could be merged, and also 2-7-10-8th clusters represent a group of clusters. This dendrogram

corresponds the results of the FCM algorithm. However, a much better solution can be given by another

cluster prototype, namely, the Gath–Geva algorithm, which uses adaptive distance norm. However, this

clustering method is very sensitive to the initialization, but minimal spanning tree initialization makes it

much more robust. These results were published in Vathy-Fogarassy, Feil, and Abonyi (2005).
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Figure 5.2 Synthetic data for illustration.
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Example 5.2 Merging similar clusters for the Iris data-set As is known the Iris data contain three

labeled classes of Iris flower, but only two well-separated clusters because data of two kinds of Iris are not

clearly separable. In the case of the Iris data-set, the number of clusters c ¼ 10 was clearly greater than

the optimal number of clusters. In Figure 5.4 it can be seen that two large groups of clusters can be

identified in the case of the Iris data-set.

Example 5.3 Merging similar clusters for the Wine data-set In the case of the Wine data-set, the

number of clusters c ¼ 10 was clearly greater than the optimal number of clusters. In Figure 5.5 it can be

seen that three well-separated groups of clusters can be identified, and the optimal number of clusters is

three. It does not necessarily mean that the real groups of data are well-separated as well. This problem

will be discussed in Section 5.4.2 and in Example 5.9.
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Figure 5.3 Result of the FCM algorithm; similarity of the resulting clusters.
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Figure 5.4 Similarity of the resulting clusters for the Iris data-set.
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5.4 VISUALIZATION OF CLUSTERING RESULTS

Maybe the most complex problem in cluster validity is to decide whether the applied clarify or re-word

cluster prototype fits the data at all. To solve that problem, much more information has to be gathered.

Since validity measures reduce the overall evaluation to a single number, they cannot avoid a certain loss

of information. A low-dimensional graphical representation of the clusters could be much more

informative than such a single value of the cluster validity because one can cluster by eye and qualitatively

validate conclusions drawn from clustering algorithms.

In the following sections the most effective visualization techniques will be overviewed and based on

their critical analysis new algorithms will be proposed.

5.4.1 Visual Assessment of Cluster Tendency

Visual assessment of cluster tendency (VAT) method was proposed in (Bezdek and Hathaway, 2002), and

its variants in Huband, Bezdek, and Hathaway 2004, 2005). Its aim is similar to one of cluster validity

indices, but it tries to avoid the ‘massive aggregation of information’ by scalar validity measures. Instead

of a scalar value or a series of scalar values by a different number of clusters, an N � N intensity image is

proposed by Hathaway and Bezdek. It displays the reordered form of the dissimilarity data

D ¼ ½dðxi; xjÞ�N�N , where dðxi; xjÞ is the dissimilarity of the ith and jth samples (not necessarily

distance, but in this chapter we use their distance as the dissimilarity measure). The method consists

of two steps:

� Step 1 reorder the dissimilarity data and get ~D, in which the adjacent points are members of a possible

cluster;

� Step 2 display the dissimilarity image based on ~D, where the gray level of a pixel is in connection with

the dissimilarity of the actual pair of points.
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Figure 5.5 Similarity of the resulted clusters for the Wine data-set.
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The key step of this procedure is the reordering of D. For that purpose, Bezdek used Prim’s algorithm for

finding a minimal spanning tree. The undirected, fully connected, and weighted graph analyzed here

contains the data points or samples as nodes (vertices) and the edge lengths or weights of the edges are the

values in D, the pairwise distances between the samples. There are two differences between Prim’s

algorithm and VAT: (1) VAT does not need the minimal spanning tree itself (however, it also determines

the edges but does not store them), just the order in which the vertices (samples or objects xi) are added to

the tree; (2) it applies special initialization. Minimal spanning tree contains all of the vertices of the fully

connected, weighted graph of the samples, therefore any points can be selected as the initial vertex.

However, to help ensure the best chance of display success, Bezdek proposed a special initialization: the

initial vertex is any of the two samples that are the farthest from each other in the data set (xi, where i is the

row or column index of maxðDÞ). The first row and column of ~D will be the ith row and column in D. After

the initialization, the two methods are exactly the same. Namely, D is reordered so that the second row and

column correspond to the sample closest to the first sample, the third row and column correspond to the

sample closest to either one of the first two samples, and so on.

This procedure is similar to the single-linkage algorithm that corresponds to the Kruskal’s minimal

spanning tree algorithm and is basically the greedy approach to find a minimal spanning tree. By

hierarchical clustering algorithms (such as single-linkage, complete-linkage, or average-linkage meth-

ods), the results are displayed as a dendrogram, which is a nested structure of clusters. (Hierarchical

clustering methods are not described here, the interested reader can refer, for example, to Jain and Dubes,

(1988).) Bezdek and colleagues followed another way and they displayed the results as an intensity image

Ið~DÞ with the size of N � N. The approach was presented in (Huband, Bezdek, and Hathaway, 2005) as

follows. Let G ¼ fgm; . . . ; gMg be the set of gray levels used for image displays. In the following,

G ¼ f0; . . . ; 255g, so gm ¼ 0 (black) and gM ¼ 255 (white). Calculate

ðIð~DÞÞi;j ¼ ~Di;j
gM

maxð~DÞ

� �
: ð5:17Þ

Convert ðIð~DÞÞi;j to its nearest integer. These values will be the intensity displayed for pixel ði; jÞ of Ið~DÞ.
In this form of display, ‘‘white’’ corresponds to the maximal distance between the data (and always will be

two white pixels), and the darker the pixel the closer the two data are. (For large data-sets, the image can

easily exceed the resolution of the display. To solve that problem, Huband, Bezdek, and Hathaway (2005)

proposed variations of VAT, which are not discussed here.) This image contains information about cluster

tendency. Dark blocks along the diagonal indicate possible clusters, and if the image exhibits many

variations in gray levels with faint or indistinct dark blocks along the diagonal, then the data set ‘‘½. . .� does

not contain distinct clusters; or the clustering scheme implicitly imbedded in the reordering strategy fails

to detect the clusters (there are cluster types for which single-linkage fails famously ½. . .�).’’ One of the

main advantages of hierarchical clusterings is that they are able to detect non-convex clusters. It is, for

example, an ‘‘S’’-like cluster in two dimensions; and it can be the case that two data points, which clearly

belong to the same cluster, are relatively far from each other. (An example will be presented in the

following related to that problem.) In this case, the dendrogram generated by single-linkage clearly

indicates the distinct clusters, but there will be no dark block in the intensity image by VAT. Certainly,

single-linkage does have drawbacks, for example, it suffers from chaining effect, but a question naturally

comes up: how much plus information can be given by VAT? It is because it roughly does a hierarchical

clustering, but the result is not displayed as a dendrogram but based on the pairwise distance of data

samples, and it works well only if the data in the same cluster are relatively close to each other based on the

original distance norm. (This problem arises not only by clusters with non-convex shape, but very

elongated ellipsoids as well.) Therefore, one advantage of hierarchical clustering is lost. There is a need

for further study to analyze these problems, and it is not the aim of this chapter. This problem will also be

touched on in Section 5.4.2.

Example 5.4 VAT for synthetic data In Figure 5.6 the results of the single-linkage algorithm and VAT

can be seen on the synthetic data. The clusters are well-separated but non-convex, and single-linkage

clearly identifies them as can be seen from the dendrogram. However, the VAT image is not as clear as the
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dendrogram in this case because there are data in the ‘‘S’’ shaped cluster that are far from each other

based on the Euclidean distance norm (see the top and left corner of the image).

Example 5.5 VAT for Iris data As was mentioned in Example 5.2, the Iris data contain three labeled

classes of Iris flower, but only two well-separated clusters because data of two kinds of Iris are not clearly

separable. In Figure 5.7 the results of the single-linkage algorithm and VAT can be seen. Each method

clearly identifies two clusters.

Example 5.6 VAT for Wine data In Figure 5.8 the results of the single-linkage algorithm and VAT can be

seen. In this case, VAT is more informative than the dendrogram. The dendrogram is too ‘‘crowded,’’ and

all that the user can get to know is that there are no well-separated clusters in this 13-dimensional data-

set. VAT provides more information: there are at least three ‘‘cores’’ in the data-set but the clusters are

overlapping and not clearly identifiable.

Figure 5.6 Result of the (a) single-linkage algorithm and (b) VAT for synthetic data.

Figure 5.7 Result of the (a) single-linkage algorithm and (b) VAT for Iris data.
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5.4.2 Visual Cluster Validity

Visual cluster validity (VCV) technique proposed in Hathaway and Bezdek (2003) is a possible approach

to visually validate clustering results. The information about the clusters, which can be hard, fuzzy, or

possibilistic, is displayed on a VAT like intensity image described in Section 5.4.1. The differences are the

following:

� The order of data is not determined by a minimal spanning tree algorithm but it depends on the

clustering result.

� The pairwise distance of data is calculated based on the distances from the cluster prototypes. That is

why it is applicable to validate the resulted partition. Thanks to this method, the problems mentioned in

Section 5.4.1 related to VAT, do not occur in the case of VCV.

Let us briefly overview these differences. The ordering procedure is done in two steps. First, the

clusters are reordered, and after that the points within the clusters are reordered. There is a need to

define the similarity (dissimilarity) of clusters to order them. In Hathaway and Bezdek (2003), the

distances between clusters are defined as the Euclidean distance between the parameters defining

the cluster prototypes. Because all clusters have the same number of parameters, this method can be

applied to any prototype generator clustering approaches. However, this is clearly not the best choice

to measure the similarity (dissimilarity) of clusters because prototypes may be very complex and may

contain many parameters of different types. (For example, in the Gustafson–Kessel or Gath–Geva

algorithms the clusters are parameterized by the mean (center) and the distance norm matrix (related to

the covariance matrix of the cluster), see also in Equation (5.6). In the case of fuzzy partition the

similarity measure described in Section 5.3 can be used for all types of fuzzy clustering methods. Based

on the similarity measures in Equation (5.15), pairwise dissimilarity of clusters can be easily

calculated as ð1� Sði; jÞÞ. (In the case of the other t-norm and t-conorm in Equation (5.16), another

method has to be used because in this case the value of ð1� Sði; iÞÞ is not necessarily zero.) In the

original form of VCV, the cluster ordering procedure was a simple greedy approach. Instead of that, in

this chapter the single-linkage algorithm is applied to get the order of the cluster based on the cluster

distance matrix with the size c� c. (It can have a role by large number of clusters.) After that, the

cluster similarity can be drawn as a dendrogram. It contains information about the similarity of the

clusters, and the user can visually analyze the clustering result (maybe can determine the proper

number of clusters). After the order of the clusters are given, the data are reordered within the clusters.

Figure 5.8 Result of the (a) single-linkage algorithm and (b) VAT for Wine data.
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In the case of fuzzy (or possibilistic) clustering, each datum is assigned to the cluster by which it has

the biggest membership. Within each cluster, data are reordered according to their membership in

descending order.

After the ordering procedure, there is a need to determine the pairwise dissimilarity between data. In

Hathaway and Bezdek (2003), the pairwise dissimilarity is given by

d�ðxi; xjÞ ¼ min
1�k�c

fdðxi; �kÞ þ dðxj; �kÞg: ð5:18Þ

(It is a dissimilarity but not a metric (distance).) This procedure makes it possible to validate the clustering

results. It has to be noted that this approach corresponds to the so called minimax TIBA (triangle inequality

based approximation of missing data) proposed in (Hathaway and Bezdek, 2002). The original TIBA

algorithms (minimax, maximin, and maximin/minimax average)were developed to handle missing data

problems by relational data. Relational data means that only the pairwise dissimilarity is given (as in D)

and not the original values of the features (as in X). The dissimilarity measure should satisfy the triangle

inequality because TIBA algorithms use this property. These methods estimate the missing ði; jÞ (and

ðj; iÞ) pairwise dissimilarity based on the given dissimilarities of the ith and jth data from other data. The

problem related to the pairwise dissimilarity by clustered data is similar to that: if the distance norms of

the clusters are adaptive, it is not known which distance norm should be used to measure the pairwise

dissimilarity! However, the pairwise dissimilarities between the data and cluster prototypes are known,

and using Equation (5.18) is a possible solution to estimate the pairwise dissimilarities between the data.

After the order of data and the pairwise dissimilarities are determined, the intensity image is composed in

the same way as by VAT (see in Section 5.4.1). Small dissimilarities are represented by dark shades and

large dissimilarities are represented by light shades. Darkly shaded diagonal blocks correspond to clusters

in the data. This VCV image can be used to determine which clusters should be merged, and what the

proper number of clusters could be.

Example 5.7 Visual cluster validity image for the synthetic data-set In the case of the synthetic data-

set the proper number of clusters is probably greater than the applied c ¼ 10. However, for the purpose

of illustration, it is worth displaying the VCV image in this case as well, and comparing the result with

Figure 5.3. In Figure 5.9 similar results can be seen. The vertical lines are the bounds of the ‘‘hardened’’

Figure 5.9 VCV image for the synthetic data-set (the numbers mean clusters, see Figure 5.3).
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clusters. Clusters 1 and 5 are clearly well-separated, and at least two groups can be formed from the other

clusters. 3-4-9-6th clusters could be merged, they are displayed as a large dark block on the VCV, but 2-7-

10-8th clusters are not clearly mergeable. It is the user who has to decide in that type of problem.

Example 5.8 Visual cluster validity image for the Iris data-set The results plotted in Figure 5.9 are

clear. There are only two groups of clusters, as was the case by the data points themselves.

Example 5.9 Visual cluster validity image for the Wine data-set The results plotted in Figure 5.9 are

not as clear as in Figure 5.5. (In Figure 5.9 the clusters separated by commas came to be so small because

of the hardening procedure that their borders could not be displayed. It is because these clusters are very

Figure 5.10 VCV image for the Iris data-set.

Figure 5.11 VCV image for the Wine data-set.
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similar and close to each other.) As was mentioned in Example 5.3, although the optimal number of

clusters is three and it is clear from Figure 5.5, the three real clusters in the data-set are not well-

separated, because the borders of the middle block in Figure 5.9 are not clear.

5.4.3 Sammon Mapping to Visualize Clustering Results

While PCA attempts to preserve the variance of the data during the mapping, Sammon’s mapping tries to

preserve the interpattern distances (Mao and Jain, 1995; Pal and Eluri, 1998). For this purpose, Sammon

defined the mean-square error between the distances in the high-dimensional space and the distances in

the projected low-dimensional space. This square-error formula is similar to the ‘‘stress’’ criterion from

multi-dimensional scaling.

The Sammon mapping is a well-known procedure for mapping data from a high n-dimensional space

onto a lower q-dimensional space by finding N points in the q-dimensional data space, such that the

interpoint distances d�i;j ¼ d�ðyi; yjÞ in the q-dimensional space approximate the corresponding interpoint

distances di;j ¼ dðxi; xjÞ in the n-dimensional space. (see Figure 5.12).

This is achieved by minimizing an error criterion, called the Sammon’s stress, E:

E ¼ 1

l

XN�1

i¼1

XN

j¼iþ1

ðdi;j � d�i;jÞ
2

di;j
ð5:19Þ

where l ¼
PN�1

i¼1

PN

j¼iþ1

di; j.

The minimization of E is an optimization problem in Nq variables yi;l, i ¼ 1; 2; . . . ;N, l ¼ 1; . . . ; q, as

yi ¼ ½yi;1; . . . ; yi;q�T . Sammon applied the method of steepest descent to minimizing this function.

Introduce the estimate of yi;l at the tth iteration

yi;lðt þ 1Þ ¼ yi;lðtÞ � a

@EðtÞ
@yi;lðtÞ
@2EðtÞ
@2yi;lðtÞ

2
6664

3
7775 ð5:20Þ

where a is a nonnegative scalar constant (recommended a ’ 0:3� 0:4), i.e., the step size for gradient

search in the direction of

@EðtÞ
@yi;lðtÞ

¼ � 2

l

XN

k¼1;k 6¼i

dk;i � d�k;i
dk;id

�
k;i

" #
ðyi;l � yk;lÞ
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1

dk;id
�
k;i

ðdk;i � d�k;iÞ � ðyi;l � yk;lÞ2
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 !
1þ

dk;i � d�k;i
dk;i

� �" #
:

ð5:21Þ

It is not necessary to maintain l for a successful solution of the optimization problem, since the

minimization of
PN�1

i¼1

PN

j¼iþ1

ðdi;j � d�i; jÞ
2=di; j gives the same result.
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Figure 5.12 Illustration of Sammon mapping.
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When the gradient-descent method is applied to search for the minimum of Sammon’s stress, a local

minimum in the error surface can be reached. Therefore, a significant number of runs with different

random initializations may be necessary. Nevertheless, the initialization of y can be based on information

which is obtained from the data, such as the first and second norms of the feature vectors or the principal

axes of the covariance matrix of the data (Mao and Jain, 1995).

The classical Sammon mapping described above can be used to visualize the data themselves because it

tries to preserve the interpattern distances. How can it be applied to visualize (fuzzy) clustering results?

The following simple idea can be used: the interpattern distances are calculated based on the clustering

results and the distances between the cluster prototypes and data, instead of based on the Euclidean

distance of the objective data X. Exactly the same idea can be applied to obtain these dissimilarities as by

VCV in Section 5.4.2. (see Equation (5.18).

Example 5.10 Visualization of synthetic data based on Sammon mapping The result of the FCM

algorithm based Sammon mapping can be seen in Figure 5.13(a) (the number of clusters is 10 as in the

previous examples, see Section 5.4.2). These data are very similar to the original two-dimensional data. It

is worth comparing the results with another clustering algorithm. The Gath–Geva (GG) method was

chosen for that purpose. Its distance norm is adaptive, and it is able to determine ellipsoids with different

sizes and shapes (for more information see Gath and Geva (1989)). The results of Sammon mapping based

on the Gath–Geva algorithm can be seen in Figure 5.13(b) (the number of clusters was the same by both

clustering algorithms). It can be determined that the four clusters are clearly separable and the data are

very close to the cluster prototypes. From the two diagrams it can be said that the GG prototype represents

best the analyzed data-set than the one of FCM. However, the result of FCM is also acceptable because

the possible numberof groups of data are known from VATimage or from the dendrogram (see Figure 5.6),

and the four clusters are identifiable also from Figure 5.13(a).

Example 5.11 Visualization of Iris data based on Sammon mapping The Iris data are displayed in

Figure 5.14 based on Sammon mapping using the result of FCM by c ¼ 10. As it was determined from VAT

(Figure 5.7) and VCV (Figure 5.10) as well, this four-dimensional data-set contains two well-separated

clusters because two kinds of Iris flower are not clearly separable from these data. Figure 5.14 shows

exactly the same. Because in this case the physical label of the data are also known (but of course not used

in clustering), the different kinds of flowers are also displayed in the figure by different markers.

Example 5.12 Visualization of Wine data based on Sammon mapping In Figure 5.15 the results given

by the Sammon mapping can be seen based on two different dissimilarity measures: (a) based on the

Euclidean interpattern distances (it is the classical Sammon mapping), and (b) on the VCV based
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Figure 5.13 Synthetic data visualized by Sammon mapping using VCV dissimilarities based on (a) fuzzy C-means

clustering, and (b) Gath–Geva clustering.
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dissimilarity (Equation (5.18)) using the FCM algorithm with 10 clusters. As was the case for the Iris

data-set as well, the physical labels of the data are known and it is also displayed in the figures. As can be

seen, this clustering problem is very complex because the data in the 13-dimensional space likely form a

‘‘cloud’’ and the clusters are not well-separated. (However, the physical classes are not mixed too much

but the groups of data are very close to each other.)

5.4.4 Visualization of Fuzzy Clustering Results by Modified Sammon
Mapping

This section focuses on the application of Sammon mapping for the visualization of the results of

clustering, as the mapping of the distances is much closer to the task of clustering than the preserving the

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.14 Iris data visualized by Sammon mapping using VCV dissimilarities.
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Figure 5.15 Wine data visualized by (a) classical Sammon mapping; (b) VCV dissimilarity based Sammon mapping.
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variances. This section is mainly based on a previous work of the authors, for more details see Kovacs and

Abonyi (2004). There are two main problems encountered in the application of Sammon mapping to the

visualization of fuzzy clustering results:

� The prototypes of clustering algorithms may be vectors (centers) of the same dimension as the data

objects, but they can also be defined as ‘‘higher-level’’ geometrical objects, such as linear or nonlinear

subspaces or functions. Hence, classical projection methods based on the variance of the data (PCA) or

based on the preservation of the Euclidean interpoint distance of the data (Sammon mapping) are not

applicable when the clustering algorithm does not use the Euclidean distance norm.

� As Sammon mapping attempts to preserve the structure of high n-dimensional data by finding N points

in a much lower q-dimensional data space, such that the interpoint distances measured in the

q-dimensional space approximate the corresponding interpoint distances in the n-dimensional space,

the algorithm involves a large number of computations as in every iteration step it requires the

computation of NðN � 1Þ=2 distances. Hence, the application of Sammon mapping becomes imprac-

tical for large N (de Ridder and Duin, 1997; Pal and Eluri, 1998).

By using the basic properties of fuzzy clustering algorithms a useful and easily applicable idea is to map

the cluster centers and the data such that the distances between the clusters and the data points will be

preserved (see Figure 5.16). During the iterative mapping process, the algorithm uses the membership

values of the data and minimizes an objective function that is similar to the objective function of the

original clustering algorithm.

To avoid the problem mentioned above, in the following we introduce some modifications in order to

tailor Sammon mapping for the visualization of fuzzy clustering results. By using the basic properties of

fuzzy clustering algorithms where only the distance between the data points and the cluster centers are

considered to be important, the modified algorithm takes into account only N � c distances, where c

represents the number of clusters, weighted by the membership values:

Efuzz ¼
Xc

i¼1

XN

k¼1

ð�i;kÞm½dðxk; �iÞ � d�ðyk; ziÞ�2 ð5:22Þ

where dðxk; �iÞ represents the distance between the xk datapoint and the �i cluster center measured in the

original n-dimensional space, while d�ðyk; ziÞ represents the Euclidean distance between the projected

cluster center zi and the projected data yk. This means that in the projected space, every cluster is

represented by a single point, regardless of the form of the original cluster prototype, �i. The application

of the simple Euclidean distance measure increases the interpretability of the resulting plots (typically in

two dimensions, although three-dimensional plots can be used as well). If the type of cluster prototypes is

properly selected, the projected data will fall close to the projected cluster center represented by a point

resulting in an approximately spherically shaped cluster.

The resulting algorithm is similar to the original Sammon mapping, but in this case in every iteration

after the adaptation of the projected data points, the projected cluster centers are recalculated based on the

weighted mean formula of the fuzzy clustering algorithms (see Appendix 5A.2).

The resulting two-dimensional plot of the projected data and the cluster centers is easily interpretable

since it is based on a normal Euclidean distance measure between the cluster centers and the data points.

y1
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Figure 5.16 Illustration of fuzzy Sammon method.
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Based on these mapped distances, the membership values of the projected data can also be plotted based

on the classical formula of the calculation of the membership values:

��i;k ¼ 1=
Xc

j¼1

d�ðxk; �iÞ
d�ðxk; �jÞ

� � 2
m�1

: ð5:23Þ

Of course, the resulting two-dimensional plot will only approximate the original high-dimensional

clustering problem. The quality of the approximation can easily be evaluated based on the mean-square

error of the original and the recalculated membership values:

P ¼k U� U� k ð5:24Þ
where U� ¼ ½��i;k� represents the matrix of the recalculated memberships.

Of course there are other tools to obtain information about the quality of the mapping of the clusters.

For example, the comparison of the cluster validity measures calculated based on the original and mapped

membership values can also be used for this purpose.

Several numerical experiments will be given below to demonstrate the applicability of the presented

visualization tool. For the sake of comparison, the data and the cluster centers are also projected by

principal component analysis (PCA) and the standard Sammon projection. Beside the visual inspection of

the results the mean-square error of the recalculated membership values, P, see Equation (5.24), the

difference between the original F and the recalculated F� partition coefficient (Equation (5A.1)) (one of

the cluster validity measures described in Appendix 5A.1), and the Sammon stress coefficient (Equation

(5.19)) will be analyzed.

Example 5.13 Synthetic data The aim of the first example is to demonstrate how the resulting plots of the

projection should be interpreted and how the distance measure of the cluster prototype is ‘‘transformed’’

into Euclidean distance in the projected two-dimensional space. The visualization performance of the

modified Sammon mapping is compared with PCA and the original Sammon mapping.

This means that in the projected two-dimensional space, each cluster is represented by a single point,

regardless of the form of the original cluster prototype, �i. In this example the result of the Gustafson–

Kessel algorithm is visualized, hence the distance norms defined by the inverse of the fuzzy covariance

matrices are transferred to Euclidean distances with the presented FUZZSAM mapping. The application

of the simple Euclidean distance measure increases the interpretability of the resulted plots. As

Figure 5.17 shows in the case of a properly selected cluster prototype the projected data will fall close

to the projected cluster center represented by a point resulting in an approximately spherically distributed

cluster (compare Figure 5.17(c) and Figure 5.17(d)). The numerical results summarized in Table 5.1 show

that the presented FUZZSAM tool outperforms the linear method and the classical Sammon projection

tools. The P error of the membership values between are much smaller, and the F and F� cluster validity

measures are similar when the projection is based on the presented FUZZSAM mapping.

5.4.5 Benchmark Examples

The previous example showed that it is possible to obtain a good data structure by the presented

mapping algorithm. However, the real advantage of the FUZZSAM algorithm, the visualization of

Table 5.1 Comparison of the performance of the mappings (Example 5.13).

Method P F F� E

GK-PCA 0.1217 0.8544 0.7263 0.0000

GK-SAMMON 0.1217 0.8544 0.7263 0.0000

GK-FUZZSAM 0.0204 0.8495 0.8284 0.1177

FCM-FUZZSAM 0.0000 0.7468 0.7468 0.0000
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higher-dimensional spaces was not shown. This will be done by the following real clustering problems.

The first example is the visualization of the results of the clustering of the well known Iris data.

Example 5.14 Iris data visualization To test the presented method the results of the clustering of the Iris

data were visualized by principal component analysis (PCA), the original Sammon mapping, and the

modified method. The initial conditions in the applied Gustafson–Kessel fuzzy clustering algorithm were

the following: c ¼ 3, m ¼ 2 and a ¼ 0:4 in the Sammon and FUZZSAM mapping algorithms. The results

of the projections are shown in Figure 5.18, where the different markers correspond to different types of

Iris, and the level curves represent the recalculated membership degrees.

As Figure 5.18(c) nicely illustrates, the data can be properly clustered by the GK algorithm. One of the

clusters is well-separated from the other two clusters. To illustrate how the fuzziness of the clustering can

be evaluated from the resulted plot, Figure 5.18(d) shows the result of the clustering when m ¼ 1:4. As can

be seen in this plot the data points lie much closer to the center of the cluster and there are many more

points in the first iso-membership curves. These observations are confirmed by the numerical data given

in Table 5.2.

Example 5.15 Wine data visualization This example is used to illustrate how the FUZZSAM

algorithm can be used to visualize the clustering of 13-dimensional data, and how this visualization
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Figure 5.17 (a) Synthetic data in two dimensionals, (b) PCA mapping of the data and the recalculated membership

contours, (c) FUZZSAM projection of the results of GK clustering, (d) FUZZSAM projection of the results of FCM

clustering.
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can be used to detect the number of clusters (Figure 5.19 and Table 5.3). It can be seen from the

values of partition coefficient F that three clusters fit much better to the data than 10. It can also be

observed in Figure 5.19(a), (b), and (c) that the clusters are so much overlapping that in these figures

only three clusters can be seen. It was also seen by the similarity between clusters (see Example 5.3

and Figure 5.5). There are many points that belong to these three clusters with similar membership

values.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y1

y 2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y1

y 2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y1

y 2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y1

y2

(a) (b)

(c) (d)

Figure 5.18 (a) PCA projection of the IRIS data and the recalculated membership contours; (b) SAMMON

projection of the IRIS data and the recalculated membership contours; (c) FUZZSAM projection of the results of

GK clustering of the IRIS data m ¼ 2; (d) FUZZSAM projection of the results of FCM clustering of the the IRIS data

m ¼ 1:4.

Table 5.2 Comparison of the performance of the mappings (Example 5.14).

Method P F F� E

GK-PCA 0.1139 0.7262 0.6945 0.0100

GK-SAMMON 0.1153 0.7262 0.6825 0.0064

GK-FUZZSAM 0.0175 0.7262 0.7388 0.1481

GK-PCA-m¼1.4 0.1057 0.9440 0.9044 0.0100

GK-SAMMON-m¼1.4 0.1044 0.9440 0.8974 0.0064

GK-FUZZSAM-m¼1.4 0.0011 0.9440 0.9425 0.0981
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5.5 CONCLUSIONS

Visualization of (fuzzy) clustering results may be very important in real-life clustering problems. It is

because humans are very good at pattern recognition in two dimensions but are hopeless with more than

three dimensions and/or large amounts of data. Nevertheless, it is exactly the case in practice. Cluster

validity indices try to solve this problem based on a criterion that measures the ‘‘goodness’’ of the actual
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Figure 5.19 (a) PCA projection of the Wine data and the recalculated membership contours; (b) SAMMON

projection of the Wine data and the recalculated membership contours; (c) FUZZSAM projection of the Wine data

by c ¼ 10; (d) FUZZSAM projection of the Wine data by c ¼ 3.

Table 5.3 Comparison of the performance of the mappings (Example 6.15).

Method P F F� E

FCM-PCA c ¼ 10 0.0389 0.1512 0.2252 0.1301

FCM-SAMMON c ¼ 10 0.0262 0.1512 0.1984 0.0576

FCM-FUZZSAM c ¼ 10 0.0105 0.1512 0.1545 0.0999

FCM-PCA c ¼ 3 0.1295 0.5033 0.7424 0.1301

FCM-SAMMON c ¼ 3 0.0874 0.5033 0.6574 0.0576

FCM-FUZZSAM c ¼ 3 0.0364 0.5033 0.5178 0.1003
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results. However, there are many of them and none of them is perfect. It could be much more useful and

informative if the clustering result in n dimensions is ‘‘projected’’ into two dimensions in some sense.

Hence, in this chapter the visualization of fuzzy clustering was our focal point. In the first step after

clustering, there is a need to determine how similar the resulting clusters are. For that purpose, a fuzzy set

similarity measure can be used because fuzzy clusters can be seen as fuzzy sets. For crisp sets, the

similarity of two sets, A and B can be expressed as follows:

simðA;BÞ ¼ A
T

B

A
S

B
: ð5:25Þ

For fuzzy sets, the min and max operator should be used instead of
T

and
S

. In this way, all clusters can be

compared with each other. Based on this symmetric similarity matrix, hierarchial clustering can be used

for cluster merging and for the visualization of the results of the clustering by dendrogram. Sammon

mapping can also be used to visualize the cluster prototype in two dimensions. It is important to note that

the original prototypes may be really complex but they can be visualized as single points in two

dimensions in this way. Using this diagram, the human observer can get an impression of how similar

the clusters are in the original space and is able to determine which clusters should be merged if it is

needed. In the next step, data points should be visualized in this two-dimensional space. It could be done,

for example, with triangulation: distances from the two closest cluster prototypes (hence, with the two

biggest memberships) can be preserved by every data point. However, other ideas can be used as well.

The distances calculated from the clustering can also be visualized. For this purpose visual assessment

of cluster tendency (VAT) plots can be used.

Principal component analysis (PCA) and Sammon mapping can also be used to visualize the

n-dimensional data points in two-dimensions. PCA projects the data into a linear subspace, while

Sammon mapping tries to preserve the interpoint distances. Both of them are useful but none of them

can directly be used to visualize the clustering results, only the data points themselves. If the cluster

prototype is not (only) a point in n dimensions, another procedure is needed. A new FUZZSAM

algorithm has also been proposed for this purpose. The FUZZSAM method generates two-

dimensional informative plots about the quality of the cluster prototypes and the required number

of clusters. This tool uses the basic properties of fuzzy clustering algorithms to map the cluster centers

and the data such that the distances between the clusters and the data points are preserved. The

numerical results show superior performance over principal component analysis and the classical

Sammon projection tools.

The proposed tools can be effectively used for interactive and iterative (dynamic) data mining.

Appendices

APPENDIX 5A.1 VALIDITY INDICES

(1) Partition coefficient (PC): measures the amount of ‘‘overlapping’’ between clusters. It is defined by

Bezdek (Bezdek, 1981) as follows:

PCðcÞ ¼ 1

N

Xc

i¼1

XN

k¼1

ð�i;kÞ2 ð5A:1Þ

where �i;k is the membership of data point k in cluster i. The disadvantage of PC is the lack of direct

connection to some property of the data themselves. The optimal number of clusters is indicated by the

minimum value.
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(2) Classification entropy (CE): measures the fuzzyness of the cluster partition only, which is similar to

the partition coefficient:

CEðcÞ ¼ � 1

N

Xc

i¼1

XN

k¼1

�i;k lnð�i;kÞ: ð5A:2Þ

The optimal number of clusters is indicated by the maximum value.

(3) Partition index (SC): the ratio of the sum of compactness and separation of the clusters. It is a sum of

individual cluster validity measures normalized by dividing it by the fuzzy cardinality of each cluster

(Bensaid et al., 1996):

SCðcÞ ¼
Xc

i¼1

PN
k¼1ð�i;kÞmjjxk � vijj2PN

k¼1 �i;k

Pc
j¼1 jjvj � vijj2

: ð5A:3Þ

SC is useful when comparing different partitions having an equal number of clusters. A lower value of SC

indicates a better partition.

(4) Separation index (S): different from the partition index (SC), the separation index uses a minimum-

distance separation for partition validity (Bensaid et al., 1996):

SðcÞ ¼
Pc

i¼1

PN
k¼1ð�i;kÞ2jjxk � vijj2

N mini;j jjvj � vijj2
: ð5A:4Þ

(5) Xie and Beni’s index (XB): indirect indices like the partition coefficient suffer from three drawbacks.

First, they are at best indirectly related to any real clusters in X; second, they ignore additional parameters

(such as V); and third, they do not use X itself. Xie and Beni defined an index of fuzzy cluster validity that

overcomes the second and third problems. It aims to quantify the ratio of the total variation within clusters

and the separation of clusters (Xie and Beni, 1991)):

XBðcÞ ¼
Pc

i¼1

PN
k¼1ð�i;kÞmjjxk � vijj2

N mini;k jjxk � vijj2
: ð5A:5Þ

The optimal number of clusters should minimize the value of the index.

(6) Dunn’s index (DI): this index was originally proposed to be used at the identification of compact and

well ‘‘separated clusters’’ (see, for example, in Xie and Beni (1991)). So the result of the clustering has to

be recalculated as if it was a hard partition algorithm:

DIðcÞ ¼ min
i2c

min
j2c;i6¼j

minx2Ci;y2Cj
dðx; yÞ

maxk2cfmaxx;y2C dðx; yÞg :
� �� �

ð5A:6Þ

The main drawback of Dunn’s index is the computational demand since calculating becomes computa-

tionally very expensive as c and N increase.

(7) Alternative Dunn index (ADI): the aim of modifying the original Dunn’s index was that

the calculation becomes more simple, when the dissimilarity function between two clusters

(minx2Ci;y2Cj
dðx; yÞ) is rated in value from beneath by the triangle nonequality:

dðx; yÞ � jdðy; vjÞ � dðx; vjÞj ð5A:7Þ
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where vj is the cluster center of the jth cluster. Then:

ADIðcÞ ¼ min
i2c

min
j2c;i6¼j

minxi2Ci;xj2Cj
jdðy; vjÞ � dðxi; vjÞj

maxk2cfmaxx;y2Cdðx; yÞg

� �
ð5A:8Þ

(8) The fuzzy hyper volume: this index is also widely applied and represents the volume of the clusters:

VðcÞ ¼
Xc

i¼1

detðFiÞ; ð5A:9Þ

where Fi is the fuzzy covariance matrix of the ith cluster,

Fi ¼
PN

k¼1 �
m
i;kðxk � viÞðxk � viÞT
PN

k¼1 �
m
i;k

: ð5A:10Þ

(9) The Fischer interclass separability: this criterion is based on the between-class and within-class

scatter or covariance matrices, called Fb and Fw, respectively, which add up to the total scatter matrix Ft

which is the covariance of the whole training data containing N data pairs (Roubos, Setres, and Abonyi,

2003):

Ft ¼
1

N

XN

k¼1

ðxk � vÞðxk � vÞT ; ð5A:11Þ

where v is the mean of the samples:

v ¼ 1

N

XN

k¼1

xk ¼
1

N

Xc

i¼1

Nivi; ð5A:12Þ

where Ni ¼
PN

k¼1 �i;k is the ‘‘size’’ of the cluster, i.e., how many data points belong to it in a fuzzy way.

The total scatter matrix can be decomposed:

Ft ¼ Fb þ Fw; ð5A:13Þ

where

Fb ¼
Xc

i¼1

Niðvi � vÞðvi � vÞT ; ð5A:14Þ

Fw ¼
Xc

i¼1

Fb: ð5A:15Þ

The interclass separability criterion is a trade-off between Fb and Fw:

ISðcÞ ¼ detFb

detFw

: ð5A:16Þ

It is similar to the so-called invariant criteria for clustering (see Duda, Hart, and Stork (2001))

where the cost function, which has to be maximized in this approach, is not in the form of Equation

(5.5) but

Jf ¼ trace½F�1
w Fb� ¼

Xn

i¼1

li; ð5A:17Þ

where li are the eigenvalues of F�1
w Fb.
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APPENDIX 5A.2 THE MODIFIED SAMMON MAPPING ALGORITHM

� [Input] : Desired dimension of the projection, usually q ¼ 2, the original data set, X; and the results

of fuzzy clustering: cluster prototypes, �i, membership values, U ¼ ½�i;k�, and the distances

D ¼ ½dk;i ¼ dðxk; �iÞ�N�c.

� [Initialize] the yk projected data points by PCA based projection of xk, and compute the projected

cluster centers by

zi ¼
PN

k¼1ð�i;kÞmykPN
k¼1ð�i;kÞm

ð5A:18Þ

and compute the distances with the use of these projected points D� ¼ ½d�k;i ¼ dðyk; ziÞ�N�c. Random

initialization can also be used but PCA based projection is a better choice in many cases because it

may reduce the number of iterations in the next phase.

� [While] (Efuzz > ") and (t� maxstep)

fforði ¼1:i � c: iþþ)

fforðj ¼ 1 : j � N : jþþÞ

fCompute
@EðtÞ
@yi;lðtÞ

;
@2EðtÞ
@2yi;lðtÞ

,

�yi;l ¼ �yi;l þ

@EðtÞ
@yi;lðtÞ
@2EðtÞ
@2yi;lðtÞ

2

664

3

775g

g
yi;l ¼ yi;l þ�yi;l; 8i ¼ 1; . . . ;N; l ¼ 1; . . . ; q

Compute zi ¼
PN

k¼1ð�i;kÞmyk=
PN

k¼1ð�i;kÞm

D� ¼ ½d�k;i ¼ dðyk; ziÞ�N�c

g
Compute Efuzz by Equation (5A.22)

where the derivatives are

@EðtÞ
@yi;lðtÞ

¼ � 2

l

XN

k¼1;k 6¼i

dk;i � d�k;i
d�k;i

ð�i;kÞm
" #

ðyi;l � yk;lÞ

@2EðtÞ
@2yi;lðtÞ

¼ � 2

l

XN

k¼1;k 6¼i

ð�i;kÞm

d�k;i
ðdk;i � d�k;iÞ �

ðyi;l � yk;lÞ2

d�k;i
½1þ ðdk;i � d�k;iÞð�i;kÞm�

( ) ð5A:19Þ
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6.1 INTRODUCTION

Classical learning algorithms create models of data in an uncontrolled, non-interactive manner. Typically

the user specifies some (method-dependent) parameters like distance function or number of clusters that

he/she likes to identify, followed by the application of the algorithm using these settings. The process of

the model generation itself, however, cannot be controlled or influenced by the user. The final outcome is

then evaluated by means of some quality measure, for instance the classification error for supervised

learning or some cluster validity measure for unsupervised tasks, or it is judged based on the user’s

impression, provided that the model is interpretable. Depending on the quality of the results, the model

generation is either considered successful, which means the model is a good summarization of the data

and can be used, for example, for further classification tasks, or it requires further fine-tuning of the

parameters and a rerun of the algorithm.

This ‘‘learning’’ scheme is characteristic for most methods in machine learning and data mining.

However, in many applications the focus of analysis is not on the optimization of some quality function

but rather on the user-controlled generation of interpretable models in order to incorporate background

knowledge. This requires tools that allow users to interact with the learning algorithm to inject domain

knowledge or help to construct a model manually by proposing good model components, for example,

cluster prototypes or classification rules, which can then be accepted, discarded, or fine-tuned. There are

generally two different extrema of cooperation between user and system: either the user or the system has

all the control and carries out the model generation; however, in general it requires a balance of both.

Several approaches to build interpretable models interactively for classification have been proposed in

the past. Ankerst, Elsen, Ester, and Kriegel (1999) propose an interactive decision tree learner that is based

on a pixel-oriented visualization of the data. Figure 6.1 shows a screenshot of such an interactive tool. The

visualization technique is similar to the one proposed by Ankerst, Elsen, Ester, and Kriegel (1999) but uses

a box instead of a circle view. The top half of the figure displays the class distribution for one of the input

dimensions with each pixel representing one of the training objects (there are about 15000 training objects
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in this data-set). The objects are aligned column by column according to the order of their values in the

current dimension, whereby the object with the smallest value is plotted at the top left corner of the pixel

display and the others are lined using a snake like alignment. Different colors represent different classes,

for instance there are two classes in the example in Figure 6.1. The bottom half of the figure shows the

entropy curve for the current dimension, i.e., a classical (automatic) decision tree learner would perform a

split at the value with the smallest entropy over all dimensions. This visualization technique allows the

class distribution to be inspected immediately for each individual dimension, either by plotting different

boxes for different classes or – as proposed by Ankers, Elsen, Ester, and Kriegel (1999) – by using a circle

view where different segments of the circle are used to plot the distribution in different dimensions. The

construction of the decision tree model will take place interactively whereby the system supports the user

by proposing good split points, allowing for look-aheads (such as what would be a resulting sub tree if a

split was performed), or automatic construction of sub-trees, for example, when there are only small

amounts of data left in a decision branch. The user, on the other hand, can adjust split points or also

perform the split on another attribute, which may not lead to such a high information gain as the numerical

optimal split point but is, from the user’s perspective, more meaningful.

This system for decision tree construction is a typical example for an interactive model generation tool.

By using an appropriate visualization technique (in the above example a pixel display), the user can guide

the model generation.

Decision trees always partition the instance space, i.e., each point in the input space is assigned a class

label. This is often not desirable as some regions of the input space may not contain (training-) data at all

and therefore there is no obvious evidence to prefer one class over the other. Rule learning algorithms, on

the other hand, generate a set of rules whereby each rule covers only a relatively small region of the input

data. Typically, there may be regions in the input space for which more than one rule fires (posing the

challenge of conflict handling when the firing rules are of contradicting classes) or for which none of the

rules is active. In the latter case, an outcome is often determined using the majority class (the one with

highest a priori probability) or – and which is often preferable – a ‘‘don’t know’’ answer. Many rule

learning algorithms also use the notion of fuzzy membership functions to model regions of high and low

confidence (Berthold, 2003; Chiu, 1997).

Fuzzy clusters, similar to fuzzy rules, are well suited for presentation of the resulting classification model

to the user. Although the traditional cluster algorithm works on unsupervised data-sets, extensions also allow

cluster models to be built that distinguish between areas of different classes. This is an intriguing approach

especially for cases where one expects to find various, distributed areas that belong to the same class. Often

these clusters are then used directly as fuzzy rules or serve to initialize a fuzzy rule system, which is then

optimized. A typical example of this sort of algorithm has been proposed by Chiu (1997): it first finds a set of

clusters for each class using subtractive clustering (Chiu, 1994), an algorithm that builds upon the well-

known mountain method by Yager and Filev (1994), and then derives classification rules from them.

In this chapter we focus on a supervised approach to construct a set of fuzzy clusters for classification.

The algorithm does not use a two stage learning such as in (Chiu, 1997) but rather generates potentially

Figure 6.1 Interactive construction of decision trees.
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discriminative fuzzy clusters from the beginning. It initially constructs a so-called Neighborgram for each

object of interest. A Neighborgram is a summarization of the neighborhood of an object, which allows an

interpretable view on the underlying data. Such a complete and hence computationally expensive

approach obviously only works for all classes of a medium size data-set or – in the case of very large

data-sets – to model a minority class of interest. However, in many applications the focus of analysis is on

a class with few objects only, a minority class. Such data can be found, for instance, in drug discovery

research. Here, huge amounts of data are generated in high throughput screening, but only very few

compounds really are of interest to the biochemist. Therefore, it is of prime interest to find clusters that

model a small but interesting subset of data extremely well.

The algorithm finds clusters in a set of such Neighborgrams based on an optimality criterion.

Since Neighborgrams are easy to interpret, the algorithm can also be used to suggest clusters

visually to the user, who is able to interact with the clustering process in order to inject expert

knowledge. Therefore, the clustering can be performed fully automatically, interactively, or even

completely manually. Furthermore, constructing Neighborgrams only requires a distance matrix,

which makes them applicable to data-sets where only distances between objects are known. For

many similarity metrics in molecular biology no underlying feature values are known since those

similarity (and hence also the distance) values are computed directly. In contrast, methods that

compute cluster representatives as mixtures of training objects (like fuzzy c-means by Bezdek

(1981)) do require the availability of an underlying feature representation in order to continuously

compute and update the cluster centers.

Neighborgrams can naturally be applied to problem settings where there are multiple descriptors for

the data available, known as parallel universes. One such application is biological data analysis where

different descriptors for molecules exist but none of them by itself shows global satisfactory prediction

results. We will demonstrate how the Neighborgram clustering algorithm can be used to exploit the

information of having different descriptors and how it finds clusters spread out of different universes, each

modeling a small subset of the data.

This chapter is organized as follows. We first introduce the concept of Neighborgrams and describe the

basic clustering algorithm. We then extend the algorithm to also handle fuzzy clusters before Section 6.3

discusses some aspects of the visual exploration and demonstrates the usefulness of the visual clustering

procedure. In Section 6.4 we focus on learning in parallel universes and give an example application using

the Neighborgram algorithm.

6.2 NEIGHBORGRAM CLUSTERING

This section introduces Neighborgrams as an underlying data structure of the presented algorithm. We

will formalize this structure and derive some properties which help us to judge the quality of a

Neighborgram later on. We will refer to one of our previous articles, which discusses the automatic

classifier using Neighborgrams more extensively (Berthold, Wiswedel, and Patterson, 2005).

We will assume a set of training objects T with jT j ¼ M instances for which distances,

dðxi; xjÞ; i; j 2 f1; . . . ;Mg, are given1. Each example is assigned to one of C classes,

cðxiÞ ¼ k; 1 � k � C.

6.2.1 Neighborgrams

A Neighborgram is a one-dimensional model of the neighborhood of a chosen object, which we will call

the centroid. Other objects are mapped into the Neighborgram depending on their distance to this

centroid. Essentially, a Neighborgram summarizes the neighborhood of the centroid through a ray on

1Note that it is not necessary to know the feature values for an instance. It is sufficient to provide the algorithm with
distances between objects.
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to which the closest neighbors of the centroid are plotted. Obviously, mapping all objects on to the ray

would be complicated and the visualization would lose its clarity. Therefore, we introduce a parameter R

that determines the maximum number of objects stored in a Neighborgram. Those R stored items

represent the R-closest neighbors to the centroid. Hence, a Neighborgram for a certain centroid xi can

also be seen as an ordered list of length R:

NGi ¼ ½xl1 ; . . . ; xlR �:
The list NGi is sorted according to the distance of object xlr to the center vector xi:

8r : 2 � r � R ^ dðxi; xlðr�1Þ Þ � dðxi; xlr Þ;

and the objects in the Neighborgram are the closest neighbors of the centroid:

:9r : r > R ^ dðxi; xlr Þ < dðxi; xlR
Þ:

Note that l1 ¼ i, because dðxi; xiÞ ¼ 0 for all i, that is, each object is closest to itself. Note also that this list

is not necessarily a unique representation since it is possible that two entries in the list have exactly the

same distance to the centroid. The order of those items would then not be uniquely defined. However, as

we will see later, this does not affect the outcome of the clustering algorithm that we are discussing here.

Obviously in the case of large data-sets the computation of Neighborgrams for each training object is

excessively time and memory consuming. However, as noted earlier, the main target of the algorithm

discussed here are problems where one (or several) minority class(es) are of prime interest. The

computation of Neighborgrams for all these objects is then of complexity OðR �M �M0Þ, where M0

indicates the number of examples of the minority class(es), i.e., M0 � M in the case of large data-sets.

This complexity estimate is derived as follows: for each object (OðMÞ) and for each Neighborgram

(OðM0Þ) do an insertion sort into a list of R objects (OðRÞ). If the size R of the Neighborgrams is closer to

the overall number of objects M it might make more sense to use a more efficient sorting scheme but for

large data-sets usually R� M holds and an insertion sort is sufficiently efficient. For large data-sets, M

will dominate the above estimate and result in a roughly linear complexity.

Figure 6.2 shows an example of two Neighborgrams for the famous Iris data (Fisher, 1936), a data-set

containing four-dimensional descriptions of three different types of Iris plant. For the sake of simplicity,

in the example we use only two of the original four dimensions in order to be able to display them in a

scatterplot (left-hand side). Different colors are used here to show the different class memberships of the

overall 150 objects. Two sample Neighborgrams are shown on the right. They are constructed for the

two centroids of the gray class (Iris-Setosa), indicated by the arrows in the scatterplot. Each Neighbor-

gram summarizes the neighborhood of its centroid. The centroid of the top Neighborgram, for instance,

has many objects from the same (gray) class in its close vicinity as can be immediately seen when looking

at the Neighborgram. The visualization technique uses a simple ray to plot neighbors; however, whenever

two objects are too close to each other and might overlap, we stack them. Stacking allows the user to

individually select certain objects in one Neighborgram, which are then also highlighted in the other

Neighborgrams or another system.

Figure 6.2 Two Neighborgrams for the Iris data is shown on the left. The two-dimensional input space, on the right

there are two different Neighborgrams for two selected objects displayed.
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Neighborgrams are constructed for all objects that are of interest to the user, for instance all objects of

one class. Just from looking at the example in Figure 6.2, we can qualitatively rank Neighborgrams: the

centroid of the top Neighborgram has many objects of its class in the close neighborhood whereas the

centroid of the bottom Neighborgram is surrounded by some gray but also white objects. The top

Neighborgram therefore suggests a better cluster candidate since new, unseen objects that have a small

distance to the centroid are likely to be of the same class.

Let us briefly sketch the underlying algorithm to identify a set of good Neighborgrams in the next

section before we derive some underlying properties of a Neighborgram using the notation introduced

above.

6.2.2 The Basic Clustering Algorithm

The key idea underlying the clustering algorithm is that each object, for which a Neighborgram has been

built, is regarded as a potential cluster center. The objective of the algorithm is to rank Neighborgrams in

order to greedily find the ‘‘best’’ cluster at each step. The result is a subset of all possible clusters that

covers a sufficient number of objects.

The algorithm can be summarized as follows:

1. determine a cluster candidate for each Neighborgram;

2. rank cluster candidates and add the best one as a cluster;

3. remove all objects covered by this cluster;

4. start over at Step 1, unless certain stopping criteria are fulfilled.

Obviously, it needs to be defined, what a cluster candidate is how these candidates can be ranked it, and

what removing covered objects really means. In addition, the termination criterion has to be specified. In

order to do this, let us first define a few properties of Neighborgrams.

6.2.3 Neighborgram Properties

In Section 6.2.1 we used an ordered list as representation for a Neighborgram. This list contains objects,

which are ordered according to their distance to the centroid. The length of the list is determined by the

parameter R:

NGi ¼ ½xl1 ; ::: ; xlr ; ::: ; xlR �:

The main parameters to describe a cluster candidate are the following:

� Coverage �. The default coverage of a cluster with a certain depth r � R determines how many positive

objects it ‘‘explains,’’ that is, the number of objects of the same class as the centroid that fall within its

radius:

�iðrÞ ¼ jfxlr0 2 NGij1 � r0 � r ^ cðxlr0 Þ ¼ cðxiÞgj:

� Purity �. The purity of a Neighborgram is the ratio of the number of objects belonging to the same class

as the centroid to the number of objects encountered up to a certain depth r � R. The purity is a measure

of how many positive vs. negative objects a certain neighborhood around the centroid contains. Positive

objects belong to the same class as the centroid, whereas negative objects belong to a different class:

�iðrÞ ¼
�iðrÞ

r
:
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� Optimal depth �. The optimal depth is the maximum depth where for all depths r less than or equal to �
the purity is greater than or equal to a given threshold pmin. The optimal depth defines the maximum size

of a potential cluster with a certain minimum purity. Note that it is straightforward to derive the

corresponding radius from a given depth, that is, dðxi; xlr Þ:
�iðpminÞ ¼ maxfrj1 � r0 � r ^�iðr0Þ � pming:

Furthermore, we introduce a final parameter � for the overall coverage, which is part of the termination

criterion for the algorithm. It represents the sum of all coverages of the chosen clusters. Once this

threshold is reached, the algorithm stops.

6.2.4 Cluster Candidates and the Clustering Algorithm

Using the above properties we can already clarify the (automatic) clustering procedure. Starting from a

user-defined value for parameter purity � ¼ pmin and the stopping criterion �, we can compute values for

parameters optimal depth � and coverage � for each potential cluster. The best cluster is identified as the

one with the highest coverage. This cluster then ‘‘covers’’ all objects that are within its radius. These

objects are then discarded from the data-set and the cluster-selection process can start again in a

sequential covering manner, based on the reduced set of remaining objects. The termination criterion

of the algorithm is based on the accumulated coverage of identified clusters: once it exceeds a certain

threshold given by the user-defined overall coverage �, the algorithm stops. Thus, the numbers of clusters

is implicitly determined by the algorithm as new clusters are being added as long as the coverage is below

�. The basic algorithm is outlined in Table 6.1.

Although the clustering scheme as listed in Table 6.1 does not incorporate user interaction, it is fairly

easy to integrate: the algorithm determines the (numerically) best Neighborgram (line (6)) and adds it to the

set of clusters. However, instead of simply adding the Neighborgram, the ranking (according to �ið�iÞ) can

be used to suggest discriminative Neighborgrams to the user, who might be interested in picking another

(second choice) Neighborgram or changing the cluster boundaries. Please note that the identification of

good Neighborgrams is always bound to an appropriate visualization of the underlying objects in the

cluster. For example, as we will also see later in Section 6.3, if the objects represent molecular drug

candidates, an accompanying visualization of the molecular structures of the objects in one cluster can help

the user to judge if these objects do indeed have something in common or if they are just artifacts in the data.

The basic clustering algorithm in Table 6.1 removes objects once they are covered by a cluster. This

effect might be desirable for objects lying close to the center of the new cluster but it will reduce accuracy

in areas further away from the cluster center. We therefore introduce the notion of partial coverage using

fuzzy membership functions, which allows us to model a degree of membership of a particular object to a

cluster. The next section will present the membership functions used.

Table 6.1 The basic Neighborgram

clustering algorithm (Berthold, Wiswedel

and Patterson, 2005).

(1) 8xi: cðxiÞ is class of interest) compute NGi

(2) 8NGi: compute �iðpminÞ
(3) 8NGi: compute �ið�iÞ
(4) s :¼ 0

(5) while s < �

(6) ibest ¼ arg maxif�ið�iÞg
(7) add NGibest

to list of clusters,

add �ibest
ð�ibest

Þ to s

(8) determine list of covered objects

(9) remove them from all Neighborgrams NGi

(10) 8NGi: recompute �ið�iÞ
(11) end while
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6.2.5 Membership Functions

The idea underlying the partial coverage is that each cluster is modeled by a fuzzy membership function.

This function has its maximum at the centroid and declines toward the cluster boundaries. The coverage is

then determined using the corresponding degrees of membership. Objects are removed to a higher degree

towards the inner areas of a cluster and to a lesser degree toward the outer bounds. Figures 6.3 to 6.6 show

the four membership functions we used. Note that the rectangular membership function corresponds to

Figure 6.3 The rectangular membership function.

Figure 6.4 The trapezoidal membership function.

Figure 6.5 The triangular membership function.

Figure 6.6 The gaussian membership function.
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the basic algorithm discussed above: objects are covered with degrees of 0 or 1 only, and are therefore

removed completely when covered.

In order to describe a cluster by means of a membership function we first need to introduce three radii,

which will help to specify different regions of the neighborhood:

� r1 represents the radius of the last object with � ¼ 1

(last known perfect): r1 ¼ maxfr j �iðrÞ ¼ 1g.
� r2 is the last object with � � pmin (last known good), that is,

r2 ¼ maxfr j 1 � r0 � r ^�iðr0Þ � pming.
� r3 describes the first object for which � < pmin (first known bad), that is,

r3 ¼ maxfr j 1 � r0 � r � 1 ^�iðr0Þ � pming.

These radii are sufficient to describe as shown in Figure 6.3 to 6.6 commonly used membership functions.

While the shape of the rectangular, trapezoidal and triangular membership functions are determined by

the three radii, the Gaussian membership function is specified using the additional parameter �. The

inverse value of �, r�, determines radius r3. For a minimum required purity pmin equal to 1, the parameter �
determines the maximum degree of membership of an incorrect class for other objects in the training data

(see Berthold and Diamond (1998) for details).

Using these fuzzy membership functions the clustering algorithm changes slightly. First, a degree of

exposure (measuring how much is still uncovered), � 2 ½0; 1�, needs to be assigned to each object of the

classes of interest. At the beginning this value is initialized to 1.0 for each object, that is, each object still

needs to be covered completely. Subsequently this value will be decreased during clustering. A new

cluster which (partly) covers an object will reduce this value accordingly. Obviously an object can only be

covered until � ¼ 0. Let �ðxÞ be an object’s degree of exposure and �Clusterðdðxi; xÞÞ the degree of

membership to the cluster. Then the partial coverage � of a cluster is defined as:

�ið�iÞ ¼
X

xl
r0 2NGi j 1�r0��i

^cðxl
r0 Þ¼cðxiÞ

minf�ðxlr0 Þ; �Clusterðdðxi; xlr0 ÞÞg:

The new fuzzy version of the algorithm is shown in Table 6.2. A list of objects for the class of interest

needs to be created in conjunction with their degrees of coverage (step (2)). Steps (8) and (9) of the basic

algorithm are modified to incorporate the notion of partial coverage. Note that we do not need to remove

covered objects from other Neighborgrams anymore, since the added degree of exposure does this

implicitly.

The introduction of this concept of partial coverage improves the accuracy substantially. Experiments

on publicly available data-sets from the StatLog project (Michie, Spiegelhalter, and Taylor, 1994)

demonstrate that the performance of such an automatic classifier is comparable to state-of-the-art

Table 6.2 The fuzzy Neighborgram clustering

algorithm (Berthold, Wiswedel, and Patterson, 2005).

(1) 8xi : cðxiÞ is class of interest) compute NGi

(2) 8xi : cðxiÞ is class of interest) store �ðxiÞ ¼ 1

(3) 8NGi: compute �i

(4) 8NGi: compute �ið�iÞ
(5) s :¼ 0

(6) while s < �

(7) ibest ¼ arg maxif�ið�iÞg
(8) add NGibest

to list of clusters, add �ibest
ð�ibest

Þ to s

(9) recompute � for each object and

(10) 8NGi: recompute �ið�iÞ
(11) end while
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techniques (among others c4.5, k nearest neighbor, and a multi-layer perceptron). We do not discuss these

experiments here but rather refer to (Berthold, Wiswedel, and Patterson, 2005). The use of fuzzy

membership functions as cluster description increased the generalization ability of the classifier sig-

nificantly. The best performance was always achieved using the Gaussian membership function, which,

however, has one important drawback: it always produces an output since the membership value is

always greater than 0. In most cases a classifier that also produces a ‘‘do not know’’ answer is preferable,

as it allows an obviously uncertain classification to be deferred to an expert or to another system. In the

following we will therefore concentrate on the other membership functions instead, also because they

allow for a more intuitive visualization.

6.3 INTERACTIVE EXPLORATION

As already outlined in the introduction, the main focus of this chapter lies on the interactive exploration of

such supervised fuzzy clusters. The quality measures as introduced in the previous sections allow

Neighborgrams to be ranked based on their coverage given a user-defined threshold value for the purity

pmin. The system uses these values to suggest potentially interesting Neighborgrams to the user who is

then able to evaluate how interesting they are. This section demonstrates the usefulness of this approach

by means of some examples. We will first briefly explain the visualization technique of a Neighborgram

and its cluster candidate before we show its applicability in practice on a real-world data-set from the

National Cancer Institute.

6.3.1 Neighborgram Visualization

Since a Neighborgram is a one-dimensional representation of the neighborhood of an object, it is

straightforward to visualize. Figure 6.7 shows the Neighborgrams for two objects of the Iris data-set

(Fisher, 1936). In comparison to Figure 6.2 the figure also contains a visualization of the (trapezoidal)

fuzzy membership function as proposed by the system. While the vertical axis does not have a meaning

for the visualization of points (as noted earlier, we use it only to avoid overlaps), it is used to display the

membership function.

Both clusters in Figure 6.7 are built for the Iris-Virginica class (points shown in black); however, the top

Neighborgram suggests better clustering behavior as it covers almost all of the objects of Virginica class

(the same class as the centroid), whereas the bottom Neighborgram also has objects of Iris-Versicolor

class (white points) in its close neighborhood. Note also how objects of Iris-Setosa class (gray) form a nice

separate cluster far away in both Neighborgrams, a fact well-known from the literature. In this

case automatic ranking is likely to be a good choice; however, in a less obvious case, the user could

Figure 6.7 Two Neighborgrams built for the Iris data.
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overrule the algorithm’s choice, select individual clusters, and also modify their membership functions if

so desired.

6.3.2 NCI’s HIV Data

To show the usefulness of the proposed visual clustering algorithm in a real-world scenario, let us look at

the application of Neighborgrams on a well-known data-set from the National Cancer Institute, the DTP

AIDS Antiviral Screen data-set. The screen utilized a soluble formazan assay to measure protection of

human CEM cells from HIV-1 infection. All compounds in the data-set were tested on their protection of

the CEM cell; those that did not provide at least 50 % protection were labeled as confirmed inactive (CI).

All others were tested in a second screening. Compounds that provided protection in this screening, too,

were labeled as confirmed active (CA), the remaining ones as moderately active (CM). Available online

(National Cancer Institute, 2005) are screening results and chemical structural data on compounds

that are not protected by a confidentiality agreement. Available are 41 316 compounds of which we

have used 36 0452. A total of 325 belongs to class CA, 877 are of class CM and the remaining

34 843 are of class CI. Note the class distribution for this data-set is very unbalanced, there are

about 100 times as many inactive compounds (CI) as there are active ones (CA). The focus of

analysis is on identifying internal structures in the set of active compounds as they showed

protection to the CEM cells from an HIV-1 infection.

This data-set is a very typical application example of the Neighborgram classifiers: although it is

a relatively large data-set, it has an unbalanced class distribution with the main focus on a minority

class.

In order to generate Neighborgrams for this data-set, a distance measure needs to be defined. We

initially computed Fingerprint descriptors (Clark, 2001), which represent each compound through a 990-

dimensional bit string. Each bit represents a (hashed) specific chemical substructure of interest. The used

distance metric was a Tanimoto distance, which computes the number of bits that are different between

two vectors normalized over the number of bits that are turned on in the union of the two vectors. The

Tanimoto distance is often used in cases like this, where the used bit vectors are only sparsely occupied

with 1s.

NCI lists a small number (75) of known active compounds, which are grouped into seven chemical

classes:

� azido pyrimidines;

� pyrimidine nucleosides;

� heavy metal compounds;

� natural products or antibiotics;

� dyes and polyanions;

� purine nucleosides;

� benzodiazepines, thiazolobenzimidazoles, and related compounds.

One would expect that a decent clustering method would retrieve at least some of these classes of

compounds.

Therefore, we constructed Neighborgrams for all of the active compounds (overall 325) and used the

system to rank these Neighborgrams based on their coverage. Figure 6.8 shows the biggest cluster that the

algorithm encountered using a purity of 90 % and building clusters for class CA. Note how the next two

rows show Neighborgrams for compounds of the same cluster, both of them with slightly worse computed

purity and coverage. At first we were surprised to see that none of the compounds contained in this cluster

2For the missing compounds we were unable to generate the used descriptors.
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fall in any of the classes of active compounds listed on NIH’s Web site (National Cancer Institute, 2005).

As it turns out when looking at the corresponding structures, this cluster covers m-acylaminobenzamides

which probably all inhibit folic acid synthesis, but are likely to be too toxic and hence not very interesting

as active compounds to fight HIV. This is therefore a nice example of a cluster that a chemist might discard

as ‘useful but not very interesting for the current task at hand.’’ The clustering algorithm has no insights

other than numerical cluster measures and therefore would assign a high ranking value to this cluster

without any expert interaction.

Subsequent clusters reveal groupings very much in line with the classes listed above, one particular

example is shown in Figure 6.9. Here the group of ‘‘dyes and polyanions’’ are grouped together in a nice

cluster with almost perfect purity (two inactive compounds are covered as well). Figure 6.10 shows

another example, this time grouping together parts of the group of ‘‘azido pyrimidines,’’ probably one of

the best-known classes of active compounds for HIV.

Experiments with this (and other similar) data-sets showed nicely how the interactive clustering using

Neighborgrams helps to inject domain knowledge in the clustering process and how Neighborgrams help

promising cluster candidates to be quickly inspected visually. Without the additional display of chemical

structure this would not have worked as convincingly. It is important to display the discovered knowledge

in a ‘‘language’’ the expert understands.

In our experiments we were confronted with the problem of which descriptor to use. In the previous

experiments we always used unity fingerprint descriptors in conjunction with the Tanimoto distance. We

have ignored that there may be more than just this single description available. However, particularly in

the field of molecular data analysis there are numerous ways to describe molecules and it is hardly ever

known which descriptor is best. This problem relates to the learning in parallel universes, which will be

addressed in the next section.

Figure 6.8 The first cluster of the NIH-Aids data centered around compound #647014. On the right the Neighbor-

grams in unity-fingerprint space (black¼CA, gray¼CM, white¼CI), on the left a view showing some of the structures

contained in this cluster.
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Figure 6.9 Another cluster of the NIH-Aids data centered around compound #47764 (right: Neighborgrams

(black¼CA, gray¼CM, white¼CI), left: structures). This cluster nicely covers one of the classes of active compounds:

dyes and polyanions.

Figure 6.10 Another cluster of the NIH-Aids data centered around compound #646436 (right: Neighborgrams

(black¼CA, gray¼CM, white¼CI), left: structures). This cluster nicely covers part of one of the most well-known

classes of active compounds: azido pyrimidines.
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6.4 PARALLEL UNIVERSES

In the foregoing experiment we assumed that there is an adequate description of the data available. This

descriptor was expected to comprise all necessary information to classify an object. However, in many

real-world applications, the generation of an appropriate descriptor is far from trivial as the underlying

objects are complex and can be described in various ways, focusing on different aspects of the object’s

nature. An example, other than molecules, are musical songs, i.e., audio streams, which can be

represented based on dynamics, melody and key or – as a different representation – based on rhythm

and harmony. A third representation may be more descriptive, such as interpreter, position in music

charts, length, and so on. Further examples of such complex objects are images, and three-dimensional

objects. For the learning it is often unclear, which of the available descriptors are optimal for any given

task. This leads to the notion of learning in parallel universes, where we can find interesting patterns, e.g.,

clusters, in different descriptor spaces in parallel. Wiswedel and Berthold (2006), for instance, applied a

fuzzy c-means algorithm to data described in parallel universes. However, this is an unsupervised

approach. When looking at the algorithm in Table 6.1, one notes that the Neighborgram methodology

lends itself naturally to handling different descriptor spaces: the clusters do not interact with each other

based on any universe-specific information. Besides the fact that a chosen cluster removes covered

objects from consideration there is no obvious need for two clusters to originate from the same universe.

Instead of constructing just one Neighborgram for each object of interest, we can easily create Neighbor-

grams for each available descriptor space and consider these as potential cluster candidates. We can then

modify the clustering algorithm to investigate all Neighborgrams in all feature spaces in parallel and

choose the best cluster among all universes. Covered objects will subsequently be removed from all

universes and the result is a set of clusters, spread out over different feature spaces.

Figure 6.11 shows an example for the HIV data from the previous section. However, rather than just

having one fingerprint descriptor as before, we computed two other descriptors of the underlying

compounds. Firstly, we generated an AtomPair fingerprint descriptor, a 1200-dimensional bit vector,

which encodes the presence orabsence ofcertain pairs of atomsin the molecule. Thesecond one is a VolSurf

descriptor (Cruciani, Crivori, Carrupt and Testa, 2000), i.e., a 56-dimensional numerical feature vector

encoding molecular properties such as molecular weight and two-dimensional numerical descriptions

describing properties of the three-dimensional structure. Distances were calculated using the Euclidean

distance in VolSurf space and Tanimoto distance for both fingerprints (Unity and AtomPair). The left

column in the figure shows Neighborgrams in AtomPair space, the middle column Neighborgrams in Unity

space, whereas the Neighborgrams in the right column are constructed using the VolSurf descriptor.

Note how the Neighborgrams in the first row differ substantially although they represent the neighbor-

hood of the same object (#662427). The Unity fingerprint descriptor (middle) suggests for this compound

Figure 6.11 Neighborgrams for the NIH-Aids data in parallel universes. The left column in a AtomPair fingerprint

space (1200-dimensional bit vectors), the middle column Unity fingerprint space (990-dimensional bit vectors), and the

right column 56-dimensional Euclidean space, the VolSurf descriptor. Note how the Neighborgrams in the top row

differ, although they represent the neighborhood of the same compound, however in different universes.
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the best cluster as it covers about 25 active molecules (black points). However, the neighborhood of this

compound in the VolSurf space (right) contains only few actives (less than 10) and in the AtomPair

fingerprint space about 15. This example demonstrates that the definition of a cluster depends on the

underlying object description. The user can consequently inspect the cluster and potentially gain new

insights as to why objects group in one universe but not in another. Especially for data-sets that involve

structural descriptions of molecules it is hardly ever known which descriptor is optimal for a particular

problem. The final outcome of the clustering algorithm itself is a set of clusters originating from different

feature spaces.

6.5 DISCUSSION

In this chapter we discussed a supervised approach to identify and visually explore a set of fuzzy clusters.

We used a one-dimensional data structure, a so-called Neighborgram, to depict local neighborhoods of

each object. Constructing Neighborgrams for all objects of interest, for example, all objects of a particular

class, and deriving potential cluster candidates from them, allowed us to rank these Neighborgrams. An

automatic clustering algorithm sequentially accepts the top-ranked cluster and removes all objects

covered by this cluster from consideration. More important, however, is that the accompanying visualiza-

tion of a Neighborgram provides a powerful way to explore the proposed cluster selection and enables the

user to inject domain knowledge into the clustering process by accepting, discarding, or fine-tuning

potential cluster candidates. Using a real-world data-set from a bioinformatics application we demon-

strated how this method of visual exploration supports the user in finding potentially interesting groupings

in the data. The described technique provides a tool for interactive exploration of large data-sets, allowing

for truly intelligent data analysis.
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7.1 INTRODUCTION

Clustering is an essential task in information processing, engineering, and machine learning domains.

Applications include man–machine communication, pattern recognition, decision-making, data mining,

system modeling, forecasting, and classification (Bezdek and Pal, 1992).

A recurring problem in clustering concerns the estimation of the number of clusters in a data-set. Most

clustering algorithms are supervised in the sense that they assume that the number of clusters is known a

priori. If the algorithm assumes that the number of clusters is unknown, then it is unsupervised (Gath and

Geva, 1989). When clustering is performed by optimizing a performance criterion, a common approach to

find an appropriate number of clusters is to repeat the clustering algorithm for distinct values of c, the

number of clusters, and observe how the performance changes. Unsupervised algorithms attempt to find

the clusters based on information contained in the data itself. Often, however, validation procedures are

used to find the number of clusters. Many validity criteria have been proposed in the literature, but

currently there is no consensus on which one is the best since the results depend heavily on the data-set

and clustering algorithms (Geva, Steinberg, Bruckmair and Nahum, 2000). It is well known that to find the

optimal number of clusters is a complex issue (Bezdek and Pal, 1992; Duda and Hart, 1973; Duda, Hart,

and Stork, 2001) and in practice users must validate cluster results using perception and knowledge of the

intended application. The user examines the cluster structure directly from data and relative criteria are

built comparing different cluster structures to find a reference and decide which one best reveals data

characteristics. In these circumstances, unsupervised clustering algorithms are significant once they

provide useful information without polarization of the user’s perception and knowledge.

One way of clustering a p-dimensional data space into c clusters is to assume a performance criterion P

and initially set the c cluster centers randomly in the data space (Pedrycz, 2005). Then, a cluster

assignment is performed globally by either assigning each data point to one cluster, or assigning a
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membership grade, the degree with which the data point is compatible with each of the c clusters. Cluster

updating and assignment continues during several iterations until convergence, when no significant

difference in the value of P or in the cluster assignments is observed between consecutive iterations. An

alternative way of performing clustering is to update cluster centers and perform cluster assignment

sequentially. Often, sequential updating either uses online gradient of P or a learning law. At each

iteration one data point is presented and assigned to a cluster. Next, the respective cluster center is updated

using the learning law. This procedure is a form of competitive learning similar to that found in the neural

networks literature. Neural network-based clustering has been dominated by the self-organizing maps,

learning vector quantization, and adaptive resonance theory (Xu and Wunsch, 2005).

This chapter introduces a fuzzy clustering algorithm in which cluster centers are updated using the

participatory learning law of Yager (1990). The algorithm can be implemented either globally or

sequentially. The participatory learning clustering algorithm is an unsupervised procedure in which

the number of clusters depends on the cluster structure developed by the algorithm at each iteration. This

accounts for the participatory nature of the clustering algorithm once the current cluster structure affects

acceptance and processing of new data. In participatory learning clustering, cluster structures play the

role of belief and data operate as information.

The organization of the chapter is as follows. Section 7.2 overviews the main idea and conceptual

structure of participatory learning. Section 7.3 shows how participatory learning (PL) is used to cluster

data and details the fuzzy clustering procedures. Section 7.4 compares the PL algorithms with the

Gustafson–Kessel (GK) and modified fuzzy k-means (MFKM) since they are amongst the most efficient

clustering algorithms reported in the literature. Section 7.5 addresses applications of PL clustering

algorithm in evolutionary optimization of complex systems, and in system modeling for time series

forecasting. The chapter concludes by summarizing issues that deserve further investigation.

7.2 PARTICIPATORY LEARNING

In many environments, learning is a bootstrap process in the sense that we learn and revise our beliefs in

the framework of what we already know or believe. Such an environment is called a participatory learning

environment. A prototypical example of this environment is that of trying to convince a scientist to discard

an old theory for a new one. In this situation, it is worth relating and explaining the new theory in terms of

the old, and the faults of the old theory must lie within itself. The old theory must participate in the

learning and believing of the new theory (Yager, 1990). Thus, participatory learning assumes that learning

and beliefs about an environment depend on what the system already knows about the environment. The

current knowledge is part of the learning process itself and influences the way in which new observations

are used for learning. An essential characteristic of participatory learning is that an observation impact in

causing learning or belief revision depends on its compatibility with the current system belief.

Let v 2 ½0; 1�p be a vector that encodes the belief of a system. Our aim is to learn the values of this

variable v. We will assume that our knowledge about the values of the variable comes in a sequence of

observations xk 2 ½0; 1�p, where xk is a manifestation of a value of v in the kth observation. Thus we use

vector x as a means to learn valuations of v. The learning process is participatory if the usefulness of each

observation xk in contributing to the learning process depends upon its acceptance by the current estimate

of the value of v as being valid observation. Implicit in this idea is that, to be useful and to contribute to the

learning of values of v, observations xk must somehow be compatible with the current estimates of v. Let vk

be the estimate of v after k observations. Participatory learning means that, to be relevant for the learning

process, xk must be close to vk. Intuitively, participatory learning is saying that the system is willing to

learn from information that is not too different from the current beliefs. A mechanism to update the

estimate, or belief, of v is a smoothing-like algorithm:

vkþ1 ¼ vk þ arkðxk � vkÞ ð7:1Þ

where k ¼ 1; . . . ; n, and n is the number of observations, vkþ1 is the new system belief, vk 2 ½0; 1�p and

xk 2 ½0; 1�p are defined above, a 2 ½0; 1� is the learning rate, and rk 2 ½0; 1� is the compatibility degree
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between xk and vk; given by:

rk ¼ FðSk1; Sk2; . . . ; SkpÞ;

where Skj is a similarity measure,

Skj ¼ Gkjðvkj; xkjÞ;

Skj 2 ½0; 1�; j ¼ 1; . . . ; p, and F is an aggregation operator (Pedrycz and Gomide, 1998). Skj ¼ 1 indicates

full similarity whereas Skj ¼ 0 means no similarity. Notice that Gkj maps pairs (vkj, xkj) into a similarity

degree and this frees the values vkj and xkj; j ¼ 1; . . . ; p; k ¼ 1; . . . ; n, from being in the unit interval.

Moreover, Gkj allows that two vectors vk and xk to have Skj ¼ 1 even if they are not exactly equal. This

formulation also allows for different perceptions of similarity for different components of the vectors, that

is, for different js. A possible formulation is:

rk ¼ 1� 1

p

Xp

j¼1

dkj ð7:2Þ

where dkj ¼ jxkj � vkjj. Clearly, rk provides a compatibility measure between observation xkj and the

current belief vkj. Notice that, in this case, rk is the complement of the average absolute difference

between each observation and the corresponding current belief, that is, between xkj and vkj. We note

that Equation (7.2) is a special case of the Hamming distance, more precisely a complement of the

normalized Hamming distance. In some instances, especially in machine learning, it is common to

adopt the Euclidean distance as an alternative. In general, the compatibility measure rk can be defined

as:

rk ¼ 1� 1

p
dk ð7:3Þ

where dk ¼k xk � vk k2 and k�k is a distance function.

One concern about this is that the above participatory learning environment ignores the situation where

a stream of conflicting observations arises during a certain period of time. In this circumstance, the system

sees a sequence of low values of rk, that is, incompatibility of belief and observations. While in the short

term low values of rk cause an aversion to learning, actually it should make the system more susceptible to

learning because it may be the case that the current belief structure is wrong. Yager (1990) identified this

situation with a type of arousal, a mechanism that monitors the compatibility of the current beliefs with

the observations. This information is translated into an arousal index used to influence the learning

process, as Figure 7.1 suggests. The higher the arousal rate, the less confident is the system with the

current belief, and conflicting observations become important to update the beliefs.

BeliefsLearning 
process 

Arousal 
mechanism 

Observations 
ρ a

Figure 7.1 An overall scheme of participatory learning.
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Let us denote the arousal index by ak 2 ½0; 1�. The higher the values of ak, the more aroused the system

is. The arousal index is updated as follows:

akþ1 ¼ ak þ b½ð1� rkþ1Þ � ak�: ð7:4Þ

The value of b 2 ½0; 1� controls the rate of change of arousal, the closer b is to one, the faster the system

is to sense compatibility variations. The arousal index can be viewed as the complement of the confidence

in the belief structure currently held.

One way for the participatory learning procedure to consider the arousal mechanism appropriately is to

incorporate the arousal index in the basic procedure (7.1) as follows:

vkþ1 ¼ vk þ aðrkÞ
1�ak ðxk � vkÞ: ð7:5Þ

The form of Equation (7.5) introduces a self-equilibrium mechanism in the participatory learning.

While rk measure how much the system changes its credibility in its own beliefs, the arousal index ak acts

as a critic to remind us when the current belief should be modified in the light of new evidence.

Figure 7.1 highlights the main components of participatory learning. The current beliefs, in addition to

providing a standard against which observations are compared via the lower feedback loop, directly affect

the process used for learning via the upper feedback loop. This upper feedback corresponds to the

participatory nature of the model. In Equation (7.5) the upper feedback appears in the form of rk, the

compatibility degree between xk and vk;. The arousal mechanism monitors the performance of the lower

system by observing the compatibility of the current model with the observations. Therefore learning is

dynamic in the sense that Equation (7.5) can be viewed as a belief revision strategy whose effective

learning rate

a0 ¼ aðrkÞ
1�ak

depends on the compatibility between new observations and current beliefs, and on model confidence as

well. The primary learning rate is modulated by the compatibility. In models such as competitive

learning and gradient based models there are no participatory considerations and the learning rate is

usually set small to avoid undesirable swings due to spurious values of x that are far from v. Small values

of the primary learning rate while protecting against the influence of bad observations, slow down

learning. Participatory learning allows the use of higher values of the primary learning rate a once rk,

acts to lower the effective learning rate when large deviations occur. Conversely, when the compatibility

is large, rk is such that it increases the effective rate that means speeding up the learning process.

Next we show how the participatory learning paradigm naturally induces an unsupervised clustering

algorithm.

7.3 PARTICIPATORY LEARNING IN FUZZY CLUSTERING

This section introduces participatory learning (PL) as a fuzzy clustering algorithm. One of the main

characteristics of the PL clustering algorithm is to naturally partition a data-set X into a suitable

number of clusters. Participatory learning clustering is an instance of unsupervised fuzzy clustering

algorithm.

First, it is worth noting that there is a close relationship between the participatory learning paradigm

and data clustering if we associate data points xk and cluster centers vi with observations and beliefs,

respectively. The compatibility rki between observation k and the ith belief of the system is viewed

as the compatibility degree between xk and the cluster center vi. The same happens with the arousal

index aki, since it gives an incompatibility degree between current beliefs and observations, that is,

it provides an evaluation on how far are observations xk; k ¼ 1; . . . ; n, from the current centers

vi; i ¼ 1; . . . ; c.
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To partition a data-set X into clusters, the participatory learning fuzzy clustering algorithm uses a

parameter t. The parameter t is a threshold whose purpose is to advise when an observation should be

declared incompatible with the current system belief, the current group structure. In this circumstance

belief must be reviewed to accommodate new knowledge. In data clustering this means that if a data point

xk is far enough from all cluster centers, then there is enough motivation to create a new cluster and to

declare the discovery of a new cluster structure. An alternative, the one adopted in this chapter, is to set xk

itself as the new cluster representative, that is, the new cluster center.

More formally, participatory learning clustering partitions a set of data X ¼ fx1; . . . ; xng;
xk 2 ½0; 1�p; k ¼ 1; 2; . . . ; n, into c; 2 � c � n, fuzzy sets of X. Many clustering models assume spherical

clusters of equal size. In this case, an appropriate measure is the Euclidean distance. When spherical

clusters are not justifiable, elliptical clustering using the Mahalanobis distance is a more appropriate

choice. Therefore, we may, without loss of generality, adopt the Mahalanobis distance in Equation (7.6) to

compute the similarity measure, due to its practical usefulness (Gustafson and Kessel, 1979). Application

and real-time constraints may require computationally simpler distance measures or recursive computa-

tion of the covariance matrix and its inverse:

d2
ki ¼ ðxk � viÞTf½ðdetðFiÞ1=nþ1ÞF�1

i �gðxk � viÞ ð7:6Þ

where Fi is the covariance matrix (7.7) associated with the ith cluster, that is,

Fi ¼

Xn

j¼1

uji

� �mðxj � viÞðxj � viÞT

Xn

j¼1

½uji�m
: ð7:7Þ

In fuzzy clustering, the fuzzy partition can be represented by a membership matrix U ðn� cÞ whose

element uki 2 ½0; 1� i ¼ 1; 2; . . . ; c is the membership degree of the kth data point xk to the ith cluster,

the one with center vi 2 ½0; 1�p. For instance, membership degrees, in the same way as in the fuzzy

c-means algorithm (Bezdek, 1981; Pedrycz, 2005), can be found using the membership assignment,

where m > 1:

ul
ki ¼

1

Xc

j¼1

ðdki=dkjÞðm�1Þ
: ð7:8Þ

The participatory fuzzy clustering algorithm can be summarized as follows. Given initial values for a,

b, and t, two random points of X are chosen to assemble the set V0 of the initial cluster centers. Next, the

compatibility rki and arousal aki indexes are computed to verify if, for all vi, the arousal index of xk is

greater than the threshold t. If the arousal index is greater than the threshold t, then xk is declared as the

center of a new cluster. Otherwise, the center closest to xk is updated, that is, the center vs that has the

greatest compatibility index with xk is adjusted.

Notice that whenever a cluster center is updated or a new cluster is added, it is necessary to verify if

redundant clusters are being formed. This is because updating a cluster center may push it closer to a

different cluster center and redundant knowledge may be formed. Therefore a mechanism to exclude

close cluster centers is needed since redundancy does not add new information from the point of view of

participatory learning once redundancy means the same belief.

A mechanism to exclude redundant cluster centers adopts a compatibility index between cluster centers

using the Euclidean distance. A center is excluded when the compatibility index is greater than a threshold

that depends on a parameter l whose value, found experimentally, is l ¼ 0:95t. Thus, a cluster center i is

excluded whenever its compatibility lvi with another center is less than or equal to l, or when the
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compatibility index between the two centers is high. The value of lvi is inspired in the arousal index idea

Equation (7.4).

When a finite set of data is clustered, the algorithm stops when either the maximum number lmax of

iterations is reached or no significant variation in the location of the cluster centers has been noted. It is

worth noting that, since the cluster centers are updated whenever a data point is provided, the fuzzy

partition matrix U must be updated accordingly. Note that steps 2 and 3 are relevant for finite data sets

only, that is, when n is fixed, as in the global case. In its sequential version k ¼ 1; . . . and steps 2 and 3 must

be skipped. The detailed steps of the global algorithm (PL-A) are as follows (Silva, Gomide, and Yager,

2005).

7.3.1 Participatory Learning Fuzzy Clustering Algorithm

Input: xk 2 ½0; 1�p, k ¼ 1; . . . ; n, a 2 ½0; 1�, b 2 ½0; 1�, t 2 ½0; 1�, " > 0 e m > 0.

Choose lmax maximum number of iterations. Set c ¼ 2, choose V0 ¼ fv1; v2g randomly.

Compute U0 from V0, set l ¼ 1, a0
ki ¼ 0, k ¼ 1; 2; . . . ; n, and i ¼ 1; . . . ; c.

Output: c, vi 2 ½0; 1�p, i ¼ 1; . . . ; c and U.

1. For k ¼ 1; . . . ; n;

1.1 For i ¼ 1; . . . ; c;

Compute covariance matrix using Equation (7.7).

Compute dkiðxk; viÞ, using, for instance, Equation (7.6).

Determine rl
ik

rl
ki ¼ 1� 1

p
dki:

1.2 For i ¼ 1; . . . ; c;

Compute al
ki

al
ki ¼ al�1

ki þ bbð1� rl
kiÞ � al�1

ki c:

1.3 If al
ki � t, 8i 2 f1; . . . ; cg then

create new center

else update vs, vl
s ¼ vl�1

s þ ar
1�al

ks

ks ðxk � vl�1
s Þ, s ¼ arg max

i
frkig:

1.4 Update the number of cluster centers: compute the compatibility index among cluster centers

for i ¼ 1; . . . ; c� 1;
for j ¼ iþ 1; . . . ; c;

rl
vi
¼ 1� 1

p

Xp

h¼1

jvl
ih � vl

jhj
2

ll
vi
¼ bð1� rl

vi
Þ

if lvi
� 0:95t then eliminate vi

Update U excluding the ith cluster.

2. Compute error

error ¼k Vl � Vl�1 k¼ maxijjvl
ij � vl�1

ij j:

3. If error > " and l < lmax, l ¼ lþ 1 then return to step 1; else stop.

4. Update fuzzy partition matrix U.

End
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When there is no requirement on the shape of clusters, a simpler version of the participatory learning

algorithm, PL-B, can be implemented computing rl
ik in step 1.1 as follows

rl
ki ¼ 1� 1

p

Xp

j¼1

dkj; dkj ¼ jxkj � vkjj ð7:9Þ

instead of using Equations (7.6) and (7.7).

The complexity of the PL clustering algorithm is affected mainly by how rl
ik is computed. Therefore,

for spherical and ellipsoidal clusters, PL is as complex as FCM and GK algorithms. When PL uses

Equation (7.9) to compute rl
ik its complexity is less than FCM and GK. Recall, however, that FCM and GK

are supervised while PL is not. Moreover, PL clustering can be done sequentially and can be performed in

real time while FCM and GK cannot.

Notice that the update scheme given by (7.5) is similar to the Widrow–Hoff learning rule, but results in

a fundamentally different convergence behavior: while in the classic rule the learning rate a is kept small

to maintain learning responding smoothly to outlier observations, the PL rule can keep the learning rate

higher because of the effect of any observation incompatible with current cluster structure is modulated

by the arousal term. Similarly to FCM, the PL rule of Equation (7.5) can also be viewed as a gradient-

based updating rule relative to an implicit quadratic objective function. Also, the PL update rule is very

close to the fuzzy competitive learning (FCL) rule (Backer and Sheunders, 1999), but the FCL learning

rate must decrease along iterations to assure convergence. In FCL, cluster information is inserted via

membership degrees.

7.4 EXPERIMENTAL RESULTS

In this section we address clustering examples discussed in the literature using participatory learning

fuzzy clustering (PL) and two representative fuzzy clustering algorithms, namely the Gustafson–Kessel

or GK (Gustafson and Kessel, 1979) and the modified fuzzy k-means or MFKM (Gath, Iskoz, Cutsem, and

Van, 1997). The GK is as a generalization of the fuzzy C-means in which the Mahalanobis distance is used

in the objective function. GK is a partition-based algorithm. The GK has shown to be particularly effective

to find spherical, ellipsoidal, and convex clusters. Differently from the partition-based methods, the

MFKM uses a data induced metric with the Dijkstra shortest path procedure in a graph-based representa-

tion. The outstanding feature of the MFKM worth mentioning is its ability to find non-convex clusters.

Bezdek and Pal (1992) suggested the following items to evaluate clustering algorithms: (1) need to

choose the number of clusters; (2) initialization of cluster centers; (3) order in which data are input; (4)

geometric properties of data; (5) diversity of geometric forms of the clusters; (6) variation of data density

among groups; (7) separation degree of clusters.

The experiments reported here adopt the following parameters: error ¼ 0:001, lmax ¼ 8, and m ¼ 2.

Data have been normalized in [0,1], and the order of data input and cluster centers initialization were the

same for all algorithms. When cluster center initializations were kept fixed, data presentation order was

random. Also, we consider a finite set of data only, once there is no substantial challenge when using the

PL clustering algorithm in its sequential, real-time form.

The parameters chosen for the participatory learning fuzzy clustering algorithm are a ¼ 0:01 and

b ¼ 0:9, and t varies depending on the data-set. They are shown at the bottom of the figures. Similarly, for

the MFKM the grid parameter h is depicted at the bottom of the figures.

First we recall that participatory learning fuzzy clustering and MFKM are unsupervised algorithms

whereas GK is not. Both PL and GK may fail when clustering complex data-sets, especially when they are

not convex. A classic example is shown in Figure 7.2. On the other hand, the MFKM fails when clusters

overlap while PL and GK successfully find the clusters, as Figures 7.3 and 7.4 show. Figure 7.5 concerns

the Iris data. Since PL and GK use the same distance measure, they behave similarly as Figures 7.3, 7.4,

and 7.5 suggest.
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Figure 7.3 (a) Original data and clusters, (b) GK, (c) MFKM, (d) PL. Cluster centers are marked with ‘‘.’’.

Figure 7.2 (a) Original data and clusters, (b) GK, (c) MFKM, (d) PL. Cluster centers are marked with ‘‘.’’.
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Figure 7.4 (a) Original data and clusters, (b) GK, (c) MFKM, (d) PL. Cluster centers are marked with ‘‘.’’.

Figure 7.5 (a) Iris dada and clusters, (b) GK, (c) MFKM, (d) PL. Cluster centers are marked with ‘‘.’’.
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Figure 7.6 summarizes a series of experiments and shows how the runtime of the algorithms changes as

two important parameters, dimension and number of points in the data-set, varies. We note, as discussed

above, that the time complexity of PL clustering algorithms depends on the procedure to compute

compatibility. The MFKM runtime increases exponentially as the number of points and data dimension

increase. The experiment of Figure 7.6 (b) does not include results for MFKM because runtimes were

substantially greater than the ones required for GK, PL-A, and PL-B.

7.5 APPLICATIONS

In this section we address two application examples to illustrate the usefulness of participatory learning

clustering in practice. The first concerns a class of hybrid genetic algorithm in which clustering is used as

a strategy to improve computational performance through fitness estimation. The second deals with

adaptive fuzzy system modeling for time series forecasting. In this case, clustering is used to learn the

forecasting model structure.

7.5.1 Participatory Fuzzy Clustering in Fitness Estimation Models
for Genetic Algorithms

Despite the success achieved in many applications, genetic algorithms still encounters challenges. Often,

genetic algorithms need numerous fitness evaluations before acceptable solutions are found. Most real-

world applications require complex and nontrivial fitness evaluation. Fitness evaluation can be costly and

computationally efficient performance estimation models must be adopted in these circumstances. One

approach to alleviate costly evaluations is to use fitness estimation models.

Fitness estimation models based on fuzzy clustering are a way of improving runtime of genetic

algorithms (Mota Filho and Gomide, 2006). Together, fitness estimation models and genetic algorithms

assemble a class of hybrid genetic algorithm (HGA) in which individuals of a population are genetically

related. In HGA, fuzzy participatory clustering can be used to cluster population into groups during fitness

evaluations in generations. The purpose of clustering population individuals is to reduce direct evalua-

tions, to improve processing speed and, at the same, to keep time population diversity and solution quality.

In HGA, fitness is evaluated for representative individuals of the population. Cluster centers are natural

candidates to act as representative individuals.

The main idea can be grasped looking at Figure 7.7. As the population evolves, individuals tend to

concentrate around an optimal solution and become genetically similar. This observation suggests that the

number of clusters should reduce over the generations. Also, in Figure 7.6 we note that unsupervised

clustering algorithms such as FCM always groups the population in a fixed number of clusters and
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generates genetically redundant cluster centers. In the example of Figure 7.6 this is the case in the 10th and

20th generation. Unsupervised procedures, such as the PL fuzzy clustering introduced in this chapter,

recognize the distribution of the population over the search space and cluster the population in a smaller

number of groups along generations. This avoids the creation of genetically redundant clusters. In

general, PL tends to perform better than supervised clustering once it naturally adapts and evolves

together with the population. The hybrid genetic algorithm is summarized in Figure 7.8. As an illustra-

tion, consider the classic Schwefel function

f ðxÞ ¼ 418:9829pþ
Xp

i¼1

xi � sinð
ffiffiffiffiffiffi
jxij

p
Þ; x 2 Rp

Figure 7.7 FCM and PL in HGA.
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Figure 7.8 HGA based on fitness estimation.
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depicted in Figure 7.9 (a). The global optimum is at x ¼ ð�420:9687;�420:9687Þ. Despite several local

minima, the HGA and its variations successfully converged to the global optimum faster than the classic

genetic algorithm (CGA), Figure 7.8 (right).

Note that the HGAwith PL fuzzy clustering (HGA3) requires less direct evaluations of the individuals

than the remaining algorithms, especially the conventional genetic algorithm (CGA). They are based on

the fuzzy C-means and on fitness imitation schemes (see Mota Filho and Gomide (2006) for further details

and a description of a real-world application concerning real-time train scheduling).

7.5.2 Evolving Participatory Learning Fuzzy Modeling

When learning models online, data are collected and processed continuously. New data may either

reinforce and confirm the current model or suggest model revision. This is the case when operating

conditions of a system modify, faults occur or parameters of a dynamic process change. In adaptive

system modeling, a key question is how modify the current model structure using the newest information.

Fuzzy functional model identification, Takagi–Sugeno (TS) models in particular, considers a set of rule-

based models with fuzzy antecedents and functional consequents. Online learning of TS models needs

online clustering to find cluster centers and least square procedures to compute consequent parameters.

Each cluster defines a rule and the cluster structure the rule base. Participatory fuzzy clustering modeling

adopts this same scheme. Clustering is performed at each time step and a new cluster can be created, an

old cluster modified, and redundant clusters eliminated as environment information is updated. Each

cluster center defines the focal point of a rule and model output is found as the weighted average of

individual rules output. This constitutes a form of participatory evolving system modeling suggested in

(Lima et al, 2006) whose procedure is as follows.

7.5.3 Evolving Participatory Learning Fuzzy Modeling Algorithm

Input: data samples xk 2 ½0; 1�p, k ¼ 1; . . .

Output: model output

begin{enumerate}

1. Initialize the rule base structure

2. Read the next data sample

3. Compute cluster centers using PL

4. Update rule base structure

Figure 7.9 HGAs behavior for the Schwefel function.
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5. Compute the consequent parameters

6. Compute model output

end

The evolving participatory learning (ePL) modeling approach was adopted to forecast average

weekly inflows of a large hydroelectric plant. Hydrological data covering the period of 1931–1990 was

used. The analysis and forecast of inflow are of utmost importance to operate water resource-based

systems. One of the greatest difficulties in forecasting is the nonstationary nature of inflows due to wet

and dry periods of the year as Figure 7.10 shows via weekly averages and standard deviations for the

1931–2000 period.

The performance of the ePL was compared with eTS, an evolving modeling technique introduced by

Angelov and Filev (2004) from which ePL was derived. Both eTS and ePL use an online clustering

phase followed by a least squares phase to estimate the parameter of linear TS rule conequents.

The performances of ePL and eTS forecasting models were evaluated using the root mean square error

(RMSE), mean absolute error (MAD), mean relative error (MRE), and maximum relative error (REmax).

Their values are summarized in Table 7.1.

Figure 7.11 shows the actual inflows and forecasted values for ePL and eTS. Both models

developed two rules with linear consequents. Further details are given in Lima, Ballini, and Gomide

(2006).

Table 7.1 Performance of weekly inflow forecasts using ePL and eTS.

Evaluation method ePL eTS

RME (m3/s) 378.71 545.28

MAE (m3/s) 240.55 356.85

MRE (%) 12.54 18.42

REmax (%) 75.51 111.22

Figure 7.10 Weekly averages and standard deviations (1931–2000).
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7.6 CONCLUSIONS

In this chapter, we have introduced a fuzzy clustering algorithm as a participatory learning mechanism

whose purpose is to learn cluster structure embedded in data. Participatory learning is a model in which

the representation of current knowledge is part of the learning process itself and influences the way in

which new observations are used for learning. In clustering this means that current cluster structure is part

of and influences the way data is processed to find the cluster structure itself.

Computational experiments suggest that the participatory learning fuzzy clustering algorithm is an

attractive alternative for unsupervised fuzzy clustering. PL clustering is as efficient as GK and MFKM,

two other major fuzzy clustering algorithms. Its computational complexity depends on the distance

measure adopted to express compatibility.

The use of the participatory learning fuzzy clustering algorithm in applications such as in hybrid

genetic algorithms enhances computational performance and helps to solve complex optimization

problems. PL also improves the effectiveness of evolving system modeling and adaptive systems

applications.

Participatory learning fuzzy clustering algorithms, however, still need further improvement. For

instance, mechanisms to find values for the threshold t still need further investigation because, indirectly,

t determines the cluster structure. Here clustering evaluation functions and validation indexes could be of

value when combined with genetic algorithms. The effectiveness of this approach will, however, depend

on the availability of universal clustering validation functions, an issue still open. These are the questions

to be addressed in future research.
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8.1 INTRODUCTION

Exploratory data analysis represents a particular category of knowledge acquisition, since it defines a

class of statistical methods referring to a specific type of information element and to the associated

processing procedures, i.e., the data and the models. Thus the exploratory data analysis can be described

as a cognitive process based on the so-called informational paradigm constituted by the data and the

models (Coppi, D’Urso, and Giordani, 2007). Since, in the real world, this paradigm is often inherently

associated with the factor of fuzziness, it happens that the available information is completely or partially

fuzzy (i.e., we can have fuzzy data and crisp (nonfuzzy) model, crisp data and fuzzy model, fuzzy data and

fuzzy model). Likewise in different exploratory procedures, the cluster analysis can be based on the

informational paradigm in which the two informational components can be separately or simultaneously

fuzzy. In this chapter, we analyze only the case in which the information is completely fuzzy.

In the last few years a great deal of attention has been paid to the classification of imprecise (vague or

fuzzy) data and, in particular, to the fuzzy clustering of fuzzy data (see, for example, Sato and Sato, 1995;

Hathaway, Bezdek, and Pedrycz, 1996; Pedrycz, Bezdek, Hathaway, and Rogers, 1998; Yang and Ko,

1996; Yang and Liu, 1999; Yang, Hwang, and Chen, 2004; Hung and Yang, 2005; Alvo and Théberge,

2005; Colubi, Gonzales Rodriguez, Montenegro, and D’Urso, 2006; D’Urso, Giordani, 2006a; see in the

following Sections 8.4 and 8.5).

The aim of this chapter is to review and compare various fuzzy clustering models for fuzzy data.

The study is structured as follows. In Section 8.2, we explain the informational paradigm and discuss

the fuzziness in the clustering processes by analyzing the different informational situations. In Section

8.3, we define fuzzy data and analyze the different features connected to mathematical (algebraic and

geometric formalization, mathematical transformations, metrics) and conceptual (elicitation and speci-

fication of the membership functions) aspects. An organic and systematic overview and a comparative

assessment of the different fuzzy clustering models for fuzzy univariate and multivariate data are shown

in Section 8.4. In Section 8.5, we analyze some extensions of the fuzzy clustering models for complex
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structures of fuzzy data, the so-called three-way fuzzy data. In particular, we formalize mathematically

and geometrically the fuzzy data time array and define suitable distance measures between the so-called

fuzzy time trajectories. Then, we show an example of dynamic fuzzy clustering model. In Section 8.6, for

evaluating the empirical capabilities and the different performances of the illustrated clustering models,

several applicative examples are shown. Final remarks and future perspectives in this methodological

domain are provided in Section 8.7.

8.2 INFORMATIONAL PARADIGM, FUZZINESS, AND COMPLEXITY
IN CLUSTERING PROCESSES

8.2.1 Informational Paradigm, Fuzziness and Complexity

In decision making and in the more systematic processes of knowledge acquisition in the various

scientific domains, the important role of vagueness has been widely recognized (Ruspini, Bonissone,

and Pedrycz, 1998). In general, a ‘‘corpus of knowledge’’ is a set of ‘‘information elements.’’ Each

information element is represented by the following quadruple (attribute, object, value, confidence),

in which attribute is a function mapping of an object to a value, in the framework of a reference

universe; value is a predicate of the object, associated to a subset of a reference universe, and

confidence indicates the reliability of the information elements (Coppi, 2003). In the real world, an

element of information is generally characterized by imprecision (with regards to value) and uncer-

tainty (expressed through the notion of confidence). Imprecision and/or uncertainty define what we

may call imperfect information (here the term imperfect indicates that the information presents one or

more of the following features: vagueness, roughness, imprecision, ambiguity, and uncertainty).

When the phenomena and the situation under investigation are complex (here the term complex refers

to the presence, in the phenomenon under investigation, of at least some of the following features:

dynamic evolution, many variables of possibly different nature, feedback loops and so on), then the

‘‘Incompatibility Principle’’ comes into play. Let us recall its essence as originally formulated by

Zadeh. As the complexity of a system increases, our ability to make precise and yet significant

statements about its behavior diminishes until a threshold is reached beyond which precision and

significance (or relevance) become almost mutually exclusive characteristics (Zadeh, 1973). This

principle justifies the development and application of logics allowing the utilization of imperfect

information, in order to draw relevant conclusions when faced with complex situations (Coppi, 2003;

Coppi, D’Urso, and Giordani, 2007).

Data analysis represents, in the statistical framework, a particular category of knowledge acquisition,

since it defines a class of statistical techniques referring to a specific type of information element and to

the associated processing procedures. This class is characterized by two entities: the empirical data

and the models for data. Then, an exploratory data analysis can be described as a cognitive process

which, starting from initial information (both empirical and theoretical), through some computational

procedures (algorithms), gets additional information (information gain) having a cognition and/or

operational nature (Coppi, 2003; D’Urso and Giordani, 2006a). This description defines the so-called

informational paradigm (IP) represented by the following pair ð=E;=TÞ, where =E is the empirical

information (data) and =T is the theoretical information (e.g., models). Both =E and =T, to the extent to

which they are ‘‘informational’’ entities (corpus of knowledge), are constituted by informational

elements that can be imprecise and uncertain (Coppi, 2003). Then, we have that the statistical data

analysis can be based on the informational paradigm.

In Figure 8.1, we summarize, schematically, the informational paradigm. Notice that, when the

information is not affected by fuzziness (in this case we have the crisp informational paradigm (CIP))

the information is perfect; vice versa, if the information is affected by fuzziness, then the information

becomes imperfect. In particular, if the fuzziness concerns only a part of the information (data or model),

we have the partial fuzzy informational paradigm (PFIP); if the fuzziness regards all the information

(data and model), we have the complete fuzzy informational paradigm (CFIP).
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8.2.2 Theoretical Information: Methodological Approaches,
Models, and Fuzziness

Analogously to various data analysis procedures, cluster analysis can also be based on the informational

paradigm. In this way, we recognize the informational nature of the ingredients of the clustering

procedures: the observed data (empirical information, =E) and the clustering models (theoretical

information, =T).

By considering the informational paradigm ð=E;=TÞ, it can occur that=E and=T are characterized by

empirical and/or theoretical fuzziness (Zadeh, 1965). The theoretical fuzziness is embodied in the

clustering model, in particular in the assignment process of objects to clusters. In order to incorporate

the theoretical fuzziness in the clustering procedure, the so-called membership degree of each unit to

different groups can be considered that evaluates the fuzziness in the assignment procedure (D’Urso and

Giordani, 2006a).

8.2.3 Empirical Information: Data and Fuzziness

Empirical fuzziness is connected to the imprecision embodied, for instance, in the human perception

expressed in judgments on certain observational situations (hot, cold; excellent, very good, good,

fair, poor) interval valued data (temperature, pulse rate, systolic, and diastolic pressure over a given time

period, etc.), vague measurements (granularity) (D’Urso and Giordani, 2006a). In these cases, the data are

contained in the so-called fuzzy data matrix, where each fuzzy datum is represented by the central value,

called center (or mode), and the spreads that represent the uncertainty around the center (cf. Section 8.3).

8.2.4 Different Informational Typologies in Clustering Processes

By considering the K-means clustering (MacQueen, 1967) and using the notion of the nonfuzzy (crisp)

and the partial or complete fuzzy informational paradigm, as we described so far, we may define various

typologies of K-means clustering models, where the following objective function is to be minimized

(D’Urso and Giordani, 2006a):

XI

i¼1

XK

k¼1

um
ik d2

ik; ð8:1Þ

where dik is a distance between the unit i and the centroid of the cluster k, uik indicates the membership

degree of the unit i to the cluster k, m is a suitable weighting exponent that controls the fuzziness/crispness

of the clustering.

By taking into account the possible (crisp or fuzzy) nature of the two informational components, we get

four informational cases (see Figure 8.2) (D’Urso and Giordani, 2006a):

(1) =E and =T crisp (complete crisp paradigm);

(2) =E fuzzy and =T crisp (partial fuzzy paradigm);

(3) =E crisp and =T fuzzy (partial fuzzy paradigm);

(4) =E and =T fuzzy (complete fuzzy paradigm).

In Figure 8.2, we show the four information cases in the clustering process:

� In case (1) (=E and =T crisp) the clustering model represents the traditional (crisp) K-means model

(MacQueen, 1967). We observe that (cf. Figure 8.2, case (1)), in this situation, there is not empirical and

theoretical fuzziness; in fact, the data are crisp and the clusters are well-separated (there is not fuzziness

in the assignment process of units to clusters and, thus, we can utilize a crisp clustering model). So, for
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partitioning the units we can consider a non-overlapping clustering model (crisp K-means clustering

model) by assigning each unit to exactly one cluster (in fact, we have
PK

k¼1 uik ¼ 1; uik 2 f0; 1g;
m ¼ 1) and by analyzing, for instance, the data matrix X � fxi : i ¼ 1; 25g ¼ fxij : i ¼ 1; 25;
j ¼ 1; 2g, where xi ¼ ðxi1; xi2Þ and, for example, xi1 and xi2 representing, respectively, the (crisp)

gross domestic product per capita and gross domestic investment observed on the ith country, i ¼ 1; 25.

Then, in this example, according to the data configuration, the crisp K-means clustering determines an

optimal crisp partition of the 25 countries in three well-separated and compacted clusters without

fuzziness in the assignment procedure (D’Urso and Giordani, 2006a).

� In case (2) (=E fuzzy and =T crisp), we have fuzzy data (empirical fuzziness), but the assignment

process of the units to the clusters is not fuzzy; then, in this situation, we have a crisp partitioning model

with fuzzy data. For example, suppose that the fuzzy scatter shown in Figure 8.2 (case (2)) represents

the graphical configuration of eight vehicles obtained by observing a feature component (a linguistic

assessment that can be modeled by real fuzzy sets) (e.g. comfort) and a fuzzy measurement (e.g., speed)

under the assumption that measurements cannot be infinitely precise since the measurement values are

inherently fuzzy (i.e., always approximate), the source of the measurement is inherently unreliable and

the range of possible measurement values is limited by physical realities (see, for example, Ramot,

Milo, Friedman, and Kandel, 2001). Then, we can utilize the crisp K-means clustering model for

partitioning the set of cars and obtain a classification of the vehicles into two classes (D’Urso and

Giordani, 2006a).

� In case (3) (=E crisp and=T fuzzy), we have crisp data and fuzziness in the assignment process of units to

clusters, then, to take into account the theoretical fuzziness, we utilize a fuzzy clustering model for

classifying the units (Dunn, 1974; Bezdek, 1974a, 1981; Pedrycz, 2005). For considering the particular

configuration of the data in the space<2, we can classify the crisp data (without fuzziness) by considering a

fuzzy clustering technique where each unit can be simultaneously assigned to more clusters (in fact, in this

case, the constraints are
PK

k¼1 uik ¼ 1; uik 2 ½0; 1�;m > 1). For example, Figure 8.2 (case (3)) can

represent the values of two (crisp) variables (e.g., gross domestic product from agriculture and labour
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Figure 8.2 Different informational typologies in clustering processes.
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force in agriculture) observed on 27 countries. Then, by applying a fuzzy clustering algorithm, we can

classify the 27 countries into three compact classes, taking into account suitably the fuzzy behavior of the

two countries indicated in the figure with grey points (i.e., assigning, objectively, for these two countries,

low membership degrees to all the three clusters) (D’Urso and Giordani, 2006a).

� In case (4) (=E fuzzy and=T fuzzy), we have, simultaneously, fuzziness in the empirical and theoretical

information. For this reason, in this case, for partitioning the units, we utilize a fuzzy clustering model

for fuzzy data. The plot shown in Figure 8.2 (case (4)) can represent the bivariate configuration

corresponding to the values, observed on a group of nine patients who are hospitalized, for two fuzzy

variables: the range of both diastolic and systolic blood pressure over the same day. Then, by applying a

fuzzy clustering model for fuzzy data, we can consider the empirical fuzziness (characterizing the data)

and capture the ambiguous behavior of a patient (see the position of the grey rectangle in the space),

obtaining two classes (each class composed of four patients with high membership degrees and a

patient with membership degree ‘‘spread’’ between the two clusters). In this case, we have a clustering

with a double type of fuzziness (empirical and theoretical fuzziness), i.e., fuzzy clustering for fuzzy

data (D’Urso and Giordani, 2006a).

In this chapter, we shall deal only with case (4) (=E and =T fuzzy).

8.3 FUZZY DATA

Models based on imprecise (fuzzy) data are used in several fields. Sometimes such models are used as

simpler alternatives to probabilistic models (Laviolette, Seaman, Barrett, and Woodall, 1995). Other

times they are, more appropriately, used to study data which, for their intrinsic nature, cannot be known or

quantified exactly and, hence, are correctly regarded as vague or fuzzy. A typical example of fuzzy data is

a human judgment or a linguistic term. The concept of fuzzy number can be effectively used to describe

formally this concept of vagueness associated with a subjective evaluation. Every time we are asked to

quantify our sensations or our perceptions, we feel that our quantification has a degree of arbitrariness.

However, when our information is analyzed through nonfuzzy techniques, it is regarded as if it were exact,

and the original fuzziness is not taken into account in the analysis. The aim of fuzzy techniques is to

incorporate all the original vagueness of the data. Therefore, models based on fuzzy data use more

information than models where the original vagueness of the data is ignored or arbitrarily canceled.

Further, models based on fuzzy data are more general because a crisp number can be regarded as a special

fuzzy number having no fuzziness associated with it (D’Urso and Gastaldi, 2002).

The need for fuzzy data arises in the attempt to represent vagueness in everyday life (Coppi, D’Urso,

and Giordani, 2007). To understand this concept: suppose, as you approach a red light, you must advise a

driving student when to apply the brakes. Would you say ‘‘Begin braking 74 feet from the crosswalk?’’ Or

would your advice be more like. ‘‘Apply the brakes pretty soon?’’ The latter, of course; the former

instruction is too precise to be implemented. This illustrates that precision may be quite useless, while

vague directions can be interpreted and acted upon. Everyday language is one example of the ways in

which vagueness is used and propagated. Children quickly learn how to interpret and implement fuzzy

instructions (‘‘go to bed about 10’’). We all assimilate and use (act on) fuzzy data, vague rules, and

imprecise information, just as we are able to make decisions about situations that seem to be governed by

an element of chance. Accordingly, computational models of real systems should also be able to

recognize, represent, manipulate, and use (act on) fuzzy uncertainty (Bezdek, 1993).

In order to understand the fuzziness in the data, other explicative examples can be considered. Coppi

(2003) considers an example of multivariate fuzzy empirical information in which a set of individuals

(e.g., a population living in a given area) are taken into account. Each individual, from a clinical

viewpoint, can be characterized according to her/his ‘‘health state.’’ This refers to the ‘‘normal’’

functioning of the various ‘‘aspects’’ of her/his organism. Generally, any ‘‘aspect’’ works correctly to

a certain extent. We often use the notion of ‘‘insufficiency,’’ related to different relevant functions of parts

of the body (e.g., renal or hepatic insufficiency, aortic incompetence, etc.). Insufficiency (as referring to

the various relevant aspects mentioned above) is a concept that applies to a certain degree to any
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individual (depending on several factors such as age, sex, previous illnesses, and so on). This may be

expressed by means of a fuzzy number on a standard scale (say, from 0�perfect functioning to

10�complete insufficiency). Consequently, each individual can be more realistically characterized by

a vector of fuzzy variables concerning ‘‘insufficiency’’ of various relevant aspects of her/his organism

(Coppi, 2003).

Pedrycz, Bezdek, Hathaway, and Rogers (1998) remarked that the features utilized for describing and

classifying vehicle speed can have different representations. Consider the speed s of a vehicle. If measured

precisely at some time instant, speed s is a real number, say s ¼ 100. Figure 8.3 (case a) shows the

membership function �1ðsÞ ¼ 1 for this case, �1ðsÞ ¼ 1, s ¼ 100, otherwise, �1ðsÞ ¼ 0. This piece of

data could be collected by one observation of a radar gun. Next, suppose that two radar guns held by

observers at different locations both measure s at the same instant. One sensor might suggest that s ¼ 80,

while the second measurement might be s¼ 110. Uncalibrated instruments could lead to this situation. In

this case, several representations of the collected data offer themselves. One way to represent these

temporally collocated data points is by the single interval [80, 110], as shown by the membership function

�2(s) in Figure 8.3 (case b),�2ðsÞ ¼ 1, 80 < s < 110, otherwise,�2ðsÞ ¼ 0. Finally, it may happen that

vehicle speed is evaluated nonnumerically by a human observer who might state simply that ‘‘s is very

high.’’ In this case, the observation can be naturaly modeled by a real fuzzy set. The membership function

�3(s) shown in Figure 8.3 (case c) is one (of infinitely many) possible representations of the linguistic term

‘‘very high’’ �3ðsÞ ¼ max f0; 1-0:1j100-sjg, s 2 < (Pedrycz, Bezdek, Hathaway, and Rogers, 1998).

In conclusion, we remark some fields in which fuzzy data have been widely analyzed. For instance,

empirical studies with fuzzy data regard the following areas: ballistics (Celmins, 1991), event tree

analysis (Huang, Chen, and Wang, 2001), food chemistry (Kallithraka et al., 2001), group consensus

opinion and multicriteria decision making (Raj and Kumar, 1999), human errors rate assessment (Richei,

Hauptmanns, and Urger, 2001), machine learning (Chung and Chan, 2003), management talent assess-

ment (Chang, Huang, and Lin, 2000), maritime safety (Sii, Ruxton, and Wang, 2001), material selection

analysis (Chen, 1997), medical diagnosis (Di Lascio et al., 2002), military application (Cheng and Lin,

2002), nuclear energy (Moon and Kang, 1999), public opinion analysis (Coppi, D’Urso, and Gordani,

2006a), intelligent manufacturing (Shen, Tan, and Xie, 2001), petrophysics (Finol, Guo, and Jing, 2001),

risk analysis (Lee, 1996), software reliability (D’Urso and Gastaldi, 2002), tea evaluation (Hung and

Yang, 2005), technical efficiency (Hougaard, 1999), thermal sensation analysis (Hamdi, Lachiver, and

Michand, 1999), and VDT legibility (Chang, Lee and Konz, 1996).

8.3.1 Mathematical and Geometrical Representation

The so-called LR fuzzy data represent a general class of fuzzy data. This type of data can be collected in a

matrix called LR fuzzy data matrix (units� (fuzzy) variables):

X � fxij ¼ ðcij; lij; rijÞLR : i ¼ 1;I; j ¼ 1;Jg; ð8:2Þ

where i and j denote the units and fuzzy variables, respectively; xij ¼ ðcij; lij; rijÞLR represents the LR

fuzzy variable j observed on the ith unit, where cij denotes the center and lij and rij indicate, respectively,

µ1(s) µ2(s) µ3(s)
1

 0 
(case a) (case b) (case c)

Figure 8.3 Examples of membership function (cf. Pedrycz, Bezdek, Hathaway and Rogers, 1998).
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the left and right spread, with the following membership function:

�ð~uijÞ ¼
L

cij � ~uij

lij

� �
~uij � cij ðlij > 0Þ

R
~uij � cij

rij

� �
~uij � cij ðrij > 0Þ;

8
>><

>>:
ð8:3Þ

where LðzijÞ (and RðzijÞ) is a decreasing ‘‘shape’’ function from<þ to [0,1] with Lð0Þ ¼ 1; LðzijÞ < 1 for

all zij > 0, 8i; j; LðzijÞ > 0 for all zij < 1, 8i; j; Lð1Þ ¼ 0 (or LðzijÞ > 0 for all zij, 8i; j, and Lðþ1Þ ¼ 0)

(Zimmermann, 2001). Some examples of geometric representations of membership functions for LR

fuzzy data are shown in Figure 8.4.

However, in several real applications, the most utilized type of fuzzy data is a particular class of the LR

family: the so-called L fuzzy data or symmetric fuzzy data. In fact, we get L ¼ R and l ¼ r (the left and the

right spreads are the same) and then the fuzzy data and their membership functions are symmetric.

A symmetric fuzzy data matrix is formalized as follows:

X � fxij ¼ ðcij; lijÞL : i ¼ 1;I; j ¼ 1;Jg ð8:4Þ

with the following membership function:

�ð~uijÞ ¼ L
cij � ~uij

lij

� �
~uij � cij ðlij > 0Þ: ð8:5Þ

Particular cases of the family of the membership function (8.5) are shown in Figure 8.5.

Avery interesting class of symmetric fuzzy data is the symmetric triangular fuzzy data characterized by

the following family of membership functions (cf. Figure 8.5, case (b)):

�ð~uijÞ ¼
1� cij � ~uij

lij

~uij � cij ðlij > 0Þ

1� ~uij � cij

rij

~uij � cij ðrij > 0Þ:

8
>><

>>:
ð8:6Þ
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Figure 8.4 Examples of membership functions of LR fuzzy data.
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Figure 8.5 Examples of membership functions of L fuzzy data.

162 FUZZY CLUSTERING OF FUZZY DATA



In literature, we have another type of LR fuzzy data. By indicating with LR-I type fuzzy data the

previous LR fuzzy data (8.2), we can denote the new type of LR fuzzy data with LR-II type fuzzy data. An

LR-II type fuzzy data matrix is defined as follows:

X � fxij ¼ ðc1 ij; c2 ij; lij; rijÞLR : i ¼ 1;I; j ¼ 1;Jg; ð8:7Þ

where xij ¼ ðc1 ij; c2 ij; lij; rijÞLR represents the LR-II type fuzzy variable j observed on the ith unit, c1ij and

c2ij denote, respectively, the left and right ‘‘center’’ and lij and rij the left and right spread, respectively,

with the following family of membership functions:

�ð~uijÞ ¼

L
c1ij � ~uij

lij

� �
~uij � c1ij ðlij > 0Þ

1 c1ij � ~uij � c2ij

R
~uij � c2ij

rij

� �
~uij � c2ij ðrij > 0Þ:

8
>>>><

>>>>:

ð8:8Þ

A particular case of LR-II type fuzzy data is the trapezoidal one, i.e., the LR-II type fuzzy data with the

following family membership functions (see Figure 8.6):

�ð~uijÞ ¼

1� c1ij � ~uij

lij

~uij � c1ij ðlij > 0Þ
1 c1ij � ~uij � c2ij

1� ~uij � c2ij

rij

~uij � c2ij ðrij > 0Þ:

8
>>>><

>>>>:

ð8:9Þ

8.3.2 Membership Function: Elicitation and Specification

As for the ‘‘subjectivistic’’ approach to probability, also the choice of the membership functions is subjective.

In general, these are determined by experts in the problem area. In fact, the membership functions are

context-sensitive. Furthermore, the functions are not determined in an arbitrary way, but are based on a sound

psychological/linguistic foundation. It follows that the choice of the membership function should be made in

such a way that the function captures the approximate reasoning of the person involved. In this respect, the

elicitation of a membership function requires a deep psychological understanding. Suppose that an inter-

viewer asks how a person judges her (his) health. The concept of health refers to the functioning of the various

‘‘aspects’’ of the organism. Generally, any ‘‘aspect’’ works correctly to a certain extent. If a person is

optimistic and has never had considerable health diseases, it is plausible that she (he) feels ‘‘very well.’’ The

term ‘‘very well’’ can be fuzzified as a number in [0.85, 1.00] in the scale [0,1]. Conversely, another optimistic

person who recently had a critical surgery operation may still answer ‘‘very well’’ but now the term could be

fuzzified as a fuzzy number in [0.60, 0.75]. Similarly, if a person says ‘‘wait for me about 10 minutes,’’ the

fuzzification of ‘‘about 10’’ may depend on the nationality. Specifically, this usually means from 5 to 15

minutes but, for instance, if she (he) is Italian, the appropriate fuzzy coding could be from 10 minutes to half

an hour or more. Therefore, if possible, the process of fuzzification should be constructed ad hoc for each

0

1

)~( iju

ijl ijr

ijij lc −1 ijc1 ijc2 ijij rc +2 iju~

m

Figure 8.6 Trapezoidal membership function.
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person to be analyzed. Unfortunately, it is sometimes hard to adopt an ad hoc fuzzification procedure. In these

cases, one has to choose fuzzy numbers such that they capture the approximate reasoning of all of the persons

involved (Coppi, D’Urso, and Giordani, 2007).

Notice that, when we speak of fuzzy data related to a single variable we think of a vector of

fuzzy number. In the more general case of multivariate analysis, if all the variables are fuzzy, we have

a matrix of fuzzy numbers (see, for example, (8.2)). In this case, particular attention must be paid to

the specification of the membership functions when we deal simultaneously with J variables. To this

purpose, we can distinguish two approaches: the conjunctive approach and the disjunctive approach

(Coppi, 2003).

In the conjunctive approach, we take into account the fuzzy relationship defined on the Cartesian

product of the reference universes of the J variables. In this perspective, we can distinguish noninteractive

and interactive variables. From the statistical point of view, the adoption of the conjunctive approach to

the multi-dimensional fuzzy variables involves a specific interest in studying the fuzzy relationship

looked at as a ‘‘variable’’ in itself, which could be observed on the I units. Conversely, in the disjunctive

approach, we are not interested in studying a fuzzy variable which constitutes the resultant of the

J original variables. Instead, our interest focuses upon the set of the J ‘‘juxtaposed’’ variables, observed

as a whole in the group of I units. In this case, we have J membership functions and the investigation

of the links among the J fuzzy variables is carried out directly on the matrix of fuzzy data concerning the

IJ-variate observations (Coppi, 2003).

8.3.3 Fuzzy Data Preprocessing

In data analysis processes, in order to take into account the heterogeneity problems, with particular

reference to the variables (different variances and/or units of measurement), an appropriate preprocessing

of the data may be required, such as centering, normalization, and standardization. In this connection, we

can consider different types of preprocessing procedures for centers and (left and right) spreads of the

fuzzy data (Coppi and D’Urso, 2003):

� Centering of the centers, by taking into account the average of the centers. For instance, we can utilize

the following transforms ~cij ¼ cij � �c:j, where the subscript dot is used to indicate the mean across

i ¼ 1; Ið�c:jÞ.
� Normalization of the centers, by dividing the centers, for instance cij, by the normalization factor �cj. In

this case, we obtain ~~cij ¼ cij=�c:j.
� Standardization of the centers, by using, for instance, c�ij ¼ ~cij=

1
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1 ~c2

ij

q� �
.

� Normalization of the spreads, by setting, for example ~lij ¼ lij=�l:j, ~rij ¼ rij=�r:j.

Normalization of the centers and spreads, as illustrated, is particularly indicated for coping with problems

of heterogeneity of units of measurement and/or of size of the variables. In any case, when choosing a

specific transform of the original data, we should consider the particular informational features we would

like to keep in or eliminate from the analysis.

8.3.4 Metrics for Fuzzy Data

In literature, several topological measures have been generalized to the fuzzy framework (Rosenfeld,

1979; Goetshel and Voxman, 1983; Diamond and Kloeden, 1994). By focusing on metrics between fuzzy

data, we can consider first the Hausdorff metric:

dHðA;BÞ ¼ max

�
sup
a2A

inf
b2B
k a� b k; sup

b2B

inf
a2A
k a� b k

�
; ð8:10Þ
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where A;B 	 <d denote crisp sets. According to the so-called �-cuts, the Hausdorff metric dH can be

generalized to fuzzy numbers F, G, where F (or G): < ! [0,1]:

drðF;GÞ ¼

�Z 1

0

ðdHðF�;G�ÞÞrd�

	1
r

r 2 ½1;1Þ

sup
�2½0;1�

dHðF�;G�Þ r ¼ 1;

8
>>>><

>>>>:

where the crisp set F� � fx 2 <d : FðxÞ � �g, � 2 ð0; 1�, is called the �-cut of F (Näther, 2000).

Another typology of distance measures can be defined via support functions (Diamond and Kloeden,

1994; Näther, 2000). For any compact convex set F 
 <d , the support function sF is defined as

sFðuÞ ¼ supy2Fhu; yi; u 2 Sd�1, where h�; �i is the scalar product in <d and Sd�1 the (d�1)-dimensional

unit sphere in <d . Notice that, for convex and compact F 
 <d , the support function sF is uniquely

determined. A fuzzy set F can be characterized �-cut-wise by its support function: sFðu; �Þ ¼ sA�ðuÞ;
� 2 ½0; 1�, u 2 Sd�1. Thus, via support functions, we can define a metric using, for example, a special L2-

metric, i.e.,

dSðF;GÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d

Z1

0

Z

Sd�1

ðsFðu; �Þ � sGðu; �ÞÞ2�ðduÞd�

vuuut ; ð8:11Þ

where � is the Lebesgue measure on Sd�1. Different distances for LR fuzzy data can be derived by (8.11)

(see Diamond and Kloeden, 1994; Näther, 2000).

Furthermore, a new class of distances between fuzzy numbers is suggested by Bertoluzza, Corral,

and Salas (1995).

Most distance measures utilized in the fuzzy clustering for fuzzy data can be considered particular

cases of the previous classes of distances. In Section 8.4, when we characterize the different fuzzy

clustering models for fuzzy data, we analyze some of these distance measures.

In this section, in general, we point out the proximity measures (dissimilarity, similarity and distance

measures) for fuzzy data suggested by Abonyi, Roubos, and Szeifert, 2003; Bloch, 1999; Diamond and

Kloeden, 1994; Grzegorzewski, 2004; Hathaway, Bezdek, and Pedrycz, 1996; Hung and Yang, 2004, 2005;

Li et al., 2007; Kim and Kim, 2004; Näther, 2000; Yang, Hwang, and Chen, 2005; Yong, Wenkang, Feng,

and Qi, 2004; Pappis and Karacapilidis, 1993; Szmidt and Kacprzyk, 2000; Tran and Duckstein, 2002;

Zhang and Fu, 2006; Zwich, Carlstein, and Budescu, 1987. In particular, some of these distance measures

between fuzzy data are obtained by comparing the respective membership functions. These distances, can

be classified according to different approaches (Bloch, 1999; Zwich, Carlstein, and Budescu, 1987): the

‘‘functional approach,’’ in which the membership functions are compared by means of Minkowski and

Canberra distances extended to the fuzzy case (Dubois and Prade, 1983; Kaufman, 1973; Lowen and

Peeters, 1998; Pappis and Karacapilidis, 1993); the ‘‘information theoretic approach,’’ based on the

definition of fuzzy entropy (De Luca and Termini, 1972) and the ‘‘set theoretic approach,’’ based on

the concepts of fuzzy union and intersection (Chen, Yeh, and Hsio, 1995; Pappis and Karacapilidis, 1993;

Wang, 1997; Wang, De Baets, and Kerre, 1995; Zwich, Carlstein, and Budescu, 1987).

8.4 FUZZY CLUSTERING OF FUZZY DATA

Cluster analysis constitutes the first statistical area that lent itself to a fuzzy treatment. The fundamental

justification lies in the recognition of the vague nature of the cluster assignment task. For this reason, in the

last 30 years, many fuzzy clustering models for crisp data have been suggested (in a more general way, for

the fuzzy approach to statistical analysis, see Coppi, Gil, and Kiers, 2006b). In the literature on fuzzy
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clustering, the fuzzy K-means clustering model introduced, independently, by Dunn (1974) and Bezdek

(1974a) and then extended by Bezdek (1981), is the first model that is computationally efficient and

powerful and therefore represents the best-known and used clustering approach. Successively, several

models have been set up in this connection. Yet, we can observe that, already Bellman, Kalaba, and Zadeh

(1966) and Ruspini (1969, 1970, 1973) proposed pioneering fuzzy clustering. With regard to Ruspini’s

model, however, the original algorithm due is said to be rather difficult to implement. Its computational

efficiency should be weak and its generalization to more than two clusters should be of little success.

However, it was the pioneer for a successful development of this approach (Bandemer, 2006). In fact,

Ruspini’s model opened the door for further research, especially since he first put the idea of fuzzy

K-partitions in cluster analysis (Yang, 1993).

In particular, the version proposed by Bezdek in 1981 is the best-known and applied model in the body

of literature. It is formalized in the following way:

min:
XI

i¼1

XK

k¼1

um
ikd2

ik ¼
XI

i¼1

XK

k¼1

um
ik k xi � hk k2

XK

k¼1

uik ¼ 1; uik � 0

ð8:12Þ

where uik denotes the membership degree of the ith unit to the kth cluster, d2
ik ¼k xi � hk k2, is the

Euclidean distance between the ith unit and the centroid which characterizes the kth cluster

ðxiði ¼ 1; IÞ and hk ðk ¼ 1;KÞ are crisp vectorsÞ; m > 1 is the fuzzification factor.

The iterative solutions of (8.12) are:

uik ¼
1

XK

k0¼1

k xi � hk k
k xi � hk0 k

� 	 2
m�1

; hk ¼

XI

i¼1

um
ikxi

XI

i¼1

um
ik

: ð8:13Þ

This approach has been generalized to fuzzy clustering of fuzzy data. In particular, in the last decades, a

great deal of attention has been paid to the fuzzy clustering analysis for fuzzy data. From the ‘‘informa-

tional’’ perspective, we are assuming that both the theoretical information (the model) and the empirical

information (the data) are fuzzy (case (4)) (see Section 8.2.4).

The fuzzy clustering of fuzzy data has been studied by different authors. Sato and Sato (1995) suggest a

fuzzy clustering procedure for interactive fuzzy vectors (Fullér and Majlender, 2004), i.e., fuzzy vector

defined as ‘‘vectors’’ where each element cannot be separated from the others. Precisely, an interactive

fuzzy vector is one that cannot be realized as the cylindrical closure of its projections. An example of an

interactive fuzzy vector is ‘‘John is a BIG man’’ where BIG is characterized by both weight and height

(Auephanwiriyakul and Keller, 2002). In particular, these authors analyze, in a clustering framework,

fuzzy data that are defined by convex and normal fuzzy sets (CNF sets); then, in order to suitably represent

the CNF sets, they define a conical membership function and suggest a fuzzy asymmetrical dissimilarity

measure between fuzzy data. Successively, for solving the clustering problem, they utilize an additive

fuzzy clustering model based on a multicriteria procedure. Hathaway, Bezdek, and Pedrycz (1996) and

Pedrycz, Bezdek, Hathaway, and Rogers (1998) introduce models that convert parametric or nonpara-

metric linguistic variables to generalize coordinates (vectors of numerical numbers) before performing

fuzzy c-means clustering. Hathaway, Bezdek, and Pedrycz (1996) analyze the fusing heterogeneous

fuzzy data (real numbers, real intervals, and linguistic assessment (real fuzzy sets)) by utilizing fuzzy

clustering. By considering the simple case of univariate interval data, the authors consider three schemes

for extracting the parameters to represent the interval data, i.e., for each interval datum, they consider the

center and the radius, the center and the diameter, and the left and right endpoints. For each representation,

by using the Euclidean metric they compare the two parameters of each pair interval data obtaining

suitable Euclidean distance measures between interval data. Then, utilizing these distances in a

clustering framework, the authors suggest, for each scheme, a fuzzy clustering model. Notice that, for

integrating heterogeneous fuzzy data, the authors consider a parametric approach. Nonparametric models
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for fusing heterogeneous fuzzy data are suggested by Pedrycz, Bezdek, Hathaway, and Rogers (1998).

Yang and Ko (1996) propose a class of fuzzy K-numbers clustering procedures for LR fuzzy univariate

data (i.e., the authors consider LR fuzzy data with a different type of membership function: triangular,

normal, trapezoidal, etc.). The same authors apply fuzzy clustering to overcome the heterogeneous

problem in the fuzzy regression analysis with fuzzy data (i.e., fuzzy input and fuzzy output; crisp input

and fuzzy output) (Yang and Ko, 1997). In particular, they suggest two clusterwise fuzzy regression

models (the two-stage weighted fuzzy regression and one-stage generalized fuzzy regression). This is a

typical example in which the fuzzy clustering is incorporated in a fuzzy regression framework with

complete or partial fuzzy empirical information (i.e., the data are all or in part fuzzy). Furthermore, in this

case, the aim of the fuzzy clusterwise regression analysis is twofold: clustering, in a fuzzy manner, of a set

of units and interpolation of fuzzy data. Then, the computation problem is the calculation of the

membership degrees of each unit to different (e.g., linear) clusters and the estimation of the parameter

that characterizes the analytic form of the fuzzy prototypes. Successively, Yang and Liu (1999) extend the

clustering procedures proposed by Yang and Ko (1996) to high-dimensional fuzzy vectors (conical fuzzy

vectors). Tanaka, Miyamoto, and Unayahara (2001) discuss the fuzzy clustering technique for data with

uncertainties using minimum and maximum distances based an on L1 metric.

Auephanwiriyakul, Keller (2002) develop a linguistic fuzzy K-means model that works with a vector of

fuzzy numbers. This model is based on the extension principle and the decomposition theorem. In

particular, it turns out that using the extension principle to extend the capability of the standard

membership update equation to deal with a linguistic vector has a huge computational complexity. To

cope with this problem, the authors develop an efficient procedure based on fuzzy arithmetic and

optimization. They also prove that the algorithm behaves in a similar way to the fuzzy K-means clustering

suggested by Bezdek (1981) in the degenerate linguistic case (Auephanwiriyakul and Keller, 2002).

Yang, Hwang, and Chen (2004) propose a fuzzy clustering model for mixed data, i.e., fuzzy and symbolic

data. Then, if we have in the data-set only fuzzy data, this model can be considered as a fuzzy clustering

model for fuzzy data. In particular, to take into account the peculiarity of the symbolic and fuzzy

component of the mixed data, the authors define a ‘‘composite’’ dissimilarity measure. For the symbolic

component, they consider a modification of the Gowda–Diday dissimilarity; for the fuzzy component,

they utilize the parametric approach proposed by Hathaway (1996) and the Yang–Ko dissimilarity (1996).

Hung and Yang (2005) suggest the so-called alternative fuzzy K-numbers clustering algorithm for LR

fuzzy numbers (i.e., LR fuzzy univariate data) based on an exponential-type distance measure. The

authors show this distance is claimed to be robust as regards noise and outliers. Hence, the model is more

robust than the fuzzy K-numbers clustering proposed by Yang and Ko (1996). To explain the applicative

performances of the suggested model, the authors consider a nice application with tea evaluation data (see

Section 8.6.1.1). D’Urso and Giordani (2006a) propose a fuzzy clustering model for fuzzy data based on a

‘‘weighted’’ dissimilarity for comparing pairs of fuzzy data. This dissimilarity is composed of two

distances, the so-called center distance and the spread distance. A peculiarity of the suggested fuzzy

clustering is the objective computation, incorporated in the clustering procedure, of weights pertaining to

the center distance and spread distance of the fuzzy data. Then, the model automatically tunes the

influence of the two components of the fuzzy data for calculating the center and spreads centroids in the

fuzzy clustering.

In the class of fuzzy clustering models for fuzzy data, we can also include, as a particular case, the fuzzy

clustering model for symbolic data suggested by El-Sonbaty and Ismail (1998) when all symbolic data are

interval data. For the fuzzy clustering of symbolic (interval) data, see also de Carvalho (2007).

In the last few years, increasing attention has also been paid to developing fuzzy clustering models for

the so-called fuzzy data time arrays. In this respect, Coppi and D’Urso (2002, 2003) propose different fuzzy

K-means clustering models (D-DFKMC models, i.e., dynamic double fuzzy K-means clustering models)

for fuzzy time trajectories that are a particular geometrical representation of the fuzzy data time array

(Coppi and D’Urso, 2000). Coppi, D’Urso, and Giordani (2004, 2006a) propose other dynamic fuzzy

clustering models for fuzzy trajectories: the dynamic double fuzzy clustering with entropy regularization

models (D-DFCER models) (Coppi, D’Urso, and Giordani, 2004) and the dynamic double fuzzy K-medoids

clustering models (D-DFKMDC models) (Coppi, D’Urso, and Giordani, 2006a).
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In conclusion, by considering the multivariate framework, we observe that examples of fuzzy cluster-

ing models based on the conjunctive approach are the models suggested by Sato and Sato (1995) and Yang

and Liu (1999). Conversely, examples of models based on a disjunctive representation of the fuzzy data

are the ones proposed by Hathaway, Bezdek, and Pedrycz (1996), Yang, Hwang, and Chen (2004),

D’Urso and Giordani (2006a) and the fuzzy clustering models for fuzzy data time arrays (see Section 8.5)

(Coppi and D’Urso, 2002, 2003; Coppi, D’Urso, and Giordani, 2004, 2006a).

In this section, we focus our attention on the fuzzy clustering models for fuzzy data proposed by Yang

and Ko (1996) (DFKNC model, i.e., double fuzzy K-numbers clustering model), Yang and Liu (1999)

(FKMCCFV model, i.e., fuzzy K-means clustering model for conical fuzzy vectors), Yang, Hwang, and

Chen (2004) (FKMCMD model, i.e., Fuzzy K-means clustering model for mixed data), Hung, and Yang

(2005) (ADFKNC model, i.e., alternative double fuzzy K-numbers clustering model) and D’Urso and

Giordani (2006a) (DFWKMC model, i.e., double fuzzy weighted K-means clustering model). A fuzzy

clustering model for fuzzy data time arrays is analyzed in Section 8.5. In the same section, a concise

illustration of the fuzzy time data arrays and metrics is also shown.

8.4.1 Double Fuzzy K-numbers Clustering Model (DFKNC Model)

The clustering model proposed by Yang and Ko (1996), called double fuzzy K-numbers clustering model

(DFKNC model), deals with a single fuzzy variable observed on I units. It is assumed that the membership

function of the fuzzy variable belongs to the LR family (8.3) and the univariate fuzzy data are represented

by xi ¼ ðci; li; riÞLR; i ¼ 1;I.
Firstly, a distance measure between the realizations of such a variable is needed. The authors suggested

the following (squared) distance between each pair of fuzzy numbers, say xi and xi0 :

YCd2
i i0 ðl; rÞ ¼ ðci � ci0 Þ2 þ ½ðci � lliÞ � ðci0 � lli0 Þ�2 þ ½ðci þ rriÞ � ðci0 þ rri0 Þ�2; ð8:14Þ

where l ¼
R 1

0
L�1ð!Þd!; r ¼

R 1

0
R�1ð!Þd! are parameters that summarize the shape of the left and right

tails of the membership function (then, for each value of l and r, we have a particular membership

function (see, for example, Figure 8.7)).

Then, the DFKNC model is characterized as:

min:
XI

i¼1

XK

k¼1

um
ikYCd2

ik ¼
XI

i¼1

XK

k¼1

um
ik½ðci � ckÞ2 þ ½ðci � lliÞ � ðck � llkÞ�2 þ ½ðci þ rriÞ � ðck þ rrkÞ�2�

XK

k¼1

uik ¼ 1;uik � 0; ð8:15Þ
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Figure 8.7 Examples of membership functions for particular values of l and r.
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where ck; lk and rk are, respectively, the center and the left and right spreads of the k-th centroid. By

solving the optimization problem (8.15) by means of the Lagrangian multiplier method, we obtain the

following iterative solutions:

uik ¼
1

PK

k0¼1

YCdikðl; rÞ
YCdik0 ðl; rÞ

� 	 2
m�1

; ck ¼

XI

i¼1

um
ik½3ci�lðli�lkÞ þ rðri�rkÞ�

3
XI

i¼1

um
ik

; lk ¼

XI

i¼1

um
ikðck þ lli�ciÞ

l
XI

i¼1

um
ik

;

rk ¼

XI

i¼1

um
ikðci þ rri�ckÞ

r
PI

i¼1

um
ik

: ð8:16Þ

For computing the iterative solutions, starting with an initial fuzzy partition, the authors proposed an

operative algorithm (for more detail see Yang and Ko, 1996). Notice that, the authors also formalized the

clustering model for trapezoidal data (see formula (8.9) and Figure 8.6).

8.4.2 Fuzzy K-means Clustering Model for Conical Fuzzy Vectors
(FKMCCFV Model)

Different from the DFKNC model, the FKMCCFV model proposed by Yang and Liu (1999) is applicable

to multi-dimensional fuzzy variables observed on I units. The membership function of the vector valued

variable is assumed to be conical:

�ð~uÞ ¼ 1�min 1; k ~u� c kAf g ¼ max 0; 1� k ~u� c kAf g; ð8:17Þ
where: �ðcÞ ¼ 1, k ~u� c kA¼ ½ð~u� cÞ0A�1ð~u� cÞ�

1
2, c ¼ apex (center), A ¼ panderance matrix

(Celmin, 1987a,b). Under the above assumption, the fuzzy data are represented by:

xi ¼ ðci;AiÞ; i ¼ 1; I: ð8:18Þ
Then, the authors introduced a distance measure between fuzzy conical vectors. In particular, given two

realizations, say xi ¼ ðci;AiÞ and xi0 ¼ ðci0 , Ai0 Þ, i; i0 ¼ 1; I, Yang and Liu proposed the following

(squared) distance:

YLd2
ii0 ¼k ci � ci0 k2 þtr½ðAi � Ai0 Þ0ðAi � Ai0 Þ�: ð8:19Þ

By using the distance (8.19) the FKMCCFV model is formalized in the following way:

min:
XI

i¼1

XK

k¼1

um
ikYLd2

ik ¼
XI

i¼1

XK

k¼1

um
ik k ci � ck k2 þtr½ðAi � AkÞ0ðAi � AkÞ�

XK

k¼1

uik ¼ 1; uik � 0:

ð8:20Þ
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Figure 8.8 Trapezoidal membership function with a new parameterization.

FUZZY CLUSTERING OF FUZZY DATA 169



By utilizing the Lagrangian multiplier method, we arrive at the following solutions being produced in an

iterative fashion,

uik ¼
1

XK

k0¼1

YLdik

YLdik0

� 	 2
m�1

; ck ¼

XI

i¼1

um
ikci

XI

i¼1

um
ik

; Ak ¼

XI

i¼1

um
ikAi

XI

i¼1

um
ik

; ð8:21Þ

where ck; and Ak are, respectively, the apex (center) and the panderance matrix for the k-th centroid. An

iterative algorithm for solving the equations (8.21) is constructed (see Yang and Liu, 1999).

Notice that the clustering model introduced by Hathaway, Bezdek, and Pedrycz (1996) utilizes the

same clustering objective function as the FKMCCFV model when the so-called panderance matrix is a

diagonal matrix (e.g., when, as is usually the case, there are non-interactive fuzzy numbers). Therefore, if

we consider non-interactive fuzzy data, the models proposed by Hathaway, Bezdek, and Pedrycz (1996)

(called the parametric double fuzzy K-means clustering model (PDFKMC model)) and Yang and Liu

(1999) have the same performance.

8.4.3 Fuzzy K-means Clustering Model for Mixed Data (FKMCMD
Model)

Yang, Hwang, and Chen (2004) propose a clustering model, called fuzzy K-means clustering model for

mixed data (FKMCMD model) to classify mixed data, i.e., symbolic data and LR-II type fuzzy data. In

particular, the suggested model is obtained by utilizing a new (squared) distance measure for mixed data

in the traditional fuzzy clustering structure defined by Bezdek. Then, the objective function

of the model is composed of two parts: the symbolic component in which a distance for symbolic data

is considered and the fuzzy component characterized by a particular distance for fuzzy data.

Since the aim of our work is to analyze fuzzy clustering for only fuzzy data, we formalize the version of

the FKMCMD model in which the empirical information is completely fuzzy (all the data are fuzzy).

Then, we focus our attention on the (completely) fuzzy part of the model only.

To this purpose, Yang, Hwang, and Chen (2004) considered, first, a new parameterization of LR-II type

fuzzy data. In particular, the authors generalized the parametrical representation of symmetric fuzzy data

suggested by Hathaway, Bezdek, and Pedrycz (1996), by considering the same parameterization for

trapezoidal fuzzy data. In this way, the (univariate) trapezoidal fuzzy data are characterized as follows:

xi ¼ ðci; gi; li; riÞ ; i ¼ 1;I; ð8:22Þ
where ci is the center, gi is the inner diameter, and li, ri are, respectively, the left and right outer radius

(see Figure 8.8).

Then, the authors proposed a distance measure between trapezoidal fuzzy data, say xi ¼ ðci; gi; li; riÞ
and xi0 ¼ ðci0 ; gi0 ; li0 ; ri0 Þ ði; i0 ¼ 1;I) by considering the Yang–Ko dissimilarity. By assuming that L and

R are linear (l ¼ r ¼ 1/2), the suggested distance is:

YHCd2
ii0 ¼

2ci � gi

2
� 2ci0 � gi0

2

� �2

þ 2ci þ gi

2
� 2ci0 þ gi0

2

� �2

þ 2ci � gi

2
� 1

2
li

� �
� 2ci0 � gi0

2
� 1

2
li0

� �2

þ 2ci þ gi

2
þ 1

2
ri

� �
� 2ci0 þ gi0

2
þ 1

2
ri0

� �2

: ð8:23Þ

By extending the previous (squared) distance (8.23) to a multi-dimensional case, in which the fuzzy data

matrix is characterized in the following way X � xij ¼ ðcij; gij; lij; rijÞLR�II : i ¼ 1;I; j ¼ 1;J

 �

, and after

some algebraic manipulations, we can write the (squares) distance as follows:

YHCd2
ii0 ¼

1

4
k 2ðci � ci0 Þ � ðgi � gi0 Þ k2 þ k 2ðci � ci0 Þ þ ðgi � gi0 Þ k2
�

þ k 2ðci � ci0 Þ � ðgi � gi0 Þ � ðli � li0 Þ k2 þ k 2ðci � ci0 Þ þ ðgi � gi0 Þ þ ðri � ri0 Þ k2

;

ð8:24Þ
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where ci, gi, li, and ri are, respectively, the vectors of the center, inner diameter, left and right outer radius

of the ith unit, and ci0 , gi0 , li0 , and ri0 are the same vectors of the i0th unit.

Then, the clustering model proposed by Yang, Hwang, and Chen (2004) can be formalized in the

following way:

min:
XI

i¼1

XK

k¼1

um
ikYHCd2

ik ¼
XI

i¼1

XK

k¼1

um
ik

1

4
k2ðci � ckÞ � ðgi � gkÞk2 þ k2ðci � ckÞ þ ðgi � gkÞk2
��

þ

k 2ðci � ckÞ � ðgi � gkÞ � ðli � lkÞk2 þ k2ðci � ckÞ þ ðgi � gkÞ þ ðri � rkÞk2
�

XK

k¼1

uik ¼ 1; uik � 0; ð8:25Þ

where ck, gk, lk, and rk are, respectively, the vectors of the center, inner diameter, left and right outer

radius of the kth centroid.

By utilizing the Lagrangian multiplier method, we have for (8.25) the following iterative solutions of

the model:

uik ¼
1

XK

k0¼1

YHCdik

YHCdik0

� 	 2
m�1

; ck ¼

XI

i¼1

um
ikð8ci � li þ ri þ lk � rkÞ

8
XI

i¼1

um
ik

; gk ¼

XI

i¼1

um
ikð4gi þ li þ ri � lk � rkÞ

4
XI

i¼1

um
ik

lk ¼

XI

i¼1

um
ikð�2ci þ gi þ li þ 2ck � gkÞ

XI

i¼1

um
ik

; rk ¼

XI

i¼1

um
ikð2ci þ gi þ ri � 2ck � gkÞ

XI

i¼1

um
ik

: ð8:26Þ

On the basis of these solutions the authors constructed an iterative algorithm (cf. Yang, Hwang, and Chen,

2004).

8.4.4 Alternative Double Fuzzy K-numbers Clustering Model
(ADFKNC Model)

Recently, Hung and Yang (2005) proposed a clustering model, called alternative double fuzzy K-numbers

clustering model (ADFKNC model), to classify units. In particular, in the same way as the DFKNC model,

the authors formalized the model for univariate fuzzy data, i.e., xi ¼ ðci; li; riÞLR, i ¼ 1;I, and assumed the

membership function of the single fuzzy variable belonging to the LR family (8.3).

The authors proposed an exponential-type distance for LR fuzzy numbers based on the idea of

Wu and Yang (2002) and discussed the robustness of this distance. The authors showed that the sugges-

ted distance is more robust than the distance proposed by Yang and Ko (cf. (8.14)). Then, they

modified the DFKNC model proposed by Yang and Ko, integrating the new robust distance in the

clustering model.

In particular, the proposed distance between each pair of fuzzy numbers, say xi and xi0 , is:

HY d2
ii0 ðl; rÞ ¼ 1� expð�b YC

~d2
ii0 ðl; rÞÞ; ð8:27Þ

where YC
~d2

ii0 ðl; rÞ ¼ 1=3YCd2
ii0 ðl; rÞ, b is a suitable positive constant (cf. Hung and Yang, 2005). Notice

that the (squared) distance measure HY d2
ii0 ðl; rÞ is a monotone increasing function of YC

~d2
ii0 ðl; rÞ similar

to that of Wu and Yang (2002).
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By considering the (squared) distance (8.27), the authors formalized the ADFKNC model in the

following way:

min:
XI

i¼1

XK

k¼1

um
ik 1� expð�b YC

~d2
ikðl; rÞÞ

� 

XK

k¼1

uik ¼ 1; uik � 0:

ð8:28Þ

The iterative solutions are:

uik ¼
1

XK

k0¼1

1� expð�b YC
~d2

ikðl; rÞÞ
1� expð�b YC

~d2
ik0 ðl; rÞÞ

" # 1
m�1

; ck ¼

XI

i¼1

um
ik½3ci�lðli�lkÞ þ rðri�rkÞ� expð�b YC

~d2
ikðl; rÞÞ

3
XI

i¼1

um
ik expð�b YC

~d2
ikðl; rÞÞ

;

lk ¼

XI

i¼1

um
ikðck þ lli�ciÞ expð�b YC

~d2
ikðl; rÞÞ

l
XI

i¼1

um
ik expð�b YC

~d2
ikðl; rÞÞ

; rk ¼

XI

i¼1

um
ikðci þ rri�ckÞ expð�b YC

~d2
ikðl; rÞÞ

r
XI

i¼1

um
ik expð�b YC

~d2
ikðl; rÞÞ

:

ð8:29Þ
In order to solve Equations (9.29) the authors suggested an iterative algorithm (cf. Hung and Yang, 2005).

8.4.5 Double Fuzzy Weighted K-means Clustering Model (DFWKMC
Model)

In the double fuzzy weighted K-means clustering model (DFWKMC model) proposed by D’Urso and

Giordani (2006a), a vector valued fuzzy variable was considered, with a symmetric LR membership

function (see Section 8.4). The data are represented as follows:

xi ¼ ðci; liÞL; i ¼ 1; I; ð8:30Þ

where ci and li are, respectively, the center vector and the spread vector. The (symmetric) fuzzy data

matrix is shown in formula (8.4).

For classifying (symmetric) units with fuzzy information the authors introduced a weighted

(squared) distance measure between symmetric fuzzy data. This dissimilarity compared each pair of

(symmetric) fuzzy data vector by considering, separately, the distances for the centers and the spreads and

a suitable weighting system for such distance components. The proposed dissimilarity is formalized as

follows:

DGd2
ii0 ðcw; l wÞ ¼ ðcwcdii0 Þ2 þ ðlwldii0 Þ2; ð8:31Þ

where cw; l w are suitable weights for the center and spreads,

cdii0 ¼k ci � ci0 k; ðEuclideanÞ center distance ð8:32Þ
ldii0 ¼k li � li0 k; ðEuclideanÞ spread distance: ð8:33Þ

The weights can be fixed subjectively a priori by considering external or subjective conditions.

However, the authors estimated the weights objectively within an appropriate clustering model. In

particular, the authors suggested weighing the center and the spread distances differently by means of

the following weights. As the membership function value of the centers is maximum, they suggested

assuming that the center distance weight is higher than the spread distance one. Then, we have:

cw ¼ vþ z; center distance weight ð8:34Þ
lw ¼ v; spread distance weight ð8:35Þ

such that cwþl w ¼ 1; 0 � l w � c w. It follows that 2vþ z ¼ 1; v; z � 0; v � 0:5 (cw ¼ l w, z ¼ 0).
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For computing the weights, the authors adopt an objective criterion; suitable weights are obtained by

minimizing the loss function with regard to the optimal values of cw and lw. In particular, the loss function

is formalized as follows:

XI

i¼1

XK

k¼1

um
ikDGd2

ik ¼
XI

i¼1

XK

k¼1

um
ik cw cdikð Þ2þ lw ldikð Þ2
h i

¼
XI

i¼1

XK

k¼1

um
ik vþ zð Þ cdikð Þ2þ v ldikð Þ2
h i

¼
XI

i¼1

XK

k¼1

um
ik 1� vð Þ2cd2

ik þ v2
ld

2
ik

h i
; ðsince 2vþ z ¼ 1Þ

ð8:36Þ

where cdik and ldik compare, respectively, the centers and spreads of the ith object and the k-th centroid.

The loss function (8.36) is minimized with regard to the membership degrees, the (fuzzy) centroids and

the center and spread weights. Then, the DFWKMC model is characterized as follows:

min:
XI

i¼1

XK

k¼1

um
ik 1� vð Þ2 cd2

ik þ v2
ld

2
ik

h i

XK

k¼1

uik ¼ 1; uik � 0

0 � v � 0:5:

ð8:37Þ

The iterative solutions of the minimization problem in (8.37) are obtained by considering the Lagrangian

multiplier method. In particular, the iterative solutions are:

uik ¼
1

XK

k0¼1

½ð1� vÞ2 cd2
ik þ v2

ld
2
ik�

½ð1� vÞ2 cd2
ik0 þ v2

ld
2
ik0 �

" # 1
m�1

; v ¼

XI

i¼1

XK

k¼1

um
ik cd2

ik

XI

i¼1

XK

k¼1

um
ikð cd2

ik þ ld
2
ikÞ
; ck ¼

XI

i¼1

um
ikci

XI

i¼1

um
ik

;

lk ¼

XI

i¼1

um
ikli

XI

i¼1

um
ik

: ð8:38Þ

To take into account the constraint 0 � v � 0:5, the authors checked whether the optimal v is higher than

0.5. If so, we set v ¼ 0:5.

When the optimal v is lower than 0.5, we can conclude that, taking into account (8.34) and (8.35), the

weight of the center distance is higher than that of the spreads. It occurs when the differences among

the spreads are more relevant than those of the centers. Under the assumption that the centers are more

important than the spreads, the model automatically finds a suitable system of weights such that the role of

the center distance in the minimization procedure is emphasized. In fact, when v < 0:5, cw >l w whereas,

when v ¼ 0:5, cw ¼l w.

Notice that the DFWKMC model can be applied to all symmetric fuzzy data. In fact, it is assumed that

the shape of the membership functions of the observed fuzzy data is inherited. Thus, the shape is supposed

before starting the clustering procedure. Obviously, the shape of the membership functions of the symmetric

fuzzy centroids, computed in the fuzzy clustering procedure, is inherited from the observed fuzzy data.

An iterative algorithm was also proposed by the authors for solving Equations (8.38).

8.4.6 A Comparative Assessment

In this section, in a comparative assessment we summarize the features (concerning the empirical and

theoretical aspects) (cf. Table 8.1) and the performances of the previous clustering models. In particular,

we compare the models by considering the following aspects:
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(1) typology of fuzzy data and specification approach;

(2) distance measures, optimization problem, and iterative solutions;

(3) performance.

(1) The empirical features, i.e., the typology of fuzzy data (univariate or multivariate fuzzy data) and the

connected specification approach (considered only in the multi-dimensional case), conjunctive or

disjunctive, considered in the various fuzzy clustering models are shown in Table 8.1.

(2) The analyzed models are characterized by the utilization of different distances. In the distance

measure utilized in the DFKNC model (Yang and Ko, 1996) particular parameters (l and r), which

summarize the shape of the left and right tails of the membership function, are considered. In this way,

the information concerning the shape of the membership function is introduced by means of the

distance in the clustering procedure. Furthermore, since this information is introduced by means of

weights associated to the spreads, in this way, the center and spreads of the fuzzy data are suitably

weighed. In fact, the parameters l and r represent multiplicative coefficients that reduce the observed

length of the spreads, accounting for the different degrees of membership associated to the various

points lying within the upper (lower) bound and the center. Notice that this process of informational

acquisition (concerning the shape of the membership function and the weighting systems regarding

the components (center and left and right spreads) of the fuzzy data) is exogenous to the clustering

model (external weighting computation). In fact, the shape of the membership function and then the

parameters l and r are assumed prior to starting the clustering process (for the selection of

membership function see Section 8.3.2).

The distance utilized in the DFKNC model is incorporated in an ‘‘exponential’’ distance by Hung

and Yang (2005) for defying a new robust distance. In this way, the ADFKNC model suggested by

these authors and based on the new distance is robust, i.e., it neutralizes the disruptive effects of

Table 8.1 Features of some fuzzy clustering models for fuzzy data.

Empirical information Theoretical information

Specification Distance, optimization problem

Model Data approach and iterative solutions

DFKNC Univariate LR — External shape information of membership function;

(Yang and Ko, 1996) fuzzy data external weighting systems; constrained minimization

problem; the algorithm does not guarantee the global

optimum.

FKMCCFV Multivariate conic Conjunctive External shape information of membership function;

(Yang and Liu, 1999) fuzzy data distance also based on the comparison of panderance

matrix; constrained minimization problem; the algo-

rithm does not guarantee the global optimum.

FKMCMD Multivariate LR-II Disjunctive Riparameterization-based distance; constrained minimi-

(Yang, Hwang and type fuzzy data zation problem; the algorithm does not guarantee the

Chen, 2004) global optimum.

ADFKNC Univariate LR — External shape information of membership function;

(Hung and Yang, 2005) fuzzy data external weighting systems; ‘exponential’ distance,

robustness; constrained minimization problem; the

algorithm does not guarantee the global optimum.

DFWKMC Multivariate Disjunctive External shape information of membership function;

(D’Urso and symmetric fuzzy internal weighting systems; constrained minimization

Giordani, 2006a) data problem; the algorithm does not guarantee that the

global optimum.
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possible outliers and noises (in the fuzzy dataset) in the clustering process. In addition, the distance

and the model suggested by Hung and Yang (2005) inherit all the features of the distance and model

proposed by Yang and Ko (1996). Furthermore, notice that, by putting YCDik ¼ expð�b YC
~d2

ikðl; rÞÞ,
the prototypes of the ADFKNC model (shown in (8.29)) have extra weights YCDik (the other weights

are um
ik) that decrease monotonically in YC

~d2
ikðl; rÞwith YCDik ¼ 1 as YC

~d2
ikðl; rÞ ¼ 0 and YCDik ¼ 0 as

YC
~d2

ikðl; rÞ ! 1. Then, the ADFKNC prototypes assign reasonably different weights um
ikYCDik to

outlier fuzzy data. For this reason, the ADFKNC model can be considered robust. Conversely, the

DFKNC prototypes (i.e., centroids) (shown in (8.16)) use only the weights um
ik and then the DFKNC

model is sensitive to outliers. In conclusion, we observe that membership degrees obtained by means

of ADFKNC and DFKNC models coincide as b! 0.

The distance utilized in the FKMCCFV (Yang and Liu, 1999) takes into account the particular type

of fuzzy data analyzed in the clustering process (multivariate conic fuzzy data) by integrating the

information concerning the center differences with the difference regarding the panderance matrix of

each pair of fuzzy vectors. In this way, the authors introduce the information regarding the selected

specification approach for the fuzzy conic vectors (conjunctive approach), by means of the

panderance matrix. Also in this case the features of the membership function of the fuzzy data are

assumed before starting the clustering procedure.

In the distance measure and in the complete fuzzy version of the FKMCMD model proposed by

Yang, Hwang, and Chen (2004), the peculiar aspect is the consideration of a non-usual parameter-

ization of the fuzzy data.

With regard to the DFWKMC model proposed by D’Urso and Giordani (2006a) the distance

measure has the following features (D’Urso and Giordani, 2006a):

� It is a sum of two squared weighted Euclidean distances: the center distance and the spread distance.

� The weights are intrinsically associated with the component-distance (center and spread distance).

� By means of the weights, we can appropriately tune the influence of the two components of the

fuzzy entity (center and spread) when computing the dissimilarity between each pair of fuzzy data.

� The weights can be defined by considering objective criteria. Then, they constitute specific

parameters to be estimated within a clustering procedure.

� The weights are suitably tuned; in fact, by considering the dissimilarity within an appropriate

clustering procedure and then the weights can be computationally estimated by taking into

account, as one would expect, the condition that the center component of the fuzzy data has more

or equal importance than the spread component. In this way, we leave out the ‘‘anomalous’’

situation in which the spread component, which represents the uncertainty around the value

(mode or center of the fuzzy number), has more importance than the center value (center

component), that represents the core information of each fuzzy data. In this way, we take into

account the intuitive assumption of the fuzzy theory: the membership function value of the

centers is maximum.

� The proposed weighted dissimilarity measure is used for making comparisons within a set of data

rather than looking at a single pair of data. More specifically, this means that, for a given data-set,

the weighting system is optimal only for the data-set involved.

Concerning the features of the model, we can point out the following aspects (D’Urso and Giordani,

2006a):

� The model can be applied to all symmetric fuzzy data. In fact, it assumes that the shape of the

membership functions of the observed symmetric fuzzy data is inherited. Thus, the shape is

supposed before starting the clustering procedure. Notice that, obviously, the shape of the member-

ship functions of the symmetric fuzzy centroids, estimated in the fuzzy clustering procedure, is

inherited from the observed fuzzy data.

� In the model, the weights constitute specific parameters to be objectively estimated within the

clustering model (internal weighting estimation).
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� By means of the model, it can appropriately tune the influence of the two components of the

fuzzy data in the partitioning process. Furthermore, the model inherits all the other peculiarities of

the ‘‘weighted’’ dissimilarity measure introduced in the objective function of the clustering

procedure.

In conclusion, to solve the constrained optimization (minimization) problems pertaining to all ana-

lyzed fuzzy clustering models, the Lagrangian multiplier method is utilized. Furthermore, the iterative

algorithms of the same models do not guarantee that the global optimum is obtained. For this reason, it

is useful to start each algorithm by considering several starting points in order to check the stability of

the solutions. For the different clustering models, the theoretical features are summarized in Table 1.

(3) In order to compare the performance of the previous models for multi-dimensional fuzzy data,

regarding to the ability of finding homogeneous groups of units, a simulation study has been done by

D’Urso and Giordani (2006a). In particular, they compare the following models: FKMCCFV (Yang

and Liu, 1999) (we remember that, as we consider non-interactive fuzzy data, the PDFKMC model

(Hathaway, Bezdek, and Pedrycz, 1996) and the FKMCCFV model have the same performance (see

Section 8.4.3)), FKMCMD (Yang, Hwang, and Chen, 2004) and DFWKMC. In brief, the DFWKMC

model performed, on average, better than the other ones, during the entire simulation. For the details

on the simulation study see D’Urso and Giordani (2006a).

8.5 AN EXTENSION: FUZZY CLUSTERING MODELS FOR FUZZY
DATA TIME ARRAYS

In this section we analyze an interesting extension of the fuzzy data matrix: the three-way arrays (same

units� same (fuzzy) variables� occasions) with particular reference to the situation in which the

occasions are times (Coppi and D’Urso, 2000). In this case, special attention is devoted to cluster in a

fuzzy manner the so-called fuzzy multivariate time trajectories. For this reason, in the following

subsections, we define the fuzzy data time array (three-way arrays with time occasions) and then the

fuzzy multivariate time trajectories. Successively, we explain some dissimilarity measures and the fuzzy

clustering for these type of fuzzy objects.

8.5.1 Fuzzy Data Time Array: Mathematical Representation and
Distance Measures

8.5.1.1 Algebraic and Geometric Representation

An LR fuzzy data time array (same units� same (fuzzy) variables� times) is defined as follows:

X � xijt ¼ ðcijt; lijt; rijtÞLR : i ¼ 1;I; j ¼ 1;J; t ¼ 1; T

 �

; ð8:39Þ

where i, j and t denote the units, variables and times, respectively; xijt ¼ ðcijt; lijt; rijtÞLR represents the LR

fuzzy variable j observed on the ith unit at time t, where cijt denotes the center and lijt and rijt the left and

right spread, respectively, with the following membership function:

�ð~uijtÞ ¼

L
cijt � ~uijt

lijt

� �
~uijt � cijtðlijt > 0Þ

R
~uijt � cijt

rijt

� �
~uijt � cijtðrijt > 0Þ;

8
>>>>><

>>>>>:

ð8:40Þ
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where L (and R) is a decreasing ‘shape’ function from <þ to [0,1] with Lð0Þ ¼ 1; LðzijtÞ < 1 for all

zijt > 0; 8i; j; t; LðzijtÞ > 0 for all zijt < 18i; j; t; Lð1Þ ¼ 0 (or LðzijtÞ > 0 for all zijt and Lðþ1Þ ¼ 0).

A particular case of LR fuzzy data time array is the triangular one (with triangular membership

function). By combining the indices I, J and T, we can obtain from X the following stacked fuzzy

matrices: X � Xi : i ¼ 1; Ig;f X � Xt : t ¼ 1; Tgf ,X � Xj : j ¼ 1; Jg



with Xi � xijt : j ¼ 1;J;



t ¼ 1; Tg, Xt � xijt : i ¼ 1;I; j ¼ 1;J

 �

, Xj � xijt : i ¼ 1;I; t ¼ 1; T

 �

. Let RJþ1 be the vectorial space

(space of units), where the axes are referred to the J variables and time. In this space, we represent

each unit i by means of the following vectors, for each t: cyit ¼ ðci1t; . . . ; cijt; . . . ; ciJt; tÞ0, lyit ¼
ðli1t; . . . ; lijt; . . . ; liJt; tÞ0, ryit ¼ ðri1t; . . . ; rijt; . . . ; riJt; tÞ0.

(1) By fixing t, the scatters f NIðtÞ � ðcyit; lyit; ryitÞf gi¼1;I represent the matrix Xt. Letting t vary within

its range, the scatters f NIðtÞ are placed on T hyperplanes parallel to the sub-space RJ .

(2) By fixing i, the scatters f NT ðiÞ � ðcyit; lyit; ryitÞf gt¼1;T represent the matrix Xi. Each scatter

describes the LR fuzzy multivariate time trajectories of unit i across the time and

ff NTðiÞ � ðcyit; lyit; ryitÞf gt¼1;Tgi¼1;I represent the set of the LR fuzzy multivariate time trajec-

tories. Each LR fuzzy time trajectory f NTðiÞ crosses the T hyperplanes parallel to RJ .

An example of geometrical representation of the (symmetrical) triangular version of the previous

situations is shown in Figure 8.9 (Coppi and D’Urso, 2002).

Notice that problems of heterogeneity also involve the fuzzy data time array. To this purpose, we can

suitably extend the data preprocessing procedures shown in Section 8.3.3. In addition, in a time

framework, for stabilizing the variability of the time data, for instance, logarithmic transformations for

the original data can also be taken into account.

8.5.1.2 Distance Measures Fuzzy Multivariate Time Trajectories

With reference to the fuzzy time array X, we consider, for each type of X, the following (squared)

distances (Coppi and D’Urso, 2003):

1d2
ii0 tðl;rÞ ¼k cit � ci0 t k2 þ k ðcit � llitÞ � ðci0t � lli0tÞ k2 þ k ðcit þ rritÞ � ðci0 t þ rri0tÞ k2; ð8:41Þ

2d2
ii0 tðl;rÞ ¼k ðcit � cit�1Þ � ðci0t � ci0t�1Þ k2 þ k ½ðcit � llitÞ � ðcit�1 � llit�1Þ� � ½ðci0t � lli0 tÞ�

ðci0t�1 � lli0t�1Þ� k2 þ k ½ðcit þ rritÞ � ðcit�1 þ rrit�1Þ� � ½ðci0 t þ rri0tÞ � ðci0 t�1 þ rri0t�1Þ� k2

¼k cvit � cvi0t k2 þ k ðcvit � llvitÞ � ðcvi0 t � llvi0tÞ k2 þ k ðcvit þ rrvitÞ � ðcvi0t þ rrvi0tÞ k2;

ð8:42Þ
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Figure 8.9 Example of triangular fuzzy (univariate) time trajectory in R2 (for t ¼ 6).
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where l ¼
R 1

0
L�1ð!Þd!, r ¼

R 1

0
R�1ð!Þd!, cit ¼ ðci1t; . . . ; cijt; . . . ; ciJtÞ0, ci0t ¼ ðci01t; . . . ; ci0jt; . . . ; ci0JtÞ0,

lit ¼ ðli1t; . . . ; lijt; . . . ; liJtÞ0, li0t ¼ ðli01t; . . . ; li0jt; . . . ; li0JtÞ0, rit ¼ ðri1t; . . . ; rijt; . . . ; riJtÞ0 and ri0t ¼
ðri01t; . . . ; ri0jt; . . . ; ri0JtÞ0; cvit ¼ ðcit � cit�1Þ, cvi0t ¼ ðci0t � ci0t�1Þ, lvit ¼ ðlit � lit�1Þ, lvi0t ¼ ðli0t � li0t�1Þ ,

rvit ¼ ðrit � rit�1Þ and rvi0t ¼ ðri0t � ri0 t�1Þ are, respectively, the vectors of the so-called velocities of the

centers and left and right spreads pertaining to the fuzzy time trajectory of the ith and i0th units.

Notice that the concept of velocity can be defined in the following way. By considering the ith time

trajectory of the centers, the velocity, in the time interval t � 1; t½ �, is cvit ¼ ðcit � cit�1Þ=ðt � ðt � 1ÞÞ ¼
ðcit � cit�1Þ. Then, for each variable j, cvijt can be greater (less) than zero according to whether the ith

unit presents an increasing (decreasing) rate of change of its position in the time interval t � 1; t½ �; cvijt ¼ 0

if the unit does not change position from t�1 to t. For any ‘‘component’’ time trajectory (‘‘center’’ time

trajectory, ‘‘lower bound’’ time trajectory, ‘‘upper bound’’ time trajectory) the velocity pertaining to each

pair of successive time points represents the slope of the straight line passing through them: if the velocity

is negative (positive) the slope will be negative (positive) and the angle made by each segment of the

trajectory with the positive direction of the t-axis will be obtuse (acute) (Coppi and D’Urso, 2003).

The squared Euclidean distance (8.41) compares the positions at time t of the centers and of the lower

and upper bounds (center – left spread and center þ right spread) between each pair of fuzzy time

trajectories.

The squared Euclidean distance (8.42) compares the slopes (velocities) in each time interval ½t � 1; t� of

the segments of each ‘‘component’’ time trajectory concerning the ith unit with the corresponding slopes

of the i0th unit. Notice that, the previous (squared) distances summarize the fuzziness embodied in each

elementary observation of the fuzzy time array X, through three parameters (center, left spread and right

spread) and the shape of the corresponding membership functions (involving suitable values for the

shape-parameters l and r) (Coppi and D’Urso, 2003). On the basis of the above distances Coppi and

D’Urso (2003) defined appropriate dissimilarity measures between fuzzy multivariate time trajectories,

in the following way:

XT

t¼1

1wt1dii0tðl; rÞð Þ2 ðinstantaneous dissimilarity measureÞ; ð8:43Þ

XT

t¼2

2wt2dii0tðl; rÞð Þ2 ðvelocity dissimilarity measureÞ; ð8:44Þ

X2

s¼1

X

t

swtsdii0tðl; rÞð Þ2 ðsimultaneous dissimilarity measureÞ; ð8:45Þ

where 1wt , 2wt, swt are suitable weights to be computed in each case (see Section 8.5.2).

In particular, the dissimilarity (8.43) takes into account the (squared) instantaneous distances (8.41), by

considering the whole set of the T time occasions. Each occasion is weighted by means of 1wt. This weight

can be suitably determined in an objective way. The dissimilarity (8.44) considers, for all time intervals

t � 1; t½ �, t ¼ 2,T, the (squared) velocity distances (8.42). To each interval a weight 2wt is associated,

whose value is computed in an objective manner. Finally, the dissimilarity measure (8.45) represents, in

the observed time domain, a compromise between the (squared) instantaneous and velocity distances.

The corresponding weighting system, swt, which is determined within the appropriate clustering

procedure, takes simultaneously into account the effects of the single time occasions and time intervals

and of the two types of distances (instantaneous and velocity distances) (Coppi and D’Urso, 2003).

8.5.2 Dynamic Double Fuzzy K-means Clustering Models
(D-DFKMC Models)

In order to classify a set of LR fuzzy time trajectories Coppi and D’Urso (2003) adopted a fuzzy approach.

The adoption of a fuzzy clustering model for multivariate time trajectories is justified on the grounds of at
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least two considerations. First of all the ‘‘complexity’’ of the [fuzzy] trajectories (various observational

times, several variables) suggests thinking in terms of ‘‘degrees’’ of membership to given clusters rather

than in terms of total membership vs. non-membership. In fact, a crisp definition of clusters contrasts for

example with the ambiguities presented in the following instances. (1) ‘‘Switching time trajectories’’ may

occur, namely, trajectories showing a pattern typical of a given cluster during a certain time period and a

completely different pattern (characteristic of another cluster) in another time period. (2) The time

evolution of the variables defining an ‘‘object’’ (statistical unit) may follow a given pattern (belonging to a

specific cluster) for a subgroup of variables, and a remarkably different pattern (another cluster) for a

different subgroup of variables. Moreover, the following considerations support the adoption of the fuzzy

approach. (1) Greater adaptivity in defining the ‘‘prototypes’’ (i.e., the ‘‘typical’’ multivariate trajec-

tories). This can be better appreciated when the observed time patterns do not differ too much from each

other. In this case, the fuzzy definition of the clusters allows us to single out underlying prototypes, if these

are likely to exist in the given array of data. (2) Greater sensitivity, in capturing the details characterizing

the time pattern of the individual units. In fact, the dynamics are often drifting or switching and the

standard clustering approaches are likely to miss this underlying structure. On the contrary, the switches

from one time state to another, which are usually vague and not focused on any particular time point, can

be naturally treated by means of fuzzy clustering (Coppi, 2004).

By means of the so-called cross-sectional double fuzzy K-means clustering model (CS-DFKMC

model), we classify LR fuzzy multivariate time trajectories taking into account their instantaneous

(positional) features. In this case, the fuzzy clustering model can be formalized in the following way:

min:
XI

i¼1

XK

k¼1

1um
ik

XT

t¼1

1wt1diktðl;rÞð Þ2

¼
XI

i¼1

XK

k¼1

1um
ik

XT

t¼1

�
1w2

t ðk cit � ckt k2 þ k ðcit � llitÞ � ðckt � llktÞ k2 þ k ðcit þ rritÞ � ðckt þ rrktÞ k2 Þ
�

XK

k¼1

1uik ¼ 1; 1uik � 0;
XT

t¼1

1wt ¼ 1; 1wt � 0 l¼
Z 1

0

L�1ð!Þd!; r¼
Z 1

0

R�1ð!Þd!
� �

; ð8:46Þ

where 1uik denotes the membership degree of the ith LR fuzzy multivariate time trajectory with regard to

the kth cluster; 1wt is an instantaneous weight; m > 1 is a weighting exponent that controls the fuzziness

of the obtained fuzzy partition (see Section 9.6); ckt, lkt and rkt denote, respectively, the vectors of the

centers, left and right spreads of the LR fuzzy time trajectory of the kth centroid at time t.

By solving the previous constrained optimization problem, we obtain the following iterative solutions:

1uik ¼
1

XK

k0¼1

XT

t¼1

ð1wt1diktðl; rÞÞ2

XT

t¼1

ð1wt1dik0tðl; rÞÞ2

2

66664

3

77775

1
m�1

; 1wt ¼
1

XT

t0¼1

XI

i¼1

XK

k¼1

1um
ik1d2

iktðl; rÞ

XI

i¼1

XK

k¼1

1um
ik1d2

ikt0 ðl; rÞ

2

66664

3

77775

;

ckt ¼

XI

i¼1

1um
ik½3cit�lðlit�lktÞ þ rðrit�rktÞ�

3
XI

i¼1

1um
ik

; lkt ¼

XI

i¼1

1um
ikðckt þ llit�citÞ

l
XI

i¼1

1um
ik

;

rkt ¼

XI

i¼1

1um
ikðcit þ rrit�cktÞ

r
XI

i¼1

1um
ik

:

ð8:47Þ
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In a similar manner, by considering the velocity concept and the dissimilarity measure (8.44), Coppi and

D’Urso (2003) formalize the so-called longitudinal double fuzzy K-means clustering model (L-DFKMC

model) for classifying LR fuzzy multivariate time trajectories by taking into account their longitudinal

(velocity) features.

The authors also defined the mixed double fuzzy K-means clustering model (M-DFKMC model) by

considering, simultaneously, the instantaneous and longitudinal features of the LR fuzzy time trajec-

tories, i.e., by utilizing the dissimilarity (8.45) in the clustering process (Coppi and D’Urso, 2003).

Notice that Coppi and D’Urso (2003) also formalize the D-DFKMC models for trapezoidal fuzzy data.

8.5.3 Other Dynamic Double Fuzzy Clustering Models

In the literature, other dynamic fuzzy clustering models for fuzzy time trajectories have been proposed by

Coppi, D’Urso, and Giordani (2004, 2006a), i.e., the dynamic double fuzzy clustering with entropy

regularization models (D-DFCER models) and the dynamic double fuzzy K-medoids clustering models

(D-DFKMDC models).

In particular, in the D-DFCER models the authors minimize objective functions, which are the sum of

two terms. The first term is a dynamic generalization of intra-cluster distance, in a fuzzy framework, that

takes into account the instantaneous and/or longitudinal aspects of the LR fuzzy time-varying observa-

tions (the LR fuzzy multivariate time trajectories); in this way, they minimize the within-cluster

dispersion (maximize the internal cohesion). The second term represents the Shannon entropy measure

as applied to a fuzzy partition (entropy regularization); then, they maximize a given measure of entropy

or, equivalently, minimize the converse of the entropy. Overall, they optimize the total functional

depending on both the previous aspects (Coppi, 2004). The D-DFKMDC models classify LR fuzzy

time trajectories and select, in the set of the observed LR fuzzy time trajectories, typical LR fuzzy time

trajectories that synthetically represent the structural characteristics of the identified clusters (medoid LR

fuzzy time trajectories). Then, contrary to the D-DFKMC models in which the typical LR fuzzy time

trajectories are unobserved (centroid LR fuzzy time trajectories), in the D-DFKMDC models the typical

LR fuzzy time trajectories belong to the set of the observed fuzzy trajectories (Coppi, D’Urso, and

Giordani, 2006a).

8.6 APPLICATIVE EXAMPLES

As to the practical utilization of the fuzzy approach in the cluster analysis with imprecise data, several

potential examples might be mentioned, ranging from engineering to social and psychological problems.

In this section, in order to evaluate the empirical capabilities and the different performances of the fuzzy

clustering models analyzed in Sections 8.4 and 8.5, several applicative examples are illustrated.

8.6.1 Univariate Case

For showing the applicative performances of the fuzzy clustering models for univariate fuzzy data

(ADFKNC and DFKNC models), we utilize two data-sets.

8.6.1.1 Tea Data-set

We consider a data-set drawn by Hung and Yang (2005), regarding the evaluation of 70 kinds of

Taiwanese tea. In particular, 10 experts evaluated each kind of tea by assigning and four criteria

(attributes) – appearance, tincture, liquid color and aroma – five different quality levels: perfect, good,

medium, poor, bad. These quality terms represent the imprecision and ambiguity inherent in human

perception. Since the fuzzy sets can be suitably utilized for describing the ambiguity and imprecision

in natural language, the authors defined these quality terms using triangular fuzzy numbers,
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i.e.,: ~Y ¼ 1; 0:25; 0ð Þ (perfect), ~Y ¼ 0:75; 0:25; 0:25ð Þ (good), ~Y ¼ 0:5; 0:25; 0:25ð Þ (medium),
~Y ¼ 0:25; 0:25; 0:25ð Þ(poor), ~Y ¼ 0; 0; 0:25ð Þ (bad) (Hung and Yang, 2005). Then, the authors obtained

the univariate fuzzy data-set (shown in Table 8.2) by averaging, in a fuzzy manner, the fuzzy scores on the

four attributes. Notice that the first tea (called White-tip Oolong) in Table 8.2 is the best and the most

famous Taiwanese tea. In fact the expert (fuzzy) average evaluation is highest. For this reason, this type of

tea can be considered a special tea and then an outlier in the tea data-set.

By applying the ADFKNC and DFKNC models (with m¼2, K¼5, l¼r¼0.5, b¼77.0130 (only for

the ADFKNC model; it is obtained by using the formula suggested by Hung and Yang (2005)) we obtain

the membership degrees shown in Table 8.3. In particular, the membership degrees obtained by utilizing

the DFKNC model show that tea no.1 (special tea) belongs to cluster 1, the types of tea no. 2–20 belong

more to cluster 2, the types of tea no. 21–39 belong more to cluster 3, the types of tea no. 40–60

belong more to cluster 4 and the types of tea no. 61–70 belong more to cluster 5. By applying the

ADFKNC model, we have that tea no.1 (outlier) does not exactly belong to any cluster (in fact the

membership degree is perfectly fuzzy), teas no. 2–20 belong more to cluster 1, teas no. 21–39 belong more

to cluster 2, teas no. 40–55 belong more to cluster 3, teas no. 56–62 belong more to cluster 4 and teas no.

Table 8.2 Taiwanese tea data-set (Hung and Yang, 2005).

i �Y ¼ c; l; rð Þ i �Y ¼ c; l; rð Þ

1 (0.8750, 0.2500, 0.1250) 36 (0.3750, 0.1875, 0.2500)
2 (0.5625, 0.2500, 0.1875) 37 (0.3750, 0.1875, 0.2500)
3 (0.5000, 0.2500, 0.2500) 38 (0.3750, 0.1875, 0.2500)
4 (0.5000, 0.2500, 0.2500) 39 (0.3750, 0.1875, 0.2500)
5 (0.5000, 0.2500, 0.2500) 40 (0.3125, 0.1250, 0.2500)
6 (0.4375, 0.1250, 0.1875) 41 (0.3125, 0.1250, 0.2500)
7 (0.4375, 0.1875, 0.2500) 42 (0.3125, 0.1250, 0.2500)
8 (0.4375, 0.1875, 0.2500) 43 (0.3125, 0.1250, 0.2500)
9 (0.4375, 0.1875, 0.2500) 44 (0.3125, 0.1250, 0.2500)
10 (0.4375, 0.1875, 0.2500) 45 (0.3125, 0.1250, 0.2500)
11 (0.4375, 0.1875, 0.2500) 46 (0.3125, 0.1250, 0.2500)
12 (0.4375, 0.1875, 0.2500) 47 (0.3125, 0.1875, 0.2500)
13 (0.4375, 0.1875, 0.2500) 48 (0.3125, 0.1250, 0.2500)
14 (0.4375, 0.1875, 0.2500) 49 (0.3125, 0.1250, 0.2500)
15 (0.4375, 0.1875, 0.2500) 50 (0.3125, 0.1250, 0.2500)
16 (0.4375, 0.1875, 0.2500) 51 (0.3125, 0.1250, 0.2500)
17 (0.4375, 0.1875, 0.2500) 52 (0.3125, 0.1250, 0.2500)
18 (0.4375, 0.1875, 0.2500) 53 (0.3125, 0.1250, 0.2500)
19 (0.4375, 0.1875, 0.2500) 54 (0.3125, 0.1250, 0.2500)
20 (0.4375, 0.1875, 0.2500) 55 (0.3125, 0.1250, 0.2500)
21 (0.3750, 0.1250, 0.2500) 56 (0.2500, 0.1250, 0.2500)
22 (0.3750, 0.1250, 0.2500) 57 (0.2500, 0.1250, 0.2500)
23 (0.3750, 0.1250, 0.1875) 58 (0.2500, 0.1250, 0.2500)
24 (0.3750, 0.1250, 0.2500) 59 (0.2500, 0.1250, 0.2500)
25 (0.3750, 0.1250, 0.2500) 60 (0.2500, 0.1250, 0.2500)
26 (0.3750, 0.1250, 0.2500) 61 (0.1875, 0.0625, 0.2500)
27 (0.3750, 0.1250, 0.2500) 62 (0.1875, 0.0625, 0.2500)
28 (0.3750, 0.1250, 0.2500) 63 (0.1250, 0.0625, 0.2500)
29 (0.3750, 0.1250, 0.2500) 64 (0.1250, 0.0625, 0.2500)
30 (0.3750, 0.1250, 0.2500) 65 (0.1250, 0.0625, 0.2500)
31 (0.3750, 0.1875, 0.2500) 66 (0.1250, 0.0625, 0.2500)
32 (0.3750, 0.1250, 0.2500) 67 (0.1250, 0.0625, 0.2500)
33 (0.3750, 0.1875, 0.2500) 68 (0.1250, 0.0625, 0.2500)
34 (0.3750, 0.1250, 0.2500) 69 (0.1250, 0.0625, 0.2500)
35 (0.3750, 0.1250, 0.2500) 70 (0.1250, 0.0625, 0.2500)
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Table 8.3 Membership degrees.

i ADFKNC model DFKNC model

1 0.2000 0.2000 0.2000 0.2000 0.2000 1.0000 0.0000 0.0000 0.0000 0.0000
2 0.3008 0.1936 0.1711 0.1674 0.1671 0.0609 0.5837 0.2129 0.1059 0.0365
3 0.5294 0.1620 0.1104 0.0998 0.0983 0.0134 0.7812 0.1374 0.0534 0.0147
4 0.5294 0.1620 0.1104 0.0998 0.0983 0.0134 0.7812 0.1374 0.0534 0.0147
5 0.5294 0.1620 0.1104 0.0998 0.0983 0.0134 0.7812 0.1374 0.0534 0.0147
6 0.7181 0.1552 0.0540 0.0379 0.0348 0.0035 0.7797 0.1720 0.0376 0.0072
7 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
8 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
9 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
10 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
11 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
12 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
13 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
14 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
15 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
16 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
17 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
18 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
19 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
20 0.9956 0.0025 0.0008 0.0006 0.0005 0.0004 0.9753 0.0195 0.0041 0.0008
21 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
22 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
23 0.0634 0.7895 0.0968 0.0301 0.0202 0.0013 0.0508 0.8679 0.0741 0.0059
24 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
25 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
26 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
27 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
28 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
29 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
30 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
31 0.0424 0.8695 0.0581 0.0179 0.0120 0.0007 0.0307 0.9257 0.0398 0.0031
32 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
33 0.0424 0.8695 0.0581 0.0179 0.0120 0.0007 0.0307 0.9257 0.0398 0.0031
34 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
35 0.0078 0.9816 0.0065 0.0024 0.0017 0.0001 0.0072 0.9867 0.0055 0.0005
36 0.0424 0.8695 0.0581 0.0179 0.0120 0.0007 0.0307 0.9257 0.0398 0.0031
37 0.0424 0.8695 0.0581 0.0179 0.0120 0.0007 0.0307 0.9257 0.0398 0.0031
38 0.0424 0.8695 0.0581 0.0179 0.0120 0.0007 0.0307 0.9257 0.0398 0.0031
39 0.0424 0.8695 0.0581 0.0179 0.0120 0.0007 0.0307 0.9257 0.0398 0.0031
40 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
41 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
42 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
43 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
44 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
45 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
46 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
47 0.0260 0.0578 0.8113 0.0840 0.0209 0.0007 0.0107 0.0382 0.9430 0.0074
48 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
49 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
50 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
51 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
52 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
53 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
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63–70 belong more to cluster 5. Notice that these results reflect substantially the same results obtained by

applying both ADFKNC and DFKNC models to the data-set without tea no.1. This shows that the

ADFKNC model, conversely to the DFKNC model, is robust and able to tolerate the special tea (outlier).

In fact, the ADFKNC model neutralizes and smoothes the disruptive effect of the outlier, preserving as

almost invariant the natural clustering structure of the data-set.

8.6.1.2 Wine Data-set 1

We apply the ADFKNC and DFKNC models (with m¼2, K¼2, l¼r¼0.5, b¼0.4736 (only for the

ADFKNC model)) to the ‘‘wine data-set’’ drawn by Coppi and D’Urso (2002). In particular, we take

into account (triangular) fuzzy qualitative judgments on 15 wines (vintage 1965) (notice that in the

original data-set we have different vintages 1964–1969; for the qualitative judgements see Hartigan

(1975); for the fuzzy scores see Coppi and D’Urso, 2002). The analyzed data-set is shown in Table 8.4 and

54 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
55 0.0001 0.0002 0.9996 0.0001 0.0000 0.0002 0.0043 0.0186 0.9746 0.0023
56 0.0007 0.0009 0.0024 0.9951 0.0010 0.0056 0.0552 0.1283 0.6439 0.1670
57 0.0007 0.0009 0.0024 0.9951 0.0010 0.0056 0.0552 0.1283 0.6439 0.1670
58 0.0007 0.0009 0.0024 0.9951 0.0010 0.0056 0.0552 0.1283 0.6439 0.1670
59 0.0007 0.0009 0.0024 0.9951 0.0010 0.0056 0.0552 0.1283 0.6439 0.1670
60 0.0007 0.0009 0.0024 0.9951 0.0010 0.0056 0.0552 0.1283 0.6439 0.1670
61 0.0775 0.0843 0.1193 0.4162 0.3027 0.0051 0.0360 0.0672 0.1776 0.7141
62 0.0775 0.0843 0.1193 0.4162 0.3027 0.0051 0.0360 0.0672 0.1776 0.7141
63 0.0001 0.0001 0.0001 0.0001 0.9996 0.0002 0.0009 0.0014 0.0027 0.9949
64 0.0001 0.0001 0.0001 0.0001 0.9996 0.0002 0.0009 0.0014 0.0027 0.9949
65 0.0001 0.0001 0.0001 0.0001 0.9996 0.0002 0.0009 0.0014 0.0027 0.9949
66 0.0001 0.0001 0.0001 0.0001 0.9996 0.0002 0.0009 0.0014 0.0027 0.9949
67 0.0001 0.0001 0.0001 0.0001 0.9996 0.0002 0.0009 0.0014 0.0027 0.9949
68 0.0001 0.0001 0.0001 0.0001 0.9996 0.0002 0.0009 0.0014 0.0027 0.9949
69 0.0001 0.0001 0.0001 0.0001 0.9996 0.0002 0.0009 0.0014 0.0027 0.9949
70 0.0001 0.0001 0.0001 0.0001 0.9996 0.0002 0.0009 0.0014 0.0027 0.9949

Table 8.3 (continued)

i ADFKNC model DFKNC model

Table 8.4 Wine data-set (Hartigan, 1975; Coppi and D’Urso, 2002).

Wines (vintage 1965) Qualitative judgements Fuzzy scores

1. Red Bordeaux Medoc and Graves Worst (3,3,1)
2. Red Bordeaux Saint Emilion and Pomerol Poor (4,1.5,1.5)
3. White Bordeaux Sauternes Worst (3,3,1)
4. White Bordeaux Graves Worst (3,3,1)
5. Red Burgundy Poor (4,1.5,1.5)
6. White Burgundy Cote de Beaune Fair (6,1,0.5)
7. White Burgundy Chablis Poor (4,1.5,1.5)
8. White Burgundy Beaujolais Worst (3,3,1)
9. Red Rhone North Fair (6,1,0.5)
10. Red Rhone South Fair (6,1,0.5)
11. White Loire Poor (4,1.5,1.5)
12. Alsace Poor (4,1.5,1.5)
13. Rhine Poor (4,1.5,1.5)
14 Moselle Poor (4,1.5,1.5)
15. California Good (8,1.75,0.25)
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Figure 8.10 (in which we also represent the centroids obtained with both models). Notice that the

centroids computed by means of the DFKNC model are further away from each other than the centroids

estimated by utilizing the ADFKNC model (see Table 8.5 and Figure 8.10).

8.6.2 Multivariate Case

In order to show the performances of the fuzzy clustering models for multivariate fuzzy data (i.e., the

DFWKMC model, FKMCCFV model, and FKMCMD model) we consider two applications.

Table 8.5 Membership degrees and centroids.

i ADFKNC model DFKNC model

Membership degrees Membership degrees

1 0.3346 0.6654 0.0551 0.9449
2 0.0140 0.9860 0.0418 0.9582
3 0.3346 0.6654 0.0551 0.9449
4 0.3346 0.6654 0.0551 0.9449
5 0.0140 0.9860 0.0418 0.9582
6 0.9992 0.0008 0.9755 0.0245
7 0.0140 0.9860 0.0418 0.9582
8 0.3346 0.6654 0.0551 0.9449
9 0.9992 0.0008 0.9755 0.0245
10 0.9992 0.0008 0.9755 0.0245
11 0.0140 0.9860 0.0418 0.9582
12 0.0140 0.9860 0.0418 0.9582
13 0.0140 0.9860 0.0418 0.9582
14 0.0140 0.9860 0.0418 0.9582
15 0.5600 0.4400 0.8940 0.1060

Centroids Centroids

c1 ¼ 6:0401, l1 ¼ 1:0145, r1 ¼ 0:4985 c1 ¼ 6:4180, l1 ¼ 1:1712, r1 ¼ 0:4507

c2 ¼ 3:8831, l2 ¼ 1:6731, r2 ¼ 1:4432 c2 ¼ 3:6481, l2 ¼ 2:0353, r2 ¼ 1:3200

0

0,5

1

9876543210

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 1st centroid (ADFKNC model)
2nd centroid (ADFKNC model) 1st centroid (DSFNC model)
2nd centroid (DSFNC model)

Figure 8.10 Graphical representation of wine data-set and centroids.
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8.6.2.1 Blood Pressure Data

In this section, the DFWKMC, FKMCCFV, and FKMCMD models are applied to a ‘‘blood pressure

data-set’’ drawn by D’Urso and Giordani (2006a) describing 108 patients in whom the daily systolic

and diastolic blood pressures were observed (J¼2). Notice that instead of considering numerical

values (e.g., the average or median value of each variable during each day), the authors preferred to

consider the minimum and maximum values daily registered so that the information to be managed is

much more detailed (for the complete data-set, see D’Urso and Giordani, 2006a). The selected

fuzziness coefficient and number of clusters are, respectively, m ¼ 2 and K ¼ 2. By considering the

DFWKMC model, the optimal weights are ð1� vÞ ¼ 0:62 and v ¼ 0:38. Thus, the optimal weight of

the center distance is considerably higher than the one of the spreads. Therefore, the model auto-

matically determined a system of weights such that the role of the center distance was emphasized in

order to make it more important than the spread one in clustering the fuzzy data. Since v is lower than

0.5, it follows that the differences in the spread scores are sensibly higher than those in the center

scores. Nevertheless, the model chooses an objective system of weights such that the center scores, in

which the membership function takes the highest value, play a more relevant role in assigning the

patients to the clusters. The spread information plays the role of optimally tuning the memberships of

the objects to the resulting clusters (D’Urso and Giordani, 2006a). The fuzzy partition obtained is

explained in Table 8.6.

By applying the FKMCCFV and FKMCMD models (assuming a triangular representation of

the fuzzy data) we obtain, respectively, a partition more and less fuzzy than the partition shown in

Table 8.6.

8.6.2.2 Wine Data-set 2

We apply the DFWKMC, FKMCCFV, and FKMCMD models (fixing m¼2, K¼2) on a real data-set

drawn by D’Urso and Giordani (2003) concerning 12 Greek white wines and a set of two (triangular)

Table 8.6 Membership degrees (D’Urso and Giordani, 2006a).

Pat. Memb.D. Pat. Memb.D. Pat. Memb.D. Pat. Memb.D. Pat. Memb.D. Pat. Memb.D.

1 0.97 0.03 19 0.90 0.10 37 0.85 0.15 55 0.50 0.50 73 0.13 0.87 91 0.08 0.92

2 0.97 0.03 20 0.90 0.10 38 0.85 0.15 56 0.50 0.50 74 0.13 0.87 92 0.07 0.93

3 0.96 0.04 21 0.89 0.11 39 0.85 0.15 57 0.43 0.57 75 0.13 0.87 93 0.07 0.93

4 0.94 0.06 22 0.89 0.11 40 0.82 0.18 58 0.41 0.59 76 0.12 0.88 94 0.07 0.93

5 0.94 0.06 23 0.89 0.11 41 0.82 0.18 59 0.40 0.60 77 0.12 0.88 95 0.07 0.93

6 0.93 0.07 24 0.88 0.12 42 0.81 0.19 60 0.38 0.62 78 0.12 0.88 96 0.07 0.94

7 0.93 0.07 25 0.88 0.12 43 0.80 0.20 61 0.38 0.62 79 0.12 0.88 97 0.07 0.94

8 0.93 0.07 26 0.88 0.12 44 0.77 0.23 62 0.35 0.65 80 0.12 0.88 98 0.07 0.94

9 0.93 0.07 27 0.87 0.13 45 0.76 0.24 63 0.34 0.66 81 0.11 0.89 99 0.06 0.94

10 0.92 0.08 28 0.87 0.13 46 0.76 0.24 64 0.33 0.67 82 0.11 0.89 100 0.06 0.94

11 0.92 0.08 29 0.87 0.13 47 0.75 0.25 65 0.32 0.68 83 0.10 0.90 101 0.06 0.95

12 0.92 0.08 30 0.87 0.13 48 0.75 0.25 66 0.28 0.72 84 0.10 0.90 102 0.06 0.95

13 0.91 0.09 31 0.86 0.14 49 0.73 0.27 67 0.26 0.74 85 0.09 0.91 103 0.06 0.95

14 0.91 0.09 32 0.86 0.14 50 0.73 0.27 68 0.24 0.76 86 0.09 0.91 104 0.05 0.97

15 0.91 0.09 33 0.86 0.14 51 0.70 0.30 69 0.20 0.80 87 0.09 0.91 105 0.05 0.95

16 0.91 0.09 34 0.86 0.14 52 0.69 0.31 70 0.16 0.84 88 0.08 0.92 106 0.05 0.95

17 0.91 0.09 35 0.86 0.14 53 0.67 0.33 71 0.13 0.87 89 0.08 0.92 107 0.04 0.96

18 0.90 0.10 36 0.86 0.14 54 0.61 0.39 72 0.13 0.87 90 0.08 0.92 108 0.04 0.97

APPLICATIVE EXAMPLES 185



fuzzy variables regarding the phenol concentrations, i.e., gallic acid and catechin (the preprocessed

data are shown in Table 8.7). Notice that the observed spreads are very small (very close to zero), i.e.,

the data are approximately crisp. Then, the aim of this example is to show how the three fuzzy models

work with (approximately) crisp data. In particular, in our application, these models provide, as one

would expect, the same results as those of the traditional fuzzy K-means clustering model (for crisp

data) (Bezdek, 1981). This shows the unbiased sensitivity of the models to the examined observational

situations. In fact, all models capture the real structure of the data properly. The fuzzy partitions

obtained by applying the DFWKMC model (FKMCCFVand FKMCMD models give the same results)

and the traditional fuzzy K-means clustering model are pointed out in Table 8.7. For the DFWKMC

model, the centroids are c1 ¼ �0:4857 �0:4034ð Þ, l1 ¼ 0:0253 0:0115ð Þ, c2 ¼ 1:6536 1:7083ð Þ,
l2 ¼ 0:2205 0:0835ð Þ (as one would expect, FKMCCFV and FKMCMD models give the same results

and the traditional fuzzy K-means clustering model provides the same values of c1 and c2) and the

weight is v ¼ 0.5.

8.6.3 Three-way Case

This section is devoted to illustrating an applicative example of a fuzzy clustering model for fuzzy three-

way data, i.e., fuzzy data time array.

8.6.3.1 Internet Banner Data

We show the results of an application of the CS-DFKMC model drawn by Coppi and D’Urso (2003). The

available data (Internet banner data) refer to the subjective judgements of a sample of 20 Internet

navigators concerning the advertising realized by means of different kinds of banners during the time. In

fact, advertising on the Internet is usually done by means of ‘‘static’’ banners (which synthesize, in a

single image, text and graphic), ‘‘dynamic’’ banners (characterized by a dynamic gif image, i.e., by a set

of images visualized in sequence) and ‘‘interactive’’ banners (which induce the Internet-navigators to

participate in polls, interactive games, and so on). The application is done by considering, for each time

and each type of banner of each Web site, the median of the judgements expressed by the sample of

navigators (Coppi and D’Urso, 2003). Thus, the fuzzy data time array has order I¼ 18 (Web sites)� J¼ 3

(types of banners)� T ¼ 6 (consecutive periods, every fortnight). To take into account the subjective or

linguistic vagueness expressed by the human perception a fuzzy coding has been considered. In particular

Table 8.7 Input and membership degrees.

Greek ADFKNC model Fuzzy K-means (crisp data)

white wine Gallic Acid Catechin Membership degrees Membership degrees

1 (1.28, 0.15) (3.02, 0.16) 0.1117 0.8883 0.1108 0.8892

2 (2.15, 0.30) (0.96, 0.03) 0.0841 0.9159 0.0846 0.9154

3 (1.25, 0.19) (-0.49, 0) 0.6215 0.3785 0.6244 0.3756

4 (0.00, 0.04) (-0.52, 0) 0.9687 0.0313 0.9688 0.0312

5 (0.52, 0.10) (0.05, 0.02) 0.7683 0.2317 0.7692 0.2308

6 (-0.77, 0) (-0.52, 0) 0.9913 0.0087 0.9913 0.0087

7 (-0.71, 0.03) (-0.52, 0) 0.9940 0.0060 0.9940 0.0060

8 (-0.77, 0) (-0.17, 0.06) 0.9856 0.0144 0.9858 0.0142

9 (-0.77, 0) (-0.34, 0.02) 0.9916 0.0084 0.9916 0.0084

10 (-0.73, 0.01) (-0.41, 0.01) 0.9942 0.0058 0.9941 0.0059

11 (-0.77, 0) (-0.52, 0) 0.9913 0.0087 0.9913 0.0087

12 (-0.67, 0.01) (-0.52, 0) 0.9954 0.0046 0.9954 0.0046
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the linguistic terms and their corresponding triangular fuzzy numbers are: worst (3, 3, 1); poor (4, 1.5,

1.5); fair (6, 1, 0.5); good (8, 1.75, 0.25); best (10, 2, 0) (Coppi and D’Urso, 2003). The output of the CS-

DFKMC model is shown in Table 8.8, in which the time weighting system and the fuzzy partitions are

reported. Notice that the authors utilize for the fuzzy data, a triangular membership function (then

l ¼ r ¼ 0:5); furthermore, in order to determine the number of clusters and the fuzziness coefficient they

have suitably extended a cluster-validity criterion for a crisp data-set (i.e., the criterion suggested by Xie

and Beni (1991) (see Coppi and D’Urso, 2003).

8.7 CONCLUDING REMARKS AND FUTURE PERSPECTIVES

In this chapter we focused our attention on fuzzy clustering models for fuzzy data. The main advantage of

these models is the explicit consideration in the partitioning process of the imprecision (fuzziness,

vagueness) of data. In particular, in this chapter, we defined the fuzzy data conceptually and mathema-

tically and pointed at some preprocessing procedures and metrics for fuzzy data. Following this, starting

with the so-called informational approach, we provided a survey of fuzzy clustering models for fuzzy

univariate and multivariate data and for fuzzy three-way data (i.e., fuzzy data time array).

Summing up, the main features of the considered clustering approach are: the explicit recognition of

the common informational nature of the ingredients of the data analytical procedure and of the uncertainty

associated with them, here cast in the fuzzy perspective (the data and the clustering model); the adoption

of a suitable class of membership functions representing the fuzziness of the observed data; the

construction of appropriate metrics between fuzzy data, taking into account the vagueness; the extensive

use of a generalized Bezdek criterion as the basis for the clustering process; the possibility of applying the

clustering models in various observational settings, including the case where qualitative data are collected

Table 8.8 Output of the CS-DFKMC model (cf. Coppi and D’Urso, 2003).

Fuzzy partition

1. IOL.IT 0.02 0.94 0.04
2. KATAWEB.IT 0.04 0.06 0.90
3. TISCALINET.IT 0.08 0.16 0.76
4. TIN.IT 0.42 0.50 0.08
5. MSN.IT 0.17 0.73 0.10
6. VIRGILIO.IT 0.30 0.45 0.25
7. YAHOO.IT 0.87 0.09 0.04
8. ALTAVISTA.IT 0.36 0.55 0.09
9. EXCITE.IT 0.81 0.14 0.05
10. KATAMAIL.COM 0.45 0.16 0.39
11. ALTAVISTA.COM 0.07 0.07 0.86
12. INWIND.IT 0.04 0.07 0.89
13. SMSCASH.IT 0.06 0.16 0.78
14. IBAZAR.IT 0.89 0.04 0.07
15. REPUBBLICA.IT 0.89 0.05 0.06
16. MEDIASETONLINE.IT 0.05 0.77 0.18
17. YAHOO.COM 0.05 0.77 0.18
18. JUMPY.IT 0.15 0.54 0.31

Time weighting system

(0.158, 0.146, 0.179, 0.135, 0.173, 0.209).
Triangular case: l¼r¼1/2

Cluster number: K¼3

Fuzziness coefficient: m¼1.35
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– such as subjective judgments, ordinal categories and mixed data (obviously, this requires an adequate

fuzzification of the qualitative data).

Concerning the fuzzy clustering models for fuzzy univariate, multivariate and time three-way data

theoretical and mathematical aspects have been shown. Furthermore, in order to evaluate the empirical

capabilities of the fuzzy clustering models for fuzzy univariate, multivariate, and three-way data,

several applicative examples have been illustrated. The theoretical features, the comparative assess-

ment and the applicative performances of the models showed the high flexibility of the fuzzy approach

in the analysis of data with complex structure and then in the cognitive process with imprecise

information.

In conclusion, we point out some future perspectives of research on fuzzy clustering for fuzzy data. For

determining the ‘‘optimal’’ number of clusters (K) and the fuzziness coefficient (m), it would be useful to

extend suitably the cluster-validity criteria for fuzzy clustering models of crisp data to a complete fuzzy

framework; to this purpose, notice that the indices (utilized for fuzzy clustering for crisp data) belong to

a class of fuzziness-based cluster validity indices (e.g., partition coefficient and partition entropy (Bezdek

(1974a,b)) and can easily be utilized for the fuzzy clustering of fuzzy data.

It would also be interesting to study in depth the effects of outlier fuzzy data in the fuzzy clustering

process. To this purpose, it is fundamental to define suitably, in a multivariate framework, the concept of

anomalous (i.e., outlier) fuzzy data. In fact, the complex structure that characterizes the fuzzy data implies

three possible cases (cf. Figure 8.11): outlier center–inlier spreads (case 1); inlier centers–outlier spreads

(case 2); outlier center–outlier spreads (case 3).

Thus, in future research it would be interesting to propose robust fuzzy clustering models for multi-

dimensional fuzzy data in which the three previous situations are suitably taken into account in order to

neutralize and smooth the disruptive effects of possible fuzzy data with anomalous centers and/or spreads

present in the fuzzy data matrix. In connection with this, following a typical interval approach (without

fuzzy assumptions on the data), we remark that D’Urso and Giordani (2006b) suggested a robust fuzzy

clustering model for interval valued data. This model represents an extension of Davè’s model (1991)

which uses a criterion similar to Ohashi’s (1984) for interval valued data. Following the ideas of Ohashi

and Davè, by means of the suggested robust fuzzy K-means clustering model for interval valued data, they

introduce a special cluster, the noise cluster, whose role is to localize the noise and place it in a single

auxiliary class. By assigning patterns to the noise class, they declare them to be outliers in the interval

valued data-set (D’Urso and Giordani, 2006b).

An interesting research topic in fuzzy clustering for fuzzy data is also the fuzzy clustering with fuzzy

linear (or nonlinear) prototypes. Some contributions are already present in literature (see, for example,

D’Urso and Santoro, 2006). In particular, D’Urso and Santoro propose a fuzzy clusterwise linear regression

model with fuzzy output, in which fuzzy regression and fuzzy clustering are integrated in a unique

framework. In this way, the regression parameters (characterizing the linear prototypes of the clusters)

and membership degrees are estimated simultaneously by optimizing one single objective function.

Other interesting future perspectives are: to study in depth the fuzzy clustering for interactive fuzzy

data (Fullér and Majlender, 2004); to suggest fuzzy clustering models for fuzzy empirical information for

Case 1 Case 2 Case 3

Figure 8.11 Examples of different cases of outlier fuzzy data.

188 FUZZY CLUSTERING OF FUZZY DATA



classifying spatial units, by taking into account explicitly the autocorrelation among the spatial units; and

to propose possibilistic clustering models for fuzzy data.
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9.1 INTRODUCTION

Clustering plays an important role in many engineering fields, especially data mining, pattern recognition,

and image processing among others, where the aspect of looking for hidden patterns and classes is an issue

(see, for instance, [18, 27] and references therein for an extensive survey). Typically, clustering methods

divide a set of N observations, usually represented as vectors of real numbers, x1; x2; . . . ; xN into c groups

denoted by K1;K2; . . . ;Kc in such a way that the members of the same group are more similar to one

another than to the members of other groups. The number of clusters may be predefined as in the case of k-

means type clustering or it may be set by the method. Various types of clustering have been developed in

the literature. These include hierarchical clustering, graph theoretic based clustering, and those based on

minimizing a criterion function [8, 18]. Typically, in standard clustering approaches, each datum belongs

to one and only one cluster. Although this assumption is well justified in the case of compact and separated

data, it is less justified in the case of overlapping data where a pattern can belong to more than one cluster.

For instance, according to some features the datum belongs to class K1 while according to another set of

features it belongs to K3. This provides solid motivational grounds for methods developed in fuzzy set

theory where the degree of membership to a class is naturally graded within the unit interval. In this

respect, a datum or instance of a data-set can belong to several classes concurrently, indicating the

presence of nonzero overlapping with each of these classes.

On the other hand, various proposals have been put forward to extend the hierarchical clustering, graph

theoretic clustering, and criterion-based minimization clustering to include fuzzy parameters, usually a

matrix U indicating the degree of membership of each datum to a given class. The fuzziness can also be

extended to data where each datum is described in terms of a fuzzy set. This can be justified either in

situations in which data, even being single numeric values, are pervaded by uncertainty/imprecision. In

such cases the fuzzy set is used as a tool to quantify such uncertainty/imprecision. In cases where the

inputs are linguistic labels in which the exact numerical model is ill-known, the fuzziness arises naturally

Advances in Fuzzy Clustering and its Applications Edited by J. Valente de Oliveira and W. Pedrycz
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from the intrinsic meaning of the words. This is particularly highlighted in rule-based systems in which

the inputs of each rule are described by some linguistic quantifiers. In such cases the representation of

those fuzzy sets is always an open issue.

For this purpose at least two streams of research can be distinguished. The first advocates the need to

determine an exact model of the fuzzy set using some statistical or logical-based approaches. For

instance, the probability–possibility transformations [12, 26] fail in this category. The use of optimization

techniques can also be employed for such purposes [27, 28]. The second stream supports a more flexible

view and acknowledges the subjective nature of the fuzzy set, which can be defined by the expert

according to his prior knowledge [1, 27]. In this context, the use of parametric fuzzy sets is quite useful,

especially from a computation perspective, and only a limited number of parameters are required to define

the whole fuzzy set on its universe of discourse [13]. For instance, a triangular membership function

requires only three parameters: modal value, left spread value, and right spread value. Gaussian type

fuzzy sets require only two parameters: modal (or mean) value and standard deviation. Gaussian fuzzy

sets are useful because of their differentiability, especially when the fuzzy systems are obtained by

automated methods; thus any supervised learning algorithm can be used, such as various gradient descent

learners and neuro-fuzzy systems [7].

Among clustering techniques developed in the fuzzy set literature, fuzzy C-means, with its various

extensions, is among the most popular models. Its essence is based on finding clusters such that the

overall distance from a cluster prototype to each datum is minimized. Extensions of fuzzy clustering

tools to accommodate fuzzy data have been proposed by Pedrycz, Bezdek, Hathaway, and Rogers

[30] where two parametric models have been put forward. Also, Pedrycz [29] developed appropriate

clustering tools to deal with granular-like information, which constitutes a more complex form of

fuzzy data.

However, when the inclusion concept is desired as a part of user requirements and constraints in the

clustering problem, then the standard fuzzy clustering approach based on FCM shows its limitations.

Strictly speaking, interest in the inclusion concept may arise from several standpoints. From a fuzzy set

theoretical approach the inclusion corresponds to an entailment. Arguing that a fuzzy set A is included in

fuzzy set B is therefore translated to a formal implication B! A. In this respect, the knowledge induced

by A is rather redundant to B since it can be inferred from the knowledge attached to B. It makes sense,

therefore, to identify all those circumstances in which the inclusion relation holds. This is especially

relevant in applications involving, for example, rule-base systems when simplification of (fuzzy) rules is

crucial for implementation and flexibility purposes [19–20, 31–35]. Indeed, in fuzzy rule-based systems,

the above entailment is modeled as an ‘‘if. . . then. . .’’ rule, therefore an inclusion-based algorithm would

provide a powerful tool to reduce the number of rules in the database, which is very relevant to the user

since the complexity increases with the number of rules. Such simplification is also motivated from a

semantic viewpoint since a semantically unclear model is not easily verified by an expert in cases where

the verification is desired as a part of the model validation [7, 14, 16]. From this perspective such an

algorithm would allow us to improve the interpretability of fuzzy models by reducing their complexity in

terms of the number of fuzzy sets, and thereby the number of fuzzy rules that are acquired by automated

techniques.

Furthermore, in information retrieval systems, it may be desirable to discover all cases in which a given

query document is either exactly, or almost, part of another document. Such a capability would be

valuable in matters such as keeping track of ownership and intellectual property as well as related legacy

issues.

The use of an inclusion index in any clustering-based approach encounters at least two main

challenges. First, from a metric viewpoint, it is clear that any distance is symmetric while an inclusion

is by definition an asymmetric relation. Therefore, its incorporation into a distance-based clustering is

problematic and further assumptions need to be made. Secondly, as far as the optimization problem is

concerned, without further assumptions, maximizing and/or minimizing the inclusion index would lead

to an uninformative result corresponding either to the smallest pattern that may exist in the data-set – with

respect to a given metric – or to the greatest. In either case this may coincide with the typical noise

prototype and therefore a choice of appropriate constraints to avoid such vacuum situations is required.
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The aim of this chapter is to investigate this issue and provide a possible construction for an inclusion

index, which will be incorporated in the general scheme of the fuzzy C-means algorithm. Simulation

results will be provided and compared with those obtained with the standard fuzzy C-means algorithm.

The following section provides a background to fuzzy clustering and the fuzzy C-means algorithm. In

Section 9.3 we elaborate on the construction of an inclusion index, while the derivation of the inclusion

based fuzzy clustering is established in Section 9.4. In Section 9.5 two types of application are presented.

In the first application, some simulation results using synthetic data are provided and compared with those

supplied by the standard fuzzy C-means algorithm. The second application deals with a railway data-set

where the proposed algorithm is used to provide qualitative assessment of the risk factors using track

irregularity information.

9.2 BACKGROUND: FUZZY CLUSTERING

Fuzzy clustering partitions a data-set into a number of overlapping groups. One of the first and most

commonly used fuzzy clustering algorithms is the fuzzy C-means (FCM) algorithm [2]. Since the

introduction of FCM, many derivative algorithms have been proposed and different applications have

been investigated. Typically, FCM allows the determination of the membership value uij of each datum Xi

(i ¼ 1; . . . ; n) to cluster j based on the distance from datum Xi to cluster prototype Vj (j ¼ 1; . . . ; c). The

number c of classes is expected to be known beforehand by the user. The obtained partition is optimal in

the sense of minimizing the objective function

J ¼
Xn

i¼1

Xc

j¼1

uaij d2
ij; ð9:1Þ

subject to the constraint

Xc

j¼1

uij ¼ 1: ð9:2Þ

The symbol dij indicates the distance from the cluster prototype Vj to the datum Xi. The parameter a > 1

is the fuzziness parameter, which controls the spread of the fuzzy sets induced by uij. The partition matrix

U, whose elements consist of the computed membership values uij, indicates the partitioning of the data-

set into different clusters j or, equivalently, the membership grade of each datum Xi to the class j whose

prototype is Vj.

For any semi-definite and positive matrix A, the distance dij can be written as

d2
ij ¼ ðXi � VjÞt A ðXi � VjÞ: ð9:3Þ

Thus, any choice of a matrix A induces a specific kind of distance interpretation and consequently

generates its own meaning of cluster shape. For instance, if A is the identity matrix, dij corresponds to a

Euclidean distance, which broadly induces spherical clusters. Gustafson and Kessel [17] have focused on

the case where the matrix A is different for each cluster j. Aj is obtained from the covariance of data

belonging to cluster j, while the determinant of each Aj, which stands for the volume of the cluster, is kept

constant. This enables the detection of ellipsoidal clusters. Bezdek, Coray, Gunderson, and Watson [3–4]

have investigated the case where one of the eigenvectors of the matrix, which corresponds to the largest

eigenvalue, is maximized. This allows the detection of linear clusters like lines or hyperplanes. Davé

proposed a special formulation of the objective function that yields a better description of circular shape

[10]. Later, he also proposed a method to deal with random noise in data-sets [11] by allocating an extra

class corresponding to noise whose prototype vector is equally situated from each datum. Krishnapuram

and Keller [21] put forward another formulation of J where the membership values are not normalized

according to (9.2). Instead, the algorithm is implicitly constrained by the formulation of the objective

function J.
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The preceding paragraph indicates clearly that neither the formulation of the matrix A, nor that of the

objective function J is completely fixed, and some flexibility is allowed. Moreover, the distance

structure is often of limited capability in discriminating between various patterns when the feature

space increases. To see this, suppose we use Euclidean distance, which is used in the standard FCM

algorithm, to discriminate between the following two Gaussian membership functions: G1(0.2, 0.1) and

G2(0.6, 0.1), and consider on the other hand two other Gaussian membership functions G3(0.2, 0.9) and

G4(0.6, 0.9). Clearly, the use of Euclidean distance leads to

dG1G2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:2� 0:6Þ2 þ ð0:1� 0:1Þ2

q
¼ 0:4

Similarly,

dG3G4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:2� 0:6Þ2 þ ð0:9� 0:9Þ2

q
¼ 0:4:

In other words, despite a huge increase (from 0.1 to 0.9) of the spread of the distribution G2, the distance

remains unchanged, while intuitively as the spread increases, the overlapping area becomes more

important. Thereby, we expect the two distributions to become closer to each other; however, this fact

would not occur if the inclusion between the distributions is explicitly accounted for.

9.3 CONSTRUCTION OF AN INCLUSION INDEX

The development in this section is restricted to Gaussian fuzzy sets, but the general approach can also be

applied to any other LR types of fuzzy sets since only the mean or modal value and the spread value

matter. Besides, these values can be obtained from any LR fuzzy set [13], either directly or indirectly

through appropriate transformation. Each fuzzy set�i is defined by three parameters, i.e., the mean mi, the

standard deviation �i and the height hi. We assume that all fuzzy sets are normalized so that their heights

are to equal 1. In this case each fuzzy set is characterized only by the two parameters mi and �i. Because

similar fuzzy sets would have similar parameters, a fuzzy clustering algorithm applied to data in this space

could be used to detect groups of similar fuzzy sets.

We now turn our attention to fuzzy clustering. The goal here is to model the amount of mutual

inclusion between two fuzzy sets. Let m and � be the parameters corresponding to the mean and standard

deviation, respectively, of a Gaussian fuzzy set G. Let us denote by Gi the Gaussian fuzzy set

characterized by ðmi; �iÞ. Let IdðG1;G2Þ stand for the degree of inclusion of the Gaussian G1 in the

Gaussian G2. Globally, we require that the more the former fuzzy set is a subset of another, the larger the

value of IdðG1;G2Þ.
For any Gaussian fuzzy set G, it is known that almost 98 % of the fuzzy set is concentrated within the

interval ½m� 3�;mþ 3��. Each fuzzy set can therefore be represented as an interval centered at mi and

with length 6 �i, as shown in Figure 9.1. For the sake of clarity, we shall denote �0 (resp. �0i) the values of

3� (resp. 3�i).

Inspired from the fuzzy set theoretical inclusion, the inclusion grade of G1 into G2 can be assimilated to

the ratio of G1 \ G2=G1. From this perspective, the inclusion grade equals zero whenever fuzzy sets G1

and G2 are disjoint (G1 \ G2 ¼ �) and reaches the maximum value, which is one, whenever G1 is

(physically) included in G2 (G1 � G2).

Now the use of the aforementioned interval interpretations of the Gaussians allows us to construct a

model of previous ratio. In this respect, using the length of the interval as essence, an estimation of

IdðG1;G2Þ can be obtained as

IdðG1;G2Þ ¼
Lð½m1 � �01;m1 þ �01� \ ½m2 � �02;m2 þ �02�Þ

2�01
, ð9:4Þ

where L: = ! < is a mapping from a set of intervals of real numbers = to a set of real numbers, which

assigns for each interval ½a; b� its length ðb� aÞ.
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More specifically, Equation (9.4) can be rewritten as

Id1ðG1;G2Þ ¼

�01 þ �02 � jm1 � m2j
2�01

if 0 � �01 þ �02 � jm1 � m2j � 2�01

0 if �01 þ �02 � jm1 �m2j < 0

1 if �01 þ �02 � jm1 � m2j > 2�01:

8
>><

>>:
ð9:5Þ

Alternatively, to avoid the use of absolute value in expression (9.5), we may use squared values of

parameters instead. Therefore, a counterpart of (9.5) will be

Id2ðG1;G2Þ ¼

ð�01 þ �02Þ
2�ðm1 � m2Þ2

4ð�01Þ
2 if 0 � ð�01 þ �02Þ

2�ðm1 � m2Þ2 � 4ð�01Þ
2

0 if ð�01 þ �02Þ
2�ðm1 � m2Þ2 < 0

1
if ð�01 þ �02Þ

2�ðm1 � m2Þ2 > 4ð�01Þ
2:

8
>>><

>>>:
ð9:6Þ

The latter can be rewritten using step functions H as

Id2ðG1;G2Þ ¼
ð�01 þ �02Þ

2�ðm1 � m2Þ2

4ð�01Þ
2

H½ð�01 þ �02Þ
2�ðm1 � m2Þ2�

þ 4ð�01Þ
2 � ð�01 þ �02Þ

2 þ ðm1 � m2Þ2

4ð�01Þ
2

H½ð�01 þ �02Þ
2�ðm1 � m2Þ2 � 4ð�01Þ

2�;
ð9:7Þ

which holds almost everywhere.

Standard step functions H are defined as

Hðx� aÞ ¼
0 if x < a
1
2

if x ¼ a

1 if x > a:

8
><

>:
ð9:8Þ

From this perspective Id2ðG1;G2Þ as defined in Equation (9.6), or equivalently Equation (9.7), corre-

sponds to a straightforward interpretation of previous fuzzy set theoretical inclusion grade, and therefore

preserves all the intuitive features and properties of the fuzzy set theoretical inclusion grade. Indeed, as

soon as jmi � mjj > 3ð�i þ �jÞ, which means that the two fuzzy sets are far away from each other,

Id2ðGi;GjÞ vanishes. If the distributions have the same mean, i.e., jmi � mjj ¼ 0 and �i � �j, then

Id2ðGi;GjÞ equals one, which corresponds to a physical inclusion of distribution Gi in Gj. Otherwise,

the inclusion grade captures the overlap between the two distributions with respect to that of Gi and takes

values in the unit interval, provided the parameters of the distributions also lie within the unit interval.

The index Id2ðG1;G2Þ attains its maximum value when the first distribution is fully included in the

second. For cluster merging purposes, however, it may be useful to assess not only whether one

m 1
3σ1

m2 m3

3σ2 3σ3

G1

G2

G3
1

0

Figure 9.1 An interval representation for Gaussian fuzzy sets.
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distribution is included in the other, but also the extent to which the including distribution is larger than the

one included. In this case one may consider omitting the upper bound of the index. Therefore, a

counterpart of Id2ðG1;G2Þ would be

Id3ðG1;G2Þ ¼
ð�01 þ �02Þ

2�ðm1 � m2Þ2

4ð�01Þ
2 if ð�01 þ �02Þ

2�ðm1 � m2Þ2 � 0

0 if ð�01 þ �02Þ
2�ðm1 � m2Þ2 < 0

8
<

: ð9:9Þ

or equivalently, using step functions,

Id3ðG1;G2Þ ¼
ð�01 þ �02Þ

2�ðm1 � m2Þ2

4ð�01Þ
2

H½ð�01 þ �02Þ
2�ðm1 � m2Þ2� ð9:10Þ

Loosely speaking, the latter captures not only the inclusion of G1 in G2 but also the extent to which the

spread of G1 is smaller than that of G2. It holds that as soon as a physical inclusion G1 � G2 occurs, then

Id3ðG1;G2Þ � 1. Otherwise, the index still captures the degree of overlap between the two distributions

with respect to the distribution G1.

Consequently, Id3 offers a better performance when the relative size of distributions is desired as part of

the evaluation index, which in turn endows the inclusion index with discrimination power.

Especially, as exhibited in Figure 9.2, the inclusion index Id3 allows us to discriminate between the

different physical scenarios of inclusion induced by the different pairs of fuzzy sets shown. In this case the

formulation in Equation (9.10) leads to the following ordering (subscript 3 is omitted from Id3 for the

purpose of clarity, i.e., IdðaÞ stands for evaluation of index Id3 in the case of a pair of distributions

pertaining to Figure 9.2(a)):

IdðaÞðG2;G1Þ � IdðbÞðG2;G1Þ � IdðcÞðG2;G1Þ � IdðdÞðG2;G1Þ ¼ IdðeÞðG2;G1Þ ¼ 0; ð9:11Þ

which sounds in full agreement with the intuition regarding the given examples.

9.4 INCLUSION-BASED FUZZY CLUSTERING

We now introduce a fuzzy clustering algorithm that incorporates the inclusion index. Strictly speaking,

the introduction of the inclusion constraint in the clustering scheme needs to be accomplished only in the

global sense, since otherwise trivial vacuum cases occur. Therefore, we must additionally constrain the

fuzzy clustering algorithm in order to detect the inclusion of fuzzy sets in the cluster prototype. Moreover,

the inclusion concept is somehow hidden in the distance structure. This accounts for inclusion in only a

global sense, which is sound for a given definition of optimality [23–24].

The aim is to obtain class prototypes such that all elements of that class are roughly included in the

Gaussian class prototype in the sense of the evaluation given by index Id3. Ideally, for each class, we

would look for a Gaussian prototype that maximizes the overall inclusion degrees over the set of

Gaussians belonging to that class, or equivalently maximizes the total sum of inclusion degrees of

m1

3σ1

G1

G2

m1 m1

3σ13σ1

m2

3σ2 m2

3σ2 m2

3σ2

m1

3σ1

G1

G2

m1

3σ1

m2

3σ2 m2

3σ2

(c)(b)(a)

(e)(d)

Figure 9.2 Illustration of inclusion for several pairs of fuzzy sets.
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each Gaussian into that prototype, while each inclusion index is weighted by the corresponding value of

the membership value uaij. Consequently, the problem boils down to maximizing the quantity
Pc

j¼1

Pn

i¼1

Id3ðGi;GvjÞ:uaij , or equivalently minimizing the objective function J:

J ¼ �
Xc

j¼1

Xn

i¼1

Id3ðGi;GvjÞ:uaij; ð9:12Þ

subject to

Xc

j¼1

uij ¼ 1,

where Gi corresponds to the ith Gaussian of initial datum, with mean mi and standard deviation�i, and Gvj

corresponds to the Gaussian prototype of the jth class whose mean and standard deviation are mvj and �vj,

respectively.

Unfortunately, the optimization problem (9.12) and (9.2) without further constraints would lead to the

extreme solution where the spread (standard deviation) of all the prototypes tend to their maximal values.

To circumvent this effect, the maximization (9.13) can be balanced by minimizing the distance from

each prototype to all elements (Gaussians) of the same class as the above prototype. A possible

formulation of such reasoning consists of a linear combination of objective functions (9.1) and (9.12).

This leads to the following counterpart of (10.12) and (10.2)

minimize J ¼ �
Xc

j¼1

Xn

i¼1

Id3ðGi;GvjÞ:ua
ij þ w

Xc

j¼1

Xn

i¼1

ðxi � vjÞT Aðxi � vjÞuaij; w > 0 ð9:13Þ

subject to (9.2).

In (9.13), each Gaussian Gi is interpreted as a vector xi with coordinates (mi, 3�i). Similarly, the jth

prototype can be represented as a vector with coordinates ðmvj; 3�vjÞ.
Equation (9.13) indicates a balance between maximizing inclusion indices of each element in the

prototype Gvj, and minimizing the distance from the prototype to these elements. The weight w is used to

normalize the distance and inclusion evaluations as neither the distances dij nor Id3 are normalized entities,

and to quantify the relative importance of both factors with respect to each other. It should be noted that the

value of w that ensures a rational behavior for the above optimization is not unique as will be pointed out

later. On the one hand, choosing w relatively too large makes the distance minimization requirement a

predominant part in the objective function (9.13), which in turn makes the above optimization closer to the

standard fuzzy C-means algorithm. On the other hand, taking w relatively too small makes the inclusion

evaluation a predominant part in the objective function (9.13), so that (9.13) tends toward the optimization

(9.12), which in turn induces prototypes with maximum spread as already mentioned.

Using matrix formulation, let B1 ¼
1 0

0 0

� �
and B2 ¼

0 0

0 1

� �
, then the Id3 expression can be

rewritten as

Id3ðGi;GvjÞ ¼
1

4
ðxT

i B2xiÞ�1
Si;jHðSi;jÞ ð9:14Þ

with

Si;j ¼ ðxi þ vjÞT B2ðxi þ vjÞ � ðxi � vjÞT B1ðxi � vjÞ: ð9:15Þ

We can now calculate the updated equations that lead to the optimal solution. By combining Equations

(9.13)–(9.15) and Equation (9.2), and by using the Lagrange multipliers bi, we obtain

JðU;V ;bÞ¼�1

4

Xc

j¼1

Xn

i¼1

ðxT
i B2xiÞ�1

Si;jHðSi;jÞ:uaijþw
Xc

j¼1

Xn

i¼1

ðxi�vjÞT Aðxi�vjÞuaijþ
Xn

i¼1

bi

�Xc

j¼1

uij�1

�
:

ð9:16Þ
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Setting the derivative of J with respect to U, V, and bj (see Appendix 9A.1) to zero, leads to the following

optimal solutions

ui;j ¼
1

Xc

k¼

� 1
4
ðxT

i B2xiÞ�1
Si;kHðSi;kÞ þ wðxi � vkÞT Aðxi � vkÞ

� 1
4
ðxT

i B2xiÞ�1
Si;jHðSi;jÞ þ wðxi � vjÞT Aðxi � vjÞ

" #1=a�1
ð9:17Þ

E:vj ¼ F; ð9:18Þ

where

E ¼
Xn

i¼1

1

2
ðxT

i B2xiÞ�1ðB1 � B2ÞHðSi;jÞuaij þ 2wA:uaij ð9:19Þ

F ¼
Xn

i¼1

�
1

2
ðxT

i B2xiÞ�1ðB2 þ B1Þxi:HðSi;jÞuaij þ 2wA:xi:u
a
ij

�
: ð9:20Þ

The matrix A in the above equations coincides with the identity matrix, which makes the distance metric

equivalent to Euclidean distance.

Note that we need to ensure that solution vj does not make Si;j vanish since the underlying step function

is not differentiable for Si;j ¼ 0. This requirement is usually satisfied, since numeric optimization

provides an approximate result. In order to simplify the resolution of Equation (9.18), where quantity

HðSijÞ is also a function of vj to be used in computing vj, we evaluate Si;j thereby HðSijÞ, using the previous

estimate of vj (from the previous step of the iterative algorithm). The matrix solution is then vj ¼ E�1F.

This approximation is well justified by at least three arguments. First, HðSijÞ is a binary variable and so

any small error in vj, if relatively close to the true v�j , has no influence at all on the estimation of HðSijÞ.
Secondly, as the number of iterations increases the estimations of vj tend to be very close to each other,

which offers appealing justification to the first argument. Finally, this reasoning is very similar in spirit to

iterative approaches applied for solving linear/nonlinear systems in optimization problems [15].

A possible initialization of vj consists of using the fuzzy C-means algorithm. The proposed inclusion-

based clustering algorithm can then be summarized as follows.

Inclusion-based fuzzy clustering algorithm

Step 1 Fix the number of clusters c, the parameter of fuzziness a, the value of w and initialize the matrix

U by using the fuzzy C-means algorithm.

Step 2 Use (9.18) to determine vj.

Step 3 Determine the new matrix U using the previous evaluation of Si;j and Equation (9.17).

Step 5 Test if matrix U is stable: if stable, stop; else return to step 2.

Alternatively, Equation (9.18) can be computed using an approximated model, where HðSijÞ are evaluated

at the previous step. The previous algorithm is then modified as follows.

Approximated inclusion-based fuzzy clustering algorithm

Step 1 Fix the number of clusters c, the parameter of fuzziness a, the value of w and initialize the matrix

U and the prototypes vj by using the fuzzy C-means algorithm.

Step 2 Evaluate quantities Si;j and HðSi;jÞ by using the estimates vj.

Step 3 Determine the new matrix U using Equation (9.17).

Step 4 Determine prototypes vj using Equation (9.18).

Step 5 Test if matrix U is stable: if stable, stop; else return to step 2.

A possible evaluation of parameter w can be determined if we normalize all data to be within the

unit interval. The values of components of vj should then also lie within the unit interval. Consequently,
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with some manipulations, expanding Equation (9.18) and sorting out an inequality independent of U

leads to

w � 1

max
i
�2

i

and w �
max

i
�2

i

max
i
�2

i ð1�min
i
�iÞð1þmin

i
�iÞ

;

so

w � max

� max
i
�2

i

max
i
�2

i ð1�min
i
�iÞð1þmin

i
�iÞ

;
1

max
i
�2

i

�
: ð9:21Þ

Thus a potential candidate of w is the lower bound in Equation (9.21), which corresponds to the right-hand

side of the inequality (9.21).

9.5 NUMERICAL EXAMPLES AND ILLUSTRATIONS

The fuzzy inclusion clustering developed in the previous section might be very appealing in several

applications involving fuzzy control or approximate reasoning (see, for instance, [1, 6, 9, 22, 35]), as far as

the redundancy of fuzzy sets is concerned, especially where fuzzy rules are concerned. To demonstrate the

feasibility and the performance of the developed algorithm, two types of application are presented. The

first involves synthetic data of randomly generated Gaussian membership functions. The second deals

with an industrial application in railways involving the prediction of safety factors, where the IFC

algorithm was used to provide a qualitative assessment of risk.

9.5.1 Synthetic Data

To illustrate the performance of the algorithm, we first considered a synthetic data-set corresponding to

Gaussian membership functions that need to be clustered into one, two, and three classes, respectively.

The data-set consists of a fixed number of Gaussian membership functions obtained through randomly

generated mean and spread values, from a uniform distribution in [0,1].

The aim is to obtain prototypes that best capture the inclusion concept among the elements of the same

class. Furthermore, in order to evaluate the performance of the algorithm a comparison is carried out with

the standard fuzzy C-means algorithm in the same plot. In all these examples, the application of the fuzzy

C-means is performed assuming that data xi (i ¼ 1 to N) consist of the initial Gaussian membership

functions represented as vectors of their mean and standard deviation. So, the obtained class prototypes vj

(j ¼ 1 to c) are also represented through their mean and the standard deviation.

In the first experiment we deliberately set the mean value of the Gaussian membership function to a

constant value while the standard deviation term (3�) varies randomly within the interval [0 5], so the

x-axis is restricted by ½m� 3� mþ 3��, which corresponds here to the interval [0 10]. We generated six

Gaussian membership functions using this methodology. The aim is then to look at a partition provided by

both algorithms when we restrict the number of partitions to one. Figure 9.3 shows both the initial

membership functions and the centroid or the prototype vector vjðj ¼ 1Þ pertaining to the underlying

class, represented as a thick line. When the inclusion context is desired as part of our requirement, the

fuzzy inclusion clustering (FIC) algorithm supplies more highly intuitive and appropriate results than the

standard fuzzy C-means (FCM) algorithm in the sense that the inclusion relation between the prototype

and each of the initial inputs (Gaussian membership functions) is better highlighted in the case of FIC.

Indeed, broadly speaking, the FCM in such cases tends toward the averaging operation. Note that the

value of the weight factor ‘‘w’’ used in this experiment is equal to its lowest upper bound as suggested by

Equation (9.21). In other words, the underlying objective function would be more balanced by the

inclusion index rather than the distance index. Note that in Figure 9.3(b), the prototype, or equivalently
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the including distribution, does not coincide completely with the distribution with the highest spread. This

is due essentially to the effect of the distance part in the objective function (9.13).

Notice that when using only one single-class classification problem the information provided by the

matrix U is not relevant as it takes a value one for one datum while it vanishes elsewhere, indicating there

is only one single input that belongs to the class, which is obviously not true. This is mainly due to the

constraint (9.2) in the optimization problem. This observation is still valid in the case of FIC as the

constraint (9.2) is also accounted for in the optimization problem pertaining to it.

In Figure 9.4, we randomly generated six distributions by letting the standard deviation act as a random

variable of some uniform distribution, while the mean values are again kept fixed and constant for each

class. The results in terms of centroid characteristic or the two prototype vector vjðj ¼ 1; 2Þ are exhibited.

Figure 9.3 Example of (b) fuzzy inclusion clustering (FIC) compared with (a) fuzzy C-means algorithm in the case of

one-class clustering. Inputs are randomly generated Gaussian with fixed mean whilevariance takes the random value in [0 5].
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Figure 9.4 Example of fuzzy inclusion clustering (FIC) compared with fuzzy C-means algorithm in the case of

two-class clustering.
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Again it is clear that the FIC offers better results in terms of agreement with the inclusion concept. On the

other hand, notice that from the partition viewpoint both algorithms provide equal results. Indeed, when

looking at the matrix U, all elements of the same class (distributions having the same mean value) are always

assigned the highest value of membership grade. However, when the characteristic of class prototype

matters, the tendency of FCM to average the elements of the same class is further highlighted in this example.

In Figure 9.5, a three-class classification problem is considered. In this example, the initial data-set is

obtained by considering randomly generated spreads through uniform probability function within the

range of [0 5]. We considered 10 distributions with fixed mean value for each class; that is, there are 30

distributions in total. Furthermore, five noisy data whose means are randomly generated within the range

of the x-axis ([0 20]) have been added to the above data-set.

Notice that the resulting membership functions do not necessarily coincide with the greatest member-

ship function in terms of variance because the inclusion concept is taken into account only in a global

sense. These results are roughly in agreement with the intuition ground.

Figure 9.6 illustrates the result shown in the example pointed out in Figure 9.5 when using the mean–

variance scale representation instead. This highlights the tendency of the FCM algorithm to average the

inputs, including the variance values, while the FIC algorithm tends to capture the maximum value.

In order to compare the performances of both algorithms, we compute the inclusion index for each class

as well as the validity partition index given by the classification entropy index [2,5]. Namely, for each

class, we compute the quantities

Idj ¼
Xn

i¼1

Idðxi; vjÞ:uij ðj ¼ 1 to cÞ ð9:22Þ

and

HðU; cÞ ¼

Pn

k¼1

Pc

i¼1

uik logaðuikÞ

c� n
: ð9:23Þ

The smaller the value of HðU; cÞ, the better the performance of the classification, while higher values

of Idj indicate enhanced consideration of the inclusion aspect in the classification in the sense that
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Figure 9.5 Example of fuzzy inclusion clustering (FIC) compared with fuzzy C-means algorithm in the case of

three-class clustering.
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physical inclusion elements pertaining to a given class in the underlying class prototype are better

highlighted.

Table 9.1 summarizes the results of both algorithms (FCM and FIC), and illustrates that the FIC

algorithm always outperforms the FCM algorithm when the inclusion evaluation matters.

Notice that in the one-class clustering, the value of classification entropy is labeled NA for undefined.

This is due to FCM instability in cases where some elements of U, whose logarithmic value is undefined,

are zero valued. As can be seen from Table 9.1, when the performance is quantified in terms of the

inclusion index and the classification entropy, then the FIC algorithm always outperforms FCM.

Regarding the parameters employed in both algorithms concerning the maximum number of iterations

and the tolerance indicating the minimum level of improvement, one should notice that the same values of

these parameters were used in both algorithms: 100 iterations at most and a tolerance of 10�6, which is

very common in the literature. The influence of this choice is not very significant if the values assigned to

these two parameters were relatively close to the above values. However, low values of maximum number

of iterations would obviously lead to a divergence of the algorithm(s) unless the tolerance level is

increased, which in turn may leave the reliability of the result open to question. On the other hand, setting

the maximum number of iterations very high and/or the tolerance level very low would significantly

increase the computational complexity of the algorithms, which may make the algorithm(s) unfeasible
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Figure 9.6 Mean–variance representation of the results in the case of three-class clustering.

Table 9.1 Comparison of FCM and FIC algorithms.

One-class clustering Two-class clustering Three-class clustering

FCM FIC FCM FIC FCM FIC

Inclusion index Id 2.4 4.1 1.1 1.9 3.1 6.6

3.2 3.9 3.2 6.3

2.8 5.9

Classification entropy index HðU; cÞ NA 0 0.41 0.18 0.34 0.06
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under some circumstances. The weighting factor ‘‘w’’ involved in the fuzzy inclusion clustering algo-

rithm, which plays the role of a penalty term, is crucial. In cases where the value assigned to this parameter

is far away from that supplied by the inequality (9.21) then the superiority of the FIC algorithm can be

questioned. Consequently, a prudent attitude should be taken when deciding to change the value of this

weighting factor.

9.5.2 Application to Railtrack Safety Prediction

In a railway system, the problems of predicting system malfunctions or safety modes are of paramount

importance. Traditional ways of predicting railway safety based on reliability models are shown to be

very expensive in terms of computational complexity and data requirement, which make them inefficient

under certain circumstances. On the other hand, unsupervised classification of the inputs can provide a

sound indication of safety trends. For this purpose, in this application, the inputs consist of track

irregularities in terms of vertical displacement, horizontal displacement, and curve and variation of the

gauge, while the output consists of safety factor or a ‘cyclic top’, which is known to contribute

significantly to derailment risk. The latter takes its values within the unit interval where zero value

stands for very low risk and one for very high risk. Besides, as the number of inputs is concerned, a wavelet

transform was used to reduce the dimension as well as the size of the data-set. A neural network

architecture was used to learn the outputs using historical records of data-set [25]. The block diagram

shown in Figure 9.7 illustrates the overall methodology.

In order to provide a labeling evaluation of the risk in terms of ‘‘low risk,’’ ‘‘medium risk,’’ and ‘‘high

risk,’’ a classification of the outcomes supplied by the neural network module is necessary. In each risk

scenario the operator takes appropriate action(s). For this purpose, our inclusion fuzzy clustering

algorithm was used. From the outcomes of the neural network architecture, we first generate a histogram

with 10 bins. This finite number of bins provides a first partitioning of the outcomes, whose ranges lie

within the unit interval, which will be translated into the three-class risk partitioning using the FIC

algorithm. For the latter, the number of outputs falling in each bin provides an indication of the spread of

the distribution centered around the location of the bin on the x-axis. Figure 9.8 illustrates an instance of

results. In this example, 100 outputs are considered, whose distribution in terms of the associated

histogram is plotted in Figure 9.8(a). The classification problem boils down to partitioning the 10 classes

issued from the histogram into the appropriate ‘‘low risk,’’ ‘‘medium risk,’’ and ‘‘high risk’’ classes using

the inclusion fuzzy clustering. Figure 9.8(b) illustrates the class prototypes as well as the associated inputs

represented in terms of Gaussian membership functions whose modal values correspond to the location of

bins, while the spreads are proportional to the height of the associated bin. It should be pointed out that the

underlying methodology allows us to achieve a prudent attitude in terms of risk allocation, which is in

agreement with common-sense reasoning in safety-based installations. Indeed, from this perspective, the

use of the inclusion-based fuzzy clustering provides an augmented possibility of accounting for less fair

events due to obvious observation that widespread prototype distribution contains a larger number of

elements.

The above methodology has shown to be very effective both in terms of computational perspective due

to the use of the neural network based approach, and also its usability from the operator’s perspective as it

Inputs
Wavelet

transform
- data 

reduction-

Neural
network

Risk
classification

Figure 9.7 Block diagram for risk assessment.
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provides immediate qualitative assessment of the risk at a given instance, which triggers appropriate

actions by the operator. For instance, in the case where low risk is obtained, there is no specific action to be

taken by the operator, so the underlying scheduled tasks will move ahead. On the other hand, if ‘‘medium

risk’’ occurs, the operator takes the following actions. First, the section of the track where the medium

safety indicator occurred will be sent to all train operators with a recommendation to speed down the

trains’’ speeds. Second, a reinvestigation of the results will be carried out to reinforce the decision. Third,

a decision to send a team of employees to investigate and possibly accomplish maintenance operation on

the track will be issued. Finally in the case of a high-risk situation, the main action to be taken is to stop the

circulation of the trains nearby the region of track where high-risk evaluation was obtained, and issue

immediate notice to investigate the track and perform related maintenance tasks.

9.6 CONCLUSIONS

In this chapter, we have investigated a fuzzy clustering algorithm based on the inclusion concept that

allows the determination of the class prototype that best covers all the patterns of that class. An inclusion

index has been proposed, which captures the inclusion of fuzzy set data, mainly Gaussian membership

functions. The suggested inclusion index has been incorporated into a fuzzy clustering optimization

problem, where the relationship between fuzzy data and class prototype is described in terms of inclusion.

This optimization problem is based on the idea of looking for a distance structure hidden in the inclusion

concept. More specifically, a matrix A, supporting the distance structure, is determined for each class,

such that the total distance from each class prototype to all patterns coincides with the amount of the

degrees of inclusion of all patterns in that prototype. The algorithm was illustrated by some numerical

examples and comparison with standard fuzzy C-means has been presented. The algorithm provides an

appealing framework when the reduction of redundancy of fuzzy sets or simplification of rule base is

desired. Finally, an industrial application in railways involving the prediction of safety factors has also

been examined, where the inclusion fuzzy clustering algorithm was used to partition the outcomes issued

from neural network architecture into classes of ‘‘low risk,’’ ‘‘medium risk,’’ and ‘‘high risk.’’
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APPENDIX 9A.1

By Starting from

minimize J ¼ �
Xc

j¼1

Xn

i¼1

Id3ðGi;GvjÞ:uaij þ w
Xc

j¼1

Xn

i¼1

ðxi � vjÞT Aðxi � vjÞuaij;

Subject to

Xc

j¼1

uij ¼ 1

we have arrived at to the following augmented Lagrangian

JðU;V ; bÞ ¼ �
Xc

j¼1

Xn

i¼1

Id3ðGi;GvjÞ:uaij þ w
Xc

j¼1

Xn

i¼1

ðxi � vjÞT Aðxi � vjÞuaij þ
Xn

i¼1

bi

�Xc

j¼1

uij � 1

�

ð9A:1Þ
Substituting the Id3 expression in (A10.1) leads to

JðU;V ;bÞ¼�1

4

Xc

j¼1

Xn

i¼1

ðxT
i B2xiÞ�1

Si;jHðSi;jÞ:ua
ijþw

Xc

j¼1

Xn

i¼1

ðxi�vjÞT Aðxi�vjÞuaijþ
Xn

i¼1

bi

�Xc

j¼1

uij�1

�

ð9A:2Þ

with

Si;j ¼ ðxi þ vjÞT B2ðxi þ vjÞ � ðxi � vjÞT B1ðxi � vjÞ: ð9A:3Þ

The necessary conditions for optimality are found by setting the derivatives of J with respect to its

parameters to zero. Therefore, provided Si;j 6¼ 0, which ensures the derivability of the step function HðSijÞ

@J

@uij

¼ � a
4
ðxT

i B2xiÞ�1
Si;jHðSi;jÞua�1

ij þ waðxi � vjÞT Aðxi � vjÞua�1
ij þ bi ¼ 0 ð9A:4Þ

@J

@bi

¼
Xc

j¼1

ui;j � 1

 !
¼ 0 ð9A:5Þ

@J

@vj

¼ � 1

2

Xn

i¼1

xT
i B2xiÞ�1½B2ðxi þ vjÞ þ B1ðxi � vjÞ�HðSi;jÞuaij � 2w

Xn

i¼1

Aðxi � vjÞuaij ¼ 0: ð9A:6Þ

Equation (9A.6) was obtained by noticing that the derivative of step function HðxÞ with respect to

variable x is a Dirac function �ðxÞ, which is zero valued for all non-zero values of x. Consequently using

the standard function derivative rules the result (9A.6) becomes is straightforward.

Equation (9A.4) entails

ui;j ¼
bi

a
4
ðxT

i B2xiÞ�1
Si;jHðSi;jÞ � waðxi � vjÞT Aðxi � vjÞ

" #1=a�1

: ð9A:7Þ
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Now using Equation (9A.5), (9A.7) is equivalent to

ui;j ¼
1

Xc

k¼1

� 1
4
ðxT

i B2xiÞ�1
Si;kHðSi;kÞ þ wðxi � vkÞT Aðxi � vkÞ

� 1
4
ðxT

i B2xiÞ�1
Si;jHðSi;jÞ þ wðxi � vjÞT Aðxi � vjÞ

" #1=a�1
: ð9A:8Þ

In order to determine the prototype vector vj, Equation (9A.6) can be rewritten as

Xn

i¼1

1

2
ðxT

i B2xiÞ�1ðB1�B2ÞHðSi;jÞuaijþ2wA:ua
ij

" #
vj¼

Xn

i¼1

�
1

2
ðxT

i B2xiÞ�1ðB2þB1Þxi:HðSi;jÞuaijþ2wA:xiu
a
ij

�
:

So

E:vj ¼ F ð9A:9Þ

where

E ¼
Xn

i¼1

1

2
ðxT

i B2xiÞ�1ðB1 � B2ÞHðSi;jÞua
ijþ2wA:uaij

F ¼
Xn

i¼1

�
1

2
ðxT

i B2xiÞ�1ðB2 þ B1Þxi:HðSi;jÞuaijþ2wA:xi:u
a
ij

�
:
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10.1 INTRODUCTION

Medical diagnosis is a field where fuzzy set theory can be applied with success, due to the high

prominence of sources of uncertainty that should be taken into account when the diagnosis of a disease

has to be formulated (Hughes, 1997; Mordeson and Malik, 2000). Furthermore, a proper application of

fuzzy set theory can bridge the gap between the numerical world, in which symptoms are often observed

and measured, and the symbolic world, in which knowledge should be expressed so as to be easy read and

understood by human users (Zadeh, 1996).

The medical diagnosis problem is inherently generally a classification problem, where for each vector

of symptom measurements one or a set of possible diagnoses are associated, eventually with different

degrees of evidence (typicality). Such a diagnostic problem can be conveniently solved tackled by means

of fuzzy set theory, leading to the so-called Fuzzy Diagnosis systems (Kuncheva and Steimann, 1999). In

this case, the classifier is based on fuzzy rules, which can provide useful knowledge to physicians for the

diagnosis of diseases when a set of symptoms is observed. Therefore, an important issue is the definition

of such fuzzy rules, which can be set by domain experts or automatically mined from available data.

Many different techniques have been proposed for deriving fuzzy rules from data. In particular fuzzy

clustering algorithms are powerful tools since they are able to discover automatically multi-dimensional

relationships from data in the form of fuzzy relations. Such fuzzy relations are typically used to define

fuzzy classification rules. Unfortunately, most fuzzy clustering techniques are designed to acquire

accurate knowledge from data, paying little or no attention to the interpretability (i.e., readability by

human users) of the extracted knowledge. Indeed, interpretability is a fundamental factor for the

acceptability and the usability of a medical diagnosis system (Nauck and Kruse, 1999).

To emphasize the importance of interpretability in fuzzy medical diagnosis, in this chapter we des-

cribe a framework, which enables the extraction of transparent diagnostic rules through fuzzy

clustering. The methodology underlying the framework relies on two clustering steps. In the first

step, a clustering algorithm is applied to the multi-dimensional data, in order to discover the hidden

relationships among data. The second clustering step operates at the level of each input dimension
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to enable the definition of interpretable fuzzy sets to be used in the definition of diagnostic fuzzy rules.

Differently from standard clustering schemes, this approach is able to extract fuzzy rules that satisfy

interpretability constraints, so that a linguistic interpretation of diagnostic rules is immediate. Moreover,

the framework is quite general and does not depend on specific clustering algorithms, which could be

chosen according to different needs.

The chapter is organized as follows. In Section 10.2 we briefly overview the flourishing research area of

fuzzy medical diagnosis. Section 10.3 motivates the need for interpretability in fuzzy rule-based systems

when used in specific applicative areas such as medical diagnosis. In Section 10.4 we describe a fuzzy

clustering framework for deriving interpretable fuzzy rules for medical diagnosis. In Section 10.5 the

framework is applied for classifying different types of aphasia disease. Concluding remarks are given in

Section 10.6.

10.2 FUZZY MEDICAL DIAGNOSIS

The diagnosis as a medical activity is aimed at stating if a patient suffers from a specific disease and, if the

answer is positive, the specialist will provide a specific treatment. Based on a collection of observed

symptoms, i.e., any information about the patient’s state of health, a physician has to find a list of

diagnostic possibilities for the patient.

The medical diagnosis process is inherently characterized by vagueness and uncertainty – both

symptoms information and the resulting diagnoses are pervaded by imprecision. Therefore the so-called

medical knowledge1, expressing the relationships that exist between symptoms and diagnoses, is typically

made of imprecise formulations (Kovalerchuk, Vityaev, and Ruiz, 2000). This imprecision is not a

consequence of human inability, but it is an intrinsic part of expert knowledge acquired through protracted

experience. As a consequence, any formalism disallowing uncertainty is not suitable to capture medical

knowledge.

Pioneering research on computer aided medical diagnosis (Lusted, 1965) demonstrated the funda-

mental inadequacy of conventional mathematical methods for coping with the analysis of biological

systems, and led ‘‘to accept as unavoidable a substantial degree of fuzziness in the description of the

behavior of biological systems as well as in their characterization’’ (Zadeh, 1969). Of course, diseases can

be considered fuzzy in that it is possible to have a disease to some degree: an expert attempts to classify a

patient into some disease category using limited vague knowledge consisting primarily of elicited

linguistic information2.

Fuzzy set theory, introduced as a formal framework that allows us to capture the meaning of vague

concepts, represents a natural way to fulfill two main requirements of medical diagnosis: on one side,

preserving as much as possible the natural uncertainty embedded in medical knowledge; on the other side,

providing a reliable diagnostic tool to the physician. In addition, according to the ‘‘Computing with

Words’’ paradigm advocated by Zadeh (Zadeh, 1996), fuzzy set theory can bridge the gap between the

numerical world, in which often symptoms are observed and measured, and the symbolic world, in which

knowledge should be expressed so as to be easy to read and understand by human users.

During three decades of research done in computer-aided medicine, fuzzy set theory, used successfully

with complex industrial control problems, has been widely applied on a variety of medical fields, leading

to a proliferation of fuzzy medical systems (Phuong and Kreinovich, 2001; Szczepaniak, Lisboa, and

Kacprzyk, 2000; Steimann, 1997). In particular a great deal of work has been done in anesthesia

monitoring (Asbury and Tzabar, 1995; Linkens, 1996; Mason, Linkeno, and Edwards, 1997) and

cardiology (Grauel, Ludwig and Klene, 1998; Sigura, Sigura, Kazui, and Harada, 1998; Kundu, Nasipuri,

and Basu, 1998).

1The term medical knowledge was introduced for the first time in (Perez-Ojeda, 1976).
2Actually, this fuzziness arises in many classification domains. The medical domain is a typical extreme case,
whereby most or even all information available is of a linguistic nature.
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Diagnosis of diseases, however, remains the most prominent medical application domain in which

fuzzy set theory has been effective, since it was found to be appropriate to model uncertainties found in

medical diagnostic information (Adlassnig, 1986). Therefore a new research area was raised in the

medical domain, known as Fuzzy Medical Diagnosis (Steimann and Adlassing, 2000; Kuncheva and

Steimann, 1999). Good surveys of fuzzy approaches to medical diagnosis can be found in (Lisboa and

Kacprzyk, Szczepaniak, 2000). Among these, early work by Adlassnig (Adlassnig, 1998) has been

particularly influential in this domain, together with other fuzzy approaches to medical diagnosis (e.g.,

Belacel, Vincke, Schieff, and Bowassel, 2001; Kopecky, Hayde, Prusa, and Adlassnig, 2001; Kilic, Uncu,

and Turksen, 2004; Nakashima et al., 2005; Santos, 1993).

Fuzzy medical diagnosis concerns solving the problem of disease diagnosis (classification) through

a system that relies on a set of fuzzy rules that use the particular representation of medical knowledge

through fuzzy sets and hence can provide useful knowledge to physicians for the diagnosis of diseases

when a set of symptoms is observed. For example, a fuzzy diagnostic rule can be of the form ‘‘If clump

thickness is HIGH and � � � and mitoses is MED-LOW then cancer is BENIGN (99%) or MALIGN

(1%),’’ where linguistic terms appearing in the antecedent and consequent parts are represented by

fuzzy sets.

Fuzzy diagnostic rules can be manually defined by a human expert or automatically extracted from

data. A lot of techniques have been proposed to derive fuzzy rules from available data. Among these,

fuzzy clustering algorithms are commonly used (as in Abe, Thawonmas, and Kayama, 1999; Gomez-

Skarmeta, Delgado, and Vila, 1999; Pedrycz, 1998; Tsekourasa, Sarimveisb, Kavaklia, and Befasb, 2005;

Setnes, 2000), since they are able to discover multi-dimensional relationships from numerical observa-

tions, in the form of fuzzy relations that are subsequently employed as building blocks to define fuzzy

rules.

Among the vast number of fuzzy systems based on rules discovered through fuzzy clustering, only a

few of them (e.g., Nauck and Kruse, 1999; Delgado et al. 1999; John and Innocent, 2005; Castellano,

Fanelli, and Mencar, 2003a; Roubos and Setnes, 2001) retain the original essence of fuzzy set theory, that

lies in capturing complex relationships with transparent representation. Conversely, most of the proposed

approaches to discover fuzzy rules from data aim to achieve high accuracy, disregarding the linguistic

interpretability of fuzzy rules. Nevertheless, interpretability is highly desirable when fuzzy systems are

applied to medical diagnosis, since fuzzy rules should provide a clear and understandable description of

the medical knowledge to the physician.

The issue of interpretability, which is of fundamental importance in medical diagnosis, is addressed in

depth in the following section.

10.3 INTERPRETABILITY IN FUZZY MEDICAL DIAGNOSIS

Intelligent systems, often used as decision support tools for aiding physicians in the diagnostic process,

should be able to explain the relationships between the given set of inputs (i.e., symptoms, measurements,

etc.) and the diagnosis provided in output. Put in other words, the knowledge base underlying the decision

support system should be interpretable, i.e., accessible to the final user. In some applicative fields, such as

the control field, interpretability has a lower priority w.r.t. accuracy, unless the produced knowledge base

has to be used for explaining the behavior of a controlled plant. In many other applications involving

decision support, interpretability of the knowledge base underlying the system is of prominent impor-

tance, as the user must be ‘‘convinced’’ on a decision suggested by the system. An interpretable

knowledge base can be easily verified and related to the user domain knowledge so as to assess its

reliability. As a consequence, debugging of the diagnostic system is facilitated and both the knowledge

base and the related learning algorithm can be easily improved. In other words, when the decisional

system relies on an interpretable knowledge base, it can be easily validated for its maintenance and for its

evolution in view of changes in the external world (van de Merckt and Decaestecker, 1995).

Interpretability of intelligent systems represents an open-ended study in artificial intelligence known as

the ‘‘Comprehensibility Problem’’ (Giboin, 1995). In this context, Michalski formulated the so-called
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‘‘Comprehensibility Postulate’’ that helps to give the right direction in the study of interpretability in

intelligent systems (Michalski, 1983):

The results of computer induction (i.e., empirical learning) should be symbolic descriptions of

given entities, semantically and structurally similar to those a human expert might produce

observing the same entities. Components of these descriptions should be comprehensible as

single ‘‘chunks’’ of information, directly interpretable in natural language, and should relate

quantitative and qualitative concepts in an integrated fashion.

Some considerations can be drawn from this postulate. First of all, the system supporting the user in the

decision process should use symbols to describe the inference process. Black box models such as neural

networks are very useful in many application areas but might not be fully justfiable in contexts like

medical diagnosis, because of the inaccessibility of the acquired knowledge. Secondly, symbols used by

the decisional system should be structurally and semantically similar to those produced by a human

expert. As far as the structure of symbols is concerned, a simple yet powerful way to describe relationships

between entities and, hence, knowledge, is represented by rules (Herrmann, 1997). Hence, rule-based

systems are particularly suited to represent interpretable knowledge. Besides the structural facet, the

semantics of symbols is of critical importance to achieve interpretability. Symbols represent ‘‘chunks’’ of

information and should be directly mapped into natural language terms, often referring to vaguely defined

concepts. Natural language terms are actually used in medical diagnosis to describe the medical knowl-

edge from which a diagnosis is formulated. Fuzzy logic offers the possibility of formally representing

terms with vague semantics, thus it plays an outstanding role in describing interpretable knowledge.

Actually, the association of linguistic terms to fuzzy relations is a very delicate task. Indeed, natural

language terms implicitly bear a semantics that is shared among all speakers of that language. Let us call

this implicit semantics ‘‘metaphor.’’ As an example, the metaphor of the linguistic term ‘‘TALL’’

(referred to the height of a human body) is commonly shared by all English-speaking people. The

communication of such term from person A to person B immediately highlights in B’s mind a (fuzzy) set

of body heights that highly matches the (fuzzy) set of body heights in A’s mind. To achieve interpret-

ability, fuzzy systems should adopt fuzzy sets with a semantics that is also shared by their users. This

necessary condition does not heavily restrict the flexibility of such models: their learning ability should be

able to adjust the semantics of fuzzy sets to adapt better to data (i.e., to improve their accuracy). This is

common in human beings: the semantics of the term ‘‘TALL’’ in person A is not required to be perfectly

the same of that in B, but only highly matching, since both A and B might have matured the concept of

tallness on the basis of a different experience (Mencar, Castellano, and Fanelli, 2005).

Based on these considerations, we can state that fuzzy logic systems have a high potential for

satisfying the Comprehensibility Postulate, i.e., for being interpretable. However, fuzzy systems

acquired from data without necessary constraints could provide fuzzy yet inaccessible knowledge.

Interpretability of fuzzy systems is a flourishing research direction (see Casillas, Cordon, Herera, and

Magdalena, (2003) for related work), which ‘‘re-discovers’’ Zadeh’s original intention of modeling

linguistic terms, recently evolved in the definition of the so-called ‘‘Precisiated Natural Language,’’ and

the ‘‘Computing With Words’’ machinery for natural language-based inference (Zadeh, 2004). Inter-

pretability issues typically arise when fuzzy rules are automatically acquired from data. In such cases, a

common approach for ensuring interpretability is to impose a number of constraints to drive the learning

process so that the acquired fuzzy sets can be easily associated to linguistic terms. Several interpret-

ability constraints have been described in literature, which apply at different levels of the knowledge

structure (Mencar, 2005):

� constraints on individual fuzzy sets;

� constraints on families of fuzzy sets belonging to the same universe of discourse;

� constraints on fuzzy relations, i.e., combinations (often the Cartesian product) of single fuzzy sets;

� constraints on individual fuzzy rules;

� constraints on the entire knowledge base.
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Some interpretability constraints are application-oriented, while others are more of general-purpose.

Some of them are even in conflict, thus witnessing the blurriness of the interpretability notion as there is no

general agreeement on the choice of interpretability constraints. In order to achieve a high level of inter-

pretability in fuzzy diagnostic rules, some general-purpose interpretability constraints should be applied on

individual fuzzy sets, such as those described in Valente de Oliveira (1999a) and summarized below.

Normality. Each fuzzy set has at least one element with full membership. Normality is required when

fuzzy sets represent possibility distributions (Dubois and Prade, 1997), and sub-normal fuzzy sets have

nonzero degree of inclusion to the empty set, i.e., they are partially inconsistent (Pedrycz and Gomide,

1998). Normal fuzzy sets are related to interpretability since they guarantee the existence of at least one

element of the universe which fully satisfy the semantics of the associated linguist term.

Convexity. Each fuzzy set is characterized by a prototype and the membership value of an element

monotonically decreases as its distance to the prototype increases. Convex fuzzy sets are desirable in

interpretable fuzzy models because they represent elementary concepts, whose degree of evidence is

directly related to the similarity of elements to some prototype. Convex fuzzy sets are also useful in

representing fuzzy numbers and fuzzy intervals, thus enabling a homogeneous representation of both

qualitative and quantitative concepts.

Coverage. Fuzzy sets should cover the entire universe of discourse so that each element is well

represented by some linguistic term. Usually, a strict coverage is preferable, which requires that for

each element of the domain there exists at least one fuzzy set whose membership degree is greater than

a predefined threshold;

Distinguishability. Two fuzzy sets of the same universe of discourse should not overlap too much, so that

they can be associated to linguistic terms with well-separated metaphors. Such a property can be

formalized by requiring the possibility function to be smaller than a predefined threshold for each

couple of fuzzy sets (Mencar, Castellano, Bargiela, and Fanelli, 2004).

Extreme fuzzy sets. The extreme values of a universe of discourse should be prototypes for some fuzzy

sets, which are called ‘‘leftmost’’ and ‘‘rightmost’’ fuzzy sets respectively. This constraint ensures that

extreme points of the universe of discourse are prototypes of some limit concepts, such as ‘‘very low/

very high’’ and ‘‘initial/final.’’ Limit concepts are not required when the only quantitative concepts are

used, while they are very common in human qualitative reasoning where extreme values are indicated

by some linguistic terms.

Justifiable number of fuzzy sets. The number of fuzzy sets on each dimension, as well as the number of

fuzzy rules, should be limited to 7� 2 in order to preserve interpretability. This limit derives from

the psychological limit concerning the number of entities (independent of their informational

complexity) that can be simultaneously stored in human short-term memory (Miller, 1956).

Interpretability constraints force the process of extraction of fuzzy rule to (totally or partially) satisfy

a set of properties that are necessary in order to label fuzzy sets with linguistic terms. A preliminary

survey of methods to keep interpretability in fuzzy rule extraction is given in Casillas, Cordon, Herrera,

and Magdalena, (2003) and Guillame (2001). Constrained extraction of fuzzy rules can be achieved

through a learning process, which may belong to one of the following categories:

(1) Regularized learning algorithms. These learning algorithms are aimed to extract fuzzy rules so as to

optimize an objective function that promotes the derivation of an accurate knowledge base but

penalizes those solutions that violate interpretability constraints, as in Valente de Oliveira (1999a).

The objective function is properly encoded so as to be employed in classical constrained optimization

techniques (e.g., Lagrangian multipliers method).
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(2) Genetic algorithms. Fuzzy rules are properly encoded into a population of individuals that evolve

according to an evolutionary cycle, which involves a selection process that fosters the survival of

accurate and interpretable rules, as in Jin, Von Seelen and Sendhoff (1999). Genetic algorithms are

especially useful when the interpretability constraints cannot be formalized as simple mathematical

functions that can be optimized with the use of classical optimization techniques (e.g., gradient

descent, least square methods, etc.). Moreover, multi-objective genetic algorithms are capable of

dealing with several objective functions simultaneously (e.g., one objective function that evaluates

accuracy and another to assess interpretability). The drawback of genetic algorithms is their inherent

inefficiency that restricts their applicability. However, the adoption of genetic algorithms may rise

efficiency issues in some application contexts.

(3) Ad hoc learning algorithms. Interpretable fuzzy rules are extracted by means of a learning algorithm

that encodes in its schema the interpretability constraints, as in Chow, Altung, and Trussel (1999).

Such types of algorithms can exhibit good performance at the expense of a more complex design.

In the next section, an algorithmic framework belonging to the last category is presented in detail.

10.4 A FRAMEWORK FOR MINING INTERPRETABLE DIAGNOSTIC
RULES

The problem of medical diagnosis can be formalized as a classification problem, where a set of M

diagnoses are defined for a certain medical problem and formalized as class labels:

D ¼ fd1; d2; . . . ; dMg:
In order to assign a diagnosis to a patient, a set of symptoms (or any other useful information, such as

clinical measurements, test results, etc.) are measured and formalized as an n-dimensional real vector

x ¼ ðx1; x2; . . . ; xnÞ. To perform a diagnosis, a classifier is required to perform a mapping:

D : X � Rn ! D: ð10:1Þ
The domain X defines the range of possible values for each symptom. Without loss of generality, the

domain can be defined as a hyper-interval:

X ¼ ½m1;M1� � ½m2;M2� � � � � � ½mn;Mn�:
In fuzzy diagnosis, the classifier relies on fuzzy set theory. Fuzzy sets can be used at different stages of

the classifier design, e.g., as fuzzy inputs, fuzzy classes, or fuzzy rules. The latter are of prominent

importance in medical diagnosis since they can represent vague knowledge in a nicely readable form.

In the presented framework, we focus on mining diagnostic fuzzy rules of the following schema:

IF x is Gr THEN ~D ðxÞ is d1ðvr1Þ; . . . ; dMðvrMÞ ð10:2Þ
where Gr is a n-dimensional fuzzy relation. The degree of membership of the measurement vector x in Gr

defines the strength of the rth rule and can be interpreted as a degree of similarity of the measurement

vector x with respect to the prototype vector3 defined by Gr. Such fuzzy rules are used to perform a fuzzy

classification task by realizing a mapping of the form:

~D : x 2 X! ðv1; v2; . . . ; vMÞ 2 ½0; 1�M

where each vj denotes the degree to which a diagnosis dj is assigned to a patient whose symptoms

measurements are represented by x. Such degree of membership can have different semantics, depending

on the way it is calculated (Dubois and Prade, 1997). In our work, the membership value vj is interpreted

as a degree of typicality of case x with respect to diagnosis dj.

3A prototype of a fuzzy set is an element with maximum membership. For normal fuzzy sets (like those used
throughout this chapter) the membership degree of a prototype is equal to 1.0
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Each rule of the schema (10.2) defines a local model for the function ~D . In particular, the rth rule entails

the fuzzy classifier to have:

~DðxÞ ¼ ðvr1; vr2; . . . ; vrMÞ

when x is a prototype of Gr . When a set of R rules is given, the membership grades of each diagnosis are

defined by the following inference formula:

vj ¼

PR

r¼1

GrðxÞvrj

PR

r¼1

GrðxÞ

where GrðxÞ denotes the degree of membership of vector x to the fuzzy relation Gr . If required, the fuzzy

decision ~D can be made crisp as in (10.1) by defining:

DðxÞ ¼ dj , vj ¼ max ðv1 . . . vMÞ

In the case of tiers, i.e., points assigned to different classes with the same membership degree, just one is

chosen according to a selected criterion (e.g., randomly).

Fuzzy relations Gr are defined as the Cartesian product of one-dimensional fuzzy sets, that is:

Gr ¼ Gr1 � Gr2 � � � � � Grn

where:

Gri : ½mi;Mi� ! ½0; 1�
is a one-dimensional fuzzy set that must models a qualitative property on its respective domain.

Here we present an algorithmic framework, called DCf (double clustering framework) (Castellano,

Fanelli, and Mencar, 2005) for deriving fuzzy relations through clustering, with the additional feature of

guaranteeing the satisfaction of the interpretability constraints described in the previous section. With

such constraints verified, fuzzy relations can be easily attached with linguistic terms, so that the derived

diagnostic rules express meaningful relationships between symptoms and diagnoses in natural language.

To achieve both accuracy and interpretability, DCf is designed to combine the advantages of both multi-

dimensional and one-dimensional clustering. Indeed, multi-dimensional clustering captures the multi-

dimensional relationships existing among data, but the fuzzification of the resulting clusters may result in

fuzzy sets that cannot be associated with qualitative linguistic labels. Conversely, one-dimensional

clustering provides interpretable fuzzy sets but may loose information about the multi-dimensional

relations underlying the data. The integration of one-dimensional and multi-dimensional clustering

enables derivation of fuzzy relations that lead to interpretable fuzzy rules.

Specifically, DCf performs three main steps:

(1) Data clustering. Clustering is performed in the multi-dimensional space of numerical data

to embrace similar data into clusters, providing a number of multi-dimensional prototypes

(Figure 10.1);

(2) Prototype clustering. Prototypes obtained from the first clustering step are further clustered along

each dimension of the input space, so as to obtain a number of one-dimensional prototypes for each

feature (Figure 10.2);

(3) Cluster fuzzification. Multi-dimensional and one-dimensional prototypes provide useful information

to derive fuzzy relations that can be conveniently represented by fuzzy sets (Figure 10.3 and 10.4).

Moreover, such fuzzy sets are built in accordance with the interpretability constraints that allow the

derivation of transparent diagnostic rules.

A FRAMEWORK FOR MINING INTERPRETABLE DIAGNOSTIC RULES 217



Figure 10.1 The first step of DCf. The available data are clustered providing multi-dimensional prototypes.

Figure 10.2 The second step of DCf. The multi-dimensional prototypes are projected onto each dimension and then

clustered.

Figure 10.3 The third step of DCf. One-dimensional clusters provide information for defining fuzzy sets for each

feature, which meet the interpretability constraints. One-dimensional fuzzy sets are combined, but only representative

combinations (marked with stars) are selected.
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Formally, the Double Clustering framework can be described as follows. Let

T ¼ fxl 2 X : l ¼ 1; 2; . . . ; Ng
be a data-set of available examples. The first step of DCf performs a multi-dimensional clustering on the

data-set T , providing a collection of multi-dimensional prototypes:

c1; c2; . . . ; cp 2 X

being ch . . . ¼ ðcð1Þh ; c
ð2Þ
h ; . . . ; c

ðnÞ
h Þ; h ¼ 1; 2; . . . ; p.

The multi-dimensional prototypes are then projected onto each dimension, resulting in n sets:

CðiÞ ¼ c
ðiÞ
h 2 ½mi; Mi� : h ¼ 1; 2; . . . ; p

n o

for i ¼ 1; 2; . . . ; n.

In the second step of DCf, the points of each CðiÞ are subject to one-dimensional clustering, yielding to

one-dimensional prototypes:

PðiÞ ¼ p
ðiÞ
1 ; p

ðiÞ
2 ; . . . ; p

ðiÞ
Ki

n o

Ki being the number of clusters in the ith dimension. To choose the number of clusters for each dimension,

a trade off between accuracy and interpretability has to be considered. Since DCf is mainly designed to

provide interpretable rules, it is advisable to choose Ki so as to satisfy the justifiable number of fuzzy sets

interpretability constraint. Of course, if higher accuracy is needed, a higher value of Ki should be chosen.

The last step of DCf involves the derivation of fuzzy relations. This is achieved by first fuzzifying the

one-dimensional clusters defined by the prototypes in each PðiÞ and then by aggregating one-dimensional

fuzzy sets to form multi-dimensional fuzzy relations. Precisely, for each dimension i ¼ 1; 2; . . . ; n, the Ki

extracted prototypes are transformed into as many interpretable fuzzy sets. Different types of membership

functions can be used to characterize fuzzy sets. Here, Gaussian fuzzy sets are considered, with the

following membership functions:

A
ðiÞ
k ðxÞ ¼ exp �ðx� !

ðiÞ
k Þ

2

2ð�ðiÞk Þ
2

" #

for k ¼ 1; 2; . . . ; Ki.

The choice of Gaussian membership functions within DCf is motivated by their symmetry w.r.t. their

respective prototypes, which can lead to a more natural assignment of linguistic terms. Moreover, the

membership function of a Gaussian fuzzy set is strictly decreasing as the distance between any element

and the prototype increases. As a consequence, it is always possible to compare any two elements of the

Figure 10.4 The membership function of a multi-dimensional cluster (shaded area). The cluster covers an aggregate

of data and is represented by linguistically meaningful terms.
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Universe of Discourse in terms of the property represented by the fuzzy set. As an example, given a

Gaussian fuzzy set representing the property TALL, and any two subjects A and B, it is always possible to

verify whether A is taller than B or vice versa. On the other hand, if other types of membership functions

are used, which do not provide for strict monotonicity w.r.t. distance from the prototypes (e.g., triangular

fuzzy sets), subjects A and B may have the same degree of tallness even if their effective height is highly

different. For such reasons, Gaussian fuzzy sets may be more powerful for representing the semantics of

linguistic terms.

The definition of the centers !
ðiÞ
k and the widths �

ðiÞ
k should take into account the information provided

by the clustering stages and, at the same time, should meet the required interpretability constraints. To

satisfy both requirements, the following cut points are defined (note that there are Ki þ 1 cut points for

each dimension):

t
ðiÞ
k ¼

2mi � t
ðiÞ
1 for k ¼ 0

p
ðiÞ
k þ p

ðiÞ
kþ1

� �
=2 for 0 < k < Ki

2Mi � t
ðiÞ
Ki�1 for k ¼ Ki:

8
>><

>>:

Cut points are used to define centers and widths of the Gaussian membership functions according to the

following relations:

!
ðiÞ
k ¼

t
ðiÞ
k�1 þ t

ðiÞ
k

2

and

�
ðiÞ
k ¼

t
ðiÞ
k � t

ðiÞ
k�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln "
p

where " is the maximum allowed overlap between two adjacent fuzzy sets.

It is easy to show that for each dimension, these fuzzy sets meet all the mentioned interpretability

constraints. Multi-dimensional fuzzy relations can be then formed by combining one-dimensional fuzzy

sets, one for each feature. However, this would lead to an exponentially high number of fuzzy relations,

that is:

Yn

i¼1

Ki � 2n

which violates the compactness interpretability constraint. Furthermore, many of such fuzzy relations

would be useless as they would not represent available data. To avoid such a combinatorial explosion,

only fuzzy relations that better represent the multi-dimensional prototypes ch are considered. The

selection of such clusters is accomplished on each dimension by considering, for each h ¼ 1; 2; . . . ; p ,

the fuzzy set in the ith dimension with highest membership value on the ith projection of the hth prototype

(see also Figure 10.3). The index of such a fuzzy set is defined as:

k
ðiÞ
h ¼ arg max

k¼1; 2;...;Ki

A
ðiÞ
k ðc

ðiÞ
h Þ:

Once representative fuzzy sets are chosen, multi-dimensional fuzzy relations can be defined as usual.

Specifically, the semantics of each relation is defined by the Cartesian product of the selected fuzzy sets,

that is: Ghi ¼ A
ðiÞ

k
ðiÞ
h

while its linguistic notation is defined as:

Gh 	 vð1Þ is ‘A
ð1Þ

k
ð1Þ
h

AND . . . ANDvðnÞis ‘A
ðnÞ

k
ðnÞ
h

for h ¼ 1; 2; . . . ; p , where ‘A
ð1Þ

k
ð1Þ
h

is the linguistic term (usually an adjective such as ‘‘high,’’ ‘‘small,’’ etc.) of

the k
ð1Þ
h th fuzzy set defined for the jth feature. It is possible that two or more clusters coincide, hence the

total number R of derived fuzzy relations is upper bounded by the number of multi-dimensional

prototypes p.
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The last stage of DCf aims to define diagnostic rules from the discovered fuzzy relations. More

specifically, each distinct fuzzy relation constitutes the antecedent of a fuzzy rule whose consequent part

is defined as:

vrj ¼

PN

l¼1

GrðxlÞ � �ðdðxlÞ; djÞ

PN

k¼1

GrðxlÞ
;

r ¼ 1; 2; . . . ;R
j ¼ 1; 2; . . . ;M

where dðxlÞ is the diagnosis (class) associated to the lth example of the data set by an external supervisor,

and:

�ðdðxlÞ; djÞ ¼ 1 if dðxlÞ ¼ dj; otherwise 0:

Due to the method employed to calculate membership grades vrj, their semantics can be interpreted as a

degree of typicality of diagnosis dj when the measures of symptoms are in the neighborhood of the

prototype of Gr .

DCf can be customized by choosing appropriate clustering algorithms, either for the first or the second

step. To perform the first step of DCf, any clustering algorithm that provides a set of prototypes can be

used, such as the fuzzy C-means (Bezdek, 1981) and all its variants (e.g., the Gustafson–Kessel

algorithm, Gustafson and Kessel (1979), the gath-geva algorithm (Abonyi, Babuška, and Szeifert,

2002), the conditional fuzzy C-means (Pedrycz, 1996), etc.), and the possibilistic C-means (Krishna-

puram and Keller, 1993). The second step of DCf does not require a fuzzy clustering scheme, since

fuzzification in each dimension is performed only in the third step of DCf. Moreover, the number of points

to be clustered on each dimension in the second step is very low (i.e., it coincides with the number of

multi-dimensional clusters extracted in the first step), hence a simple crisp clustering algorithm can be

adopted to perform prototype clustering.

The choice of specific clustering algorithms defines a particular implementation of DCf. Here, two

possible implementations of DCf are briefly described:

Fuzzy double clustering. A first implementation of DCf integrates the fuzzy C-means algorithm for the

multi-dimensional clustering (first step) and a hierarchical clustering scheme for the prototype

clustering (second step). The hierarchical clustering is simple and quite efficient for one-dimensional

numerical data. This implementation of DCf, that we call FDC (Fuzzy double clustering) is particularly

suited to enhance existing fuzzy clustering algorithms in order to mine interpretable fuzzy rules from

data (Castellano, Fanelli and Mencar, 2002).

Crisp double clustering. The implementation of DCf based on fuzzy double clustering is very straight-

forward and turns out to be useful when an existing fuzzy clustering application is to be wrapped so as

to accommodate interpretability constraints. However, the use of a fuzzy clustering scheme requires

computation and storing of the partition matrix, which is actually unused in the second step. To reduce

such computational effort, it is more convenient to use a vector quantization technique in place of the

fuzzy clustering algorithm in the multi-dimensional data clustering stage of DCf. This leads to another

implementation of DCf, called CDC (crisp double clustering), in which a vector quantization algorithm

that follows the Linde–Buzo–Gray (LBG) formulation (Linde and Gray, 1980) is used to accomplish

the first clustering step and, like in FDC, a hierarchical clustering algorithm is used for the second step.

Details about the CDC can be found in (Castellano, Fanelli, and Mencar, 2003b).

10.5 AN ILLUSTRATIVE EXAMPLE

To show the effectiveness of the double clustering framework in mining diagnostic rules from data that are

both interpretable and accurate, a real-world diagnostic problem was considered. In particular, data from
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the Aachen Aphasia Test (AAT), publicly available4, were used to derive aphasia diagnostic rules. The

original AAT data-set consists of 265 cases with several attributes, including AAT scores, several nominal

attributes (including the diagnosis) and images of lesion profiles (full details can be found in Axer et al.

(2002a)).

The data-set was preprocessed by selecting only 146 cases corresponding to the four most common

aphasia diagnoses: Broca (motor or expressive aphasia), Wernicke (sensory or receptive aphasia),

Anomic (difficulties in retrieval of words), and Global (total aphasia). In addition, only a selection of

the AAT scores was taken into account, according to feature selection suggested Axer et al. (2000b). The

selected AAT scores are illustrated in Table 10.1.

To perform simulations, we run the CDC version of DCf by varying the number of multi-dimensional

prototypes and the number of fuzzy sets per dimension. Each simulation was repeated according to the

20-fold stratified cross-validation strategy. The average number of discovered rules is reported in

Table 10.2, while classification results are summarized in Tables 10.3 and 10.4 reporting, respectively,

the mean classification error on the test set and on the training set. It can be noted that the classification

error decreases both on the test set and training set as the number of multi-dimensional prototypes – and

consequently the number of rules – increases. On the other hand, when the number of fuzzy sets per input

increases (i.e., it is greater than four), we observe an increase of classification error. Such a trend can be

justified by the presence of noise that is captured by finely grained fuzzy partitioning. Summarizing,

a good trade off between accuracy and interpretability can be achieved by selecting three to four fuzzy sets

per input so as to avoid overfitting, and a number of prototypes from 10 to 20 so as to limit the number

4http://fuzzy.iau.dtu.dk/aphasia.nsf/htmlmedia/database.html.

Table 10.1 The AAT scores used in the simulation.

AAT score Description

P1 Articulation and prosody (melody of speech)

P5 Syntactic structure (structure of sentences, grammar)

N0 Repetition

C1 Written language – reading aloud

Table 10.2 Average number of discovered rules.

Fuzzy sets per input

N 2 3 4 5 6 7

2 2.0 — — — — —

4 3.8 4.0 4.0 — — —

6 5.4 6.0 6.0 6.0 6.0 —

8 6.8 8.0 8.0 8.0 8.0 8.0

10 5.7 9.7 10.0 10.0 10.0 10.0

12 6.2 10.4 12.0 12.0 12.0 12.0

14 6.7 11.9 13.9 14.0 14.0 14.0

16 7.5 12.8 15.8 16.0 16.0 16.0

18 7.3 14.5 17.3 18.0 18.0 18.0

20 7.1 15.3 18.8 19.8 19.8 19.9

22 7.4 15.3 20.0 21.4 21.7 21.8

24 7.7 15.5 21.6 23.4 23.7 24.0

N¼Number of multi-dimensional prototypes.
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of rules. The achieved classification results are quite stable, as shown by low values of standard deviations

on the training sets (reported in Table 10.6). Conversely, standard deviations on the test sets (see

Table 10.5) are higher but less significant since the mean cardinality of the test sets is very small (about

20 examples).

To appreciate the interpretability of the diagnostic rules discovered by DCf, in Figure 10.5 we report the

seven rules generated by CDC with 10 multi-dimensional prototypes and three fuzzy sets per input. The

membership functions of each fuzzy set are shown in Figure 10.6. It can be seen that all interpretability

constraints are met. In particular, the number of rules, as well as the number of fuzzy sets per input, are

sufficiently small, so that the resulting knowledge base is easy to read and understand. The high

interpretability of this rule base is balanced by a good classification accuracy of the resulting classifier

that provides a mean classification error of 19.2 % on the test set.

For comparison, we solved the same diagnostic problem by means of NEFCLASS5(Nauck and Kruse,

1997). NEFCLASS was applied on the same data-set (with 20-fold cross validation), with asymmetric

Table 10.3 Mean classification error on the test set.

Fuzzy sets per input

N 2 3 4 5 6 7

2 54.9% — — — — —

4 50.3% 33.5% 40.9% — — —

6 35.9% 24.1% 28.0% 25.1% 30.5% —

8 34.7% 26.7% 24.3% 30.7% 29.2% 35.5%

10 30.9% 18.3% 22.1% 21.1% 23.4% 25.0%

12 31.1% 20.4% 20.7% 24.9% 25.7% 20.8%

14 27.2% 16.6% 19.6% 20.1% 23.0% 18.4%

16 27.6% 16.9% 19.3% 17.9% 20.3% 25.7%

18 32.4% 17.0% 16.0% 19.6% 19.3% 19.1%

20 30.2% 16.4% 18.7% 23.7% 20.4% 22.1%

22 29.2% 21.3% 21.7% 23.1% 22.1% 25.0%

24 27.1% 21.8% 16.6% 16.4% 19.0% 17.8%

N¼Number of multi-dimensional prototypes.

Table 10.4 Mean classification error on the training set.

Fuzzy sets per input

N 2 3 4 5 6 7

2 52.5% — — — — —

4 44.9% 34.2% 37.5% — — —

6 33.3% 23.2% 25.2% 25.3% 30.7% —

8 31.7% 22.0% 22.3% 25.5% 28.1% 32.7%

10 28.5% 18.2% 18.7% 20.2% 22.3% 22.3%

12 30.7% 18.7% 19.2% 20.5% 21.8% 23.5%

14 29.0% 16.9% 16.5% 16.8% 17.2% 18.7%

16 29.1% 15.4% 16.1% 17.0% 17.4% 18.5%

18 30.3% 14.3% 12.1% 15.0% 15.6% 16.9%

20 28.9% 15.4% 13.8% 15.4% 16.7% 17.2%

22 28.9% 17.2% 14.0% 15.7% 15.7% 16.5%

24 27.6% 16.0% 13.7% 14.2% 14.6% 15.0%

N¼Number of multi-dimensional prototypes.

5We used the NEFCLASS-J package, available at http://fuzzy.cs.uni-magdeburg.de/nefclass/nefclass-j/.

AN ILLUSTRATIVE EXAMPLE 223



Table 10.5 Standard deviation of the classification error on the test set.

Fuzzy sets per input

N 2 3 4 5 6 7

2 10.8% — — — — —

4 18.7% 19.2% 14.9% — — —

6 19.7% 23.2% 16.1% 16.4% —

8 16.5% 25.4% 19.9% 22.7% 17.7% 13.2%

10 17.2% 18.8% 19.5% 15.3% 14.5% 17.4%

12 14.6% 18.8% 20.0% 19.0% 17.0% 12.9%

14 16.7% 18.2% 20.4% 19.4% 20.5% 17.0%

16 19.4% 16.0% 23.3% 19.7% 15.3% 23.1%

18 19.7% 16.6% 16.4% 17.0% 15.1% 12.0%

20 12.7% 14.6% 18.7% 18.7% 17.3% 18.4%

22 11.8% 17.2% 19.4% 18.8% 17.8% 20.6%

24 20.5% 19.9% 18.8% 22.8% 19.9% 13.5%

N¼Number of multi-dimensional prototypes.

Table 10.6 Standard deviation of the classification error on the training set.

Fuzzy sets per input

N 2 3 4 5 6 7

2 1.7% — — — — —

4 7.7% 3.6% 5.8% — — —

6 5.1% 3.2% 5.0% 5.0% 9.9% —

8 5.3% 2.6% 3.6% 3.6% 3.2% 5.2%

10 4.8% 2.8% 3.1% 2.6% 3.6% 4.3%

12 4.5% 1.5% 3.2% 3.0% 4.1% 4.1%

14 3.3% 3.2% 3.1% 2.6% 1.7% 2.3%

16 3.4% 2.0% 2.4% 2.7% 2.3% 2.8%

18 3.4% 3.2% 2.4% 2.5% 2.2% 2.4%

20 4.6% 2.6% 3.3% 2.4% 2.3% 1.7%

22 2.9% 2.3% 3.3% 2.4% 2.2% 2.7%

24 3.9% 2.2% 3.4% 1.7% 2.1% 1.5%

N¼Number of multi-dimensional prototypes.

1. If P1 is LOW AND P5 is LOW AND N0 is LOW AND C1 is LOW Then APHASIA is ANOMIC (0), BROCA

(0.019), GLOBAL (0.98), WERNICKE (0.003)

2. If P1 is MEDIUM AND P5 is LOW AND N0 is LOW AND C1 is LOW Then APHASIA is ANOMIC (0),

BROCA (0.1), GLOBAL (0.85), WERNICKE (0.053)

3. If P1 is MEDIUM AND P5 is MEDIUM AND N0 is MEDIUM AND C1 is HIGH Then APHASIA is ANOMIC

(0.001), BROCA (0.96), GLOBAL (0.008), WERNICKE (0.035)

4. If P1 is HIGH AND P5 is LOW AND N0 is LOW AND C1 is LOW Then APHASIA is ANOMIC (0), BROCA

(0.019), GLOBAL (0.91), WERNICKE (0.069).

5. If P1 is HIGH AND P5 is HIGH AND N0 is LOW AND C1 is MEDIUM Then APHASIA is ANOMIC (0.004),

BROCA (0.097), GLOBAL (0.053), WERNICKE (0.85).

6. If P1 is HIGH AND P5 is HIGH AND N0 is MEDIUM AND C1 is HIGH Then APHASIA is ANOMIC (0.13),

BROCA (0.14), GLOBAL (0.001), WERNICKE (0.72).

7. If P1 is HIGH AND P5 is HIGH AND N0 is HIGH AND C1 is HIGH Then ANOMIC (0.61), BROCA (0.053),

GLOBAL (0), WERNICKE (0.34).

Figure 10.5 A set of rules discovered by CDC.
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triangular membership functions constrained so as they hold the same order during training, and they

always overlap and intersect at membership value 0.5. The maximum number of training epochs was fixed

at 5000. Two rule selection strategies were used: ‘‘best rules’’ and ‘‘best per class.’’ No pruning strategy

was adopted, nor interactive management of the knowledge base. The results of NEFCLASS training are

reported in Table 10.7.

Experimental results show that CDC, with a proper choice of multi-dimensional prototypes and fuzzy

sets per dimensionis, leads to significantly higher accuracy than NEFCLASS. In addition, the number of

rules generated by CDC is considerably smaller than the number of rules generated by NEFCLASS,

which strongly requires an additional process for pruning the rule base to preserve legibility. Finally, it

should be observed that CDC uses Gaussian membership functions, which are completely specified by

Table 10.7 Simulation results obtained by NEFCLASS.

Fuzzy sets per input 2 3 4 5 6 7

Best rules

Err. 25.4% 20.0% 16.7% 23.7% 29.2% 28.7%

Rules 11.0 11.7 29.5 34.9 48.4 55.4

Best per class

Err. 31.5% 21.1% 17.7% 24.2% 30.7% 32.0%

Rules 7.0 11.7 29.3 34.5 46.1 55.5

Figure 10.6 The fuzzy sets derived for each feature.
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two parameters (centerþwidth), whilst NEFCLASS uses asymmetrical triangular membership func-

tions, which need three parameters to be specified (centerþ left widthþ right width).

10.6 CONCLUDING REMARKS

The success of the adoption of novel technologies and paradigms in critical application areas heavily

depends on their ability to provide human-centric systems that support users in accomplishing complex

tasks. Fuzzy logic (in the broad sense) has a great potential, because of its ability of representing and

processing that kind of knowledge that humans routinely use to decide and act in complex situations.

However, fuzzy logic, as any other mathematical tool, must be used with the necessary care to deliver

useful tools to support users’ decisions. This is especially important in situations, such as medical

diagnosis, where trusting exclusively on machines is ethically unacceptable. Research on interpretability

goes in the direction of giving to fuzzy tools the necessary conditions for being useful in such situations.

In this chapter we studied in detail the issue of interpretability in fuzzy medical diagnosis and

emphasize how the adoption of formal constraints in the process of mining diagnostic rules can greatly

increase the interpretability of a fuzzy diagnostic system. From this perspective, we have presented a

clustering-based framework for mining interpretable fuzzy rules from data, which can be effectively

employed in medical diagnosis. An illustrative example of disease diagnosis was presented to highlight

how the mining of interpretable diagnostic rules can lead to the prediction of diagnoses with a high degree

of typicality thus providing useful information for patient-tailored treatments.

The research on interpretability is still open-ended, and involves several disciplines other than

computer science, such as cognitive science, psychology and philosophy. On the computational level,

a promising research direction concerns improving existing systems (or devising new ones) to extract

useful knowledge with a higher degree of automation.
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11
Fuzzy Regression Clustering

Mika Sato-Ilic

Faculty of Systems and Information Engineering, University of Tsukuba, Japan

11.1 INTRODUCTION

Fuzzy regression clustering is a consortium of hybrid techniques combining regression analysis with

fuzzy clustering. Regression analysis is a well-known method of data analysis the analytic capability of

which is constantly challenged by problems of complexity and uncertainty of real data. Such data have

emerged with inevitable local features of data that are nonignorable features. Many researches relating to

regression analysis of these data have been greatly encouraged from the following two points: the first is

the local statistical methods in which the purpose is to obtain a better fitness of the regression. The

conventional statistical weighted regression analyses and related regression analyses using ideas of

kernel, penalty, and smoothing are typical examples (Draper and Smith, 1966; Hastie and Tibshirani

1990; McCullagh and Nelder, 1989; Diggle, Heagerty, Liang, and Zeger, 2002). The second is spatial

analysis whose target data is spatially distributed with local features. The main scope of this analysis is the

implementation of regression analysis assessing the significance of the local relationship of observations

in an attribute (or variable) space or a geographical space. This analysis is not designed for the pursuit of

the better fitness.

The fuzzy regression clustering described in this chapter is based on the second point and the spatial

features are captured by a classification structure of data. In clustering, the classification structure is

usually obtained as exclusive clusters (groups) of objects in the observation space with respect to

attributes (or variables). Exclusive clusters mean that objects that belong to a cluster are completely

different from objects that belong to other clusters. Therefore, the features of each obtained cluster are

assumed to be independent of each other. However, such a classification structure is inadequate to explain

the spatial features since the spatial features are relatively related in space with respect to attributes (or

variables). Fuzzy clustering can solve this problem and obtain the spatial features as degrees of

belongingness of objects to fuzzy clusters. Fuzzy clustering can obtain not only the belonging status

of objects but also how much the objects belong to the clusters. That is, in a fuzzy clustering result, there

exist objects that belong to several fuzzy clusters simultaneously with certain degrees. In other words, the

features of each obtained fuzzy cluster are relative to each other. Therefore, the result of fuzzy clustering

is validated for use as the spatial feature of data. Moreover, we exploit some advantages of fuzzy

clustering. Compared with conventional clustering, fuzzy clustering is well known as a robust and

efficient way to reduce computation cost to obtain the result.
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# 2007 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (cased) 0 470 85276 3 (Pbk)



The models of fuzzy regression clustering discussed in this chapter are hybrid models that combine

models of regression analysis and fuzzy clustering. By incorporating the aspects of nonlinearity of data

obtained as fuzzy clustering into the regression that are capable of obtaining the linear structure, the

mainstream of the fuzzy regression clustering is capturing the linear structure under the intrinsically

distributed classification structure of data.

This chapter is organized as follows. Section 11.2 covers the basic issues of a statistical weighted

regression model. Associated by the statistical weighted regression model, we describe a geographi-

cally weighted regression model (Brunsdon, Fotheringham, and Charlton, 1998) that is a typical

spatial regression analysis. Section 11.3 develops models of fuzzy regression clustering. First, we

briefly review typical fuzzy clustering methods and discuss several models of fuzzy regression

clustering. In order to show a performance of the models of fuzzy regression clustering, Section 11.4 is

concerned with results of analyses of residuals for the models. Examples are given in Section 11.5 to

demonstrate the validity of the models of fuzzy regression clustering. We describe some conclusions in

Section 11.6.

11.2 STATISTICAL WEIGHTED REGRESSION MODELS

An observed data that is composed of n objects and p independent variables is denoted as
~X ¼ ðxiaÞ; i ¼ 1; � � � ; n; a ¼ 1; � � � ; p:y ¼ ðy1; � � � ; ynÞt consists of n objects for a dependent variable.

The model of multiple regression analysis is defined as follows:

y ¼ Xbþ e; ð11:1Þ

where

y ¼
y1
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e shows residual and we assume

"i � Nð0; �2Þ; ð11:2Þ
that is, "i is a normally distributed random variable, with mean zero and variance �2. We also assume "i

and "j; ði 6¼ jÞ are independent.

There sometimes occurs a case in which some of the n observations are ‘‘less reliable’’ compared to the

other observations. For example, some of the observations have a large variance compared to the other

observations. In this case, model (11.1) is not adaptable for the assumption (11.2).

In order to avoid the heteroscedastic residuals, a weighted regression analysis using the weighted least

squares have been proposed (Draper and Smith, 1966; Dobson, 1990; Mandel, 1964). In the weighted

regression analysis, we assume e in Equation (11.1) as follows:

Efeg ¼ 0; Vfeg ¼ A�2; e � Nð0;A�2Þ: ð11:3Þ

where A is represented using a unique nonsingular symmetric matrix W that satisfies the following:

A ¼ W2; Ef~eg ¼ 0; ~e � W�1e: ð11:4Þ
Ef�g shows a vector of expected values for � and Vf�g is a variance-covariance matrix of �. Equation

(11.3) shows that we assume the heteroscedastic residuals in the regression model (11.1). Then the

weighted regression model is defined as follows:

W�1y ¼ W�1XbþW�1e ¼ W�1Xbþ ~e: ð11:5Þ
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From Equation (11.4),

Vf~eg ¼ EfW�1eetW�1g
¼ W�1EfeetgW�1

¼ W�1A�2W�1

¼ W�1WWW�1�2

¼ I�2;

ð11:6Þ

where I is an identity matrix. From Equation (11.6), it can be seen that we obtain the estimate of the

weighted least squares of b under the homoscedastic variance for residuals. From Equation (11.5), the

estimate of the weighted least squares of b can be obtained as follows:

~b ¼ ðXtA�1XÞ�1
XtA�1y: ð11:7Þ

Using the idea of spatial analysis for geographically obtained data, a geographically weighted

regression model has been proposed (Brunsdon, Fotheringham, and Charlton, 1998). The estimate of

regression coefficient to an area k is obtained as:

b̂k ¼ ðXtWkXÞ�1
XtWky; ð11:8Þ

where

Wk ¼
a1k � � � 0

..

. . .
. ..

.

0 � � � ank

0
B@

1
CA; k ¼ 1; � � � ;K:

K shows the number of areas and aik shows the weight of an object i to an area k estimated using kernel

estimates. That is, the weight Wk is defined as

aik ¼ �ðdikÞ; i ¼ 1; � � � ; n; k ¼ 1; � � � ;K;
using the kernel function � that satisfies the following conditions:

�ð0Þ ¼ 1;

lim
d!1
f�ðdÞg ¼ 0;

� : monotone decreasing function;

where dik shows a distance between ith object and kth area. The following are examples of �:

aik ¼ exp
�dik

r

� �
;

aik ¼ exp
�d2

ik

2r2

� �
;

where r shows the control parameter influenced by the range of each area.

Equation (11.8) is obtained by minimizing

Ŝk � ðy� XbkÞtWkðy� XbkÞ � d̂t
kd̂k;

d̂k � W
1
2

kðy� XbkÞ ¼ ð�̂1k; � � � �̂nkÞt;

where

W
1
2

k ¼

ffiffiffiffiffiffi
a1k
p � � � 0

..

. . .
. ..

.

0 � � � ffiffiffiffiffiffi
ank
p

0
B@

1
CA:
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11.3 FUZZY REGRESSION CLUSTERING MODELS

In order to obtain a more reliable solution from the regression model, several methods using the idea of

fuzzy logic (Zadeh, 1965; Zadeh, 2005) have been proposed (Tanaka and Watada, 1988; Hathaway and

Bezdek, 1993; Sato-Ilic, 2003, 2004). Within these methods, there are several methods using the result of

fuzzy clustering for the weights in the weighted regression model. In this section, we discuss the

regression models using fuzzy clustering.

11.3.1 Fuzzy Clustering

First, we explain the fuzzy clustering algorithm used in this chapter. Fuzzy c-means (FCM) (Bezdek,

1987) is one of the methods of fuzzy clustering that minimizes the weighted within-class sum of

squares:

JðU; v1; � � � ; vKÞ ¼
Xn

i¼1

XK

k¼1

um
ikd2ðxi; vkÞ; i ¼ 1; � � � ; n; k ¼ 1; � � � ;K; ð11:9Þ

where uik shows the degree of belongingness of objects to clusters, n is the number of objects, and K is the

number of clusters. In general, the state of fuzzy clustering is represented by a partition matrix U ¼ ðuikÞ
whose elements satisfy the following conditions:

uik 2 ½0; 1�;
XK

k¼1

uik ¼ 1: ð11:10Þ

vk ¼ ðvkaÞ; k ¼ 1; � � � ;K; a ¼ 1; � � � ; p denotes the values of the centroid of a cluster

k; xi ¼ ðxiaÞ; i ¼ 1; � � � ; n; a ¼ 1; � � � ; p shows ith object, and d2ðxi; vkÞ is the square Euclidean distance

between xi and vk. p is the number of variables. The exponent m that determines the degree of fuzziness of

the clustering is chosen from ð1;1Þ in advance.

The purpose of FCM is to obtain the solutions U and v1; � � � ; vK that minimize Equation (11.9). If

vk ¼
Pn

i¼1

um
ikxi=

Pn

i¼1

um
ik, then Equation (11.9) is shown as:

JðUÞ ¼
XK

k¼1

Xn

i¼1

Xn

j¼1

um
ikum

jkdij=ð2
Xn

l¼1

um
lkÞ

 !
: ð11:11Þ

When m ¼ 2, the algorithm in which the objective function is Equation (11.11) is known as the FANNY

algorithm (Kaufman and Rousseeuw, 1990).

11.3.2 Fuzzy c-regression Model

The fuzzy c-regression model (Hathaway and Bezdek, 1993) obtains the following estimate of weighted

least squares:

~~bk ¼ ð~XtðUkÞm ~XÞ�1 ~XtðUkÞmy; ð11:12Þ
that minimizes

S ¼
XK

k¼1

Sk; Sk � ðy� ~XbkÞtðUkÞmðy� ~XbkÞ � dt
kdk; ð11:13Þ

dk � ðUkÞ
m
2ðy� ~XbkÞ ¼ ð�1k; � � � ; �nkÞt; m > 1; ð11:14Þ
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where

ðUkÞm ¼
um

1k � � � 0

..

. . .
. ..

.

0 � � � um
nk

0
B@

1
CA:

In general, we assume the following conditions in order to avoid uik ¼ 0 in Equation (11.13):

uik 2 ð0; 1Þ;
XK

k¼1

uik ¼ 1: ð11:15Þ

11.3.3 Fuzzy Cluster Loading Model

A fuzzy clustering method is offered to contract clusters with uncertainty boundaries; this method allows

one object to belong to some overlapping clusters with some grades. However, replaced by the

representativeness of fuzzy clustering to real complex data, the interpretation of such a fuzzy clustering

can cause us some confusion because we sometimes think that objects that have a similar degree of

belongingness can together form one more cluster. In order to obtain the interpretation of the obtained

fuzzy clusters, we have proposed a fuzzy cluster loading (Sato-Ilic, 2003) that can show the relationship

between the clusters and the variables.

The model is defined as:

uik ¼
Xp

a¼1

xiazak þ "ik; i ¼ 1; � � � ; n; k ¼ 1; � � � ;K; ð11:16Þ

where uik is the obtained degree of belongingness of objects to clusters by using a fuzzy clustering method

and is assumed to satisfy the conditions in Equation (11.15). zak shows the fuzzy degree that represents the

amount of loading of a cluster k to a variable a and we call this fuzzy cluster loading. This parameter

shows how each cluster can be explained by each variable. "ik is an error.

The model (11.16) is rewritten as

uk ¼ ~Xzk þ ek; k ¼ 1; � � � ;K; ð11:17Þ
using

uk ¼
u1k

..

.

unk

0

B@

1

CA; zk ¼
z1k

..

.

zpk

0

B@

1

CA; ek ¼
"1k

..

.

"nk

0

B@

1

CA;

where, we assume

"ik � Nð0; �2Þ: ð11:18Þ
The estimate of least squares of zk for Equation (11.17) is obtained as follows:

~zk ¼ ð~Xt ~XÞ�1 ~Xtuk; ð11:19Þ
by minimizing

et
kek ¼ "2

1k þ � � � þ "2
nk: ð11:20Þ

Using Equation (11.17) and

U�1
k ¼

u�1
1k � � � 0

..

. . .
. ..

.

0 � � � u�1
nk

0
B@

1
CA;
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the model (11.16) can be rewritten again as:

1 ¼ U�1
k

~Xzk þ ek; ek � U�1
k ek; k ¼ 1; � � � ;K; ð11:21Þ

where,

1 ¼
1

..

.

1

0
@

1
A; ek ¼

e1k

..

.

enk

0
B@

1
CA:

By minimizing

et
kek ¼ et

kðU�1
k Þ

2
ek; ð11:22Þ

we obtain the estimate of least squares of zk for Equation (11.21) as follows:

~~zk ¼ ð~XtðU�1
k Þ

2 ~XÞ�1 ~XtU�1
k 1: ð11:23Þ

From Equation (11.22), ~~zk is the estimate of weighted least squares of zk in the weighted regression

analysis. Equation (11.22) can be rewritten as follows:

et
kek ¼ et

kðU�1
k Þ

2
ek ¼ ðu�1

1k "1kÞ2 þ � � � þ ðu�1
nk "nkÞ2: ð11:24Þ

From Equation (11.24) and condition (11.15), we can see that if an object i belongs to the cluster k with a

large degree, that is, a larger uik has a smaller ðu�1
ik "ikÞ2, since

a > b) ða�1cÞ2 < ðb�1cÞ2; a; b; c > 0:

If an object clearly belongs to a cluster then the weight works to the local regression over the cluster to fit

better for the object. In other words, we avoid the objects that are vaguely situated on the clustering by

treating them as noise of the data. It is shown where the degree of belongingness over the K clusters is

close to 1/K for all of the objects. So, ~~zk is obtained considering not only the fitness of the model but also

considering the classification structure of the data ~X.

11.3.4 Kernel Fuzzy Cluster Loading Model

The kernel method has been discussed in the context of support vector machines (Cristianini and Shawe-

Taylor, 2000), the efficient advantage of which is widely recognized in many areas. The essence of the

kernel method is an arbitrary mapping from a lower dimension space to a higher dimension space. Note

that the mapping is an arbitrary mapping, so we do not need to find the mapping, this is called the kernel

trick.

Suppose an arbitrary mapping �:

�: Rn ! F;

where F is a higher dimension space than Rn.

We assume

kðx; yÞ ¼ �ðxÞt�ðyÞ;
where k is the kernel function that is defined in Rn and x; y 2 Rn.

Typical examples of the kernel function are as follows:

kðx; yÞ ¼ exp �k x� y k
2�2

� �
ðGaussian kernelÞ

kðx; yÞ ¼ ðx � yÞd ðpolynomial kernel of degree dÞ
kðx; yÞ ¼ tanhðaðx � yÞ þ bÞ ðSigmoid kernelÞ:

ð11:25Þ

By the introduction of this kernel function, we can analyze the data in F without finding the mapping �
explicitly.
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From Equation (11.23), we can obtain the following:

zk ¼ ð~XtðU�1
k Þ

2 ~XÞ�1 ~XtU�1
k 1

¼ ððU�1
k

~XÞtðU�1
k

~XÞÞ�1ðU�1
k

~XÞt1
� ðCt

kCkÞ�1
Ct

k1;

ð11:26Þ

where Ck ¼ ðciaðkÞÞ; ciaðkÞ � u�1
ik xia; i ¼ 1; � � � ; n; a ¼ 1; � � � ; p.

Using ct
aðkÞ ¼ ðciaðkÞ; � � � ; cnaðkÞÞ, we can represent Equation (11.26) as follows:

zk ¼ ðct
aðkÞcbðkÞÞ�1ðct

aðkÞ1Þ; a; b ¼ 1; � � � ; p; ð11:27Þ

where Ct
kCk ¼ ðct

aðkÞcbðkÞÞ; Ct
k1 ¼ ðct

aðkÞ1Þ; a; b ¼ 1; � � � ; p:
Then we consider the following mapping �:

�: Rn ! F; caðkÞ 2 Rn: ð11:28Þ

From Equations (11.27) and (11.28), the fuzzy cluster loading in F is as follows:

~̂zk ¼ ð�ðcaðkÞÞt�ðcbðkÞÞÞ�1ð�ðcaðkÞÞt�ð1ÞÞ; a; b ¼ 1; � � � ; p; ð11:29Þ

where ~̂zk shows the fuzzy cluster loading in F.

Using the kernel representation kðx; yÞ ¼ �ðxÞt�ðyÞ, Equation (11.29) is rewritten as follows:

~̂zk ¼ ðkðcaðkÞ; cbðkÞÞÞ�1ðkðcaðkÞ; 1ÞÞ; a; b ¼ 1; � � � ; p: ð11:30Þ

From this, using the kernel method, we can estimate the fuzzy cluster loading in F (Sato-Ilic, 2003).

11.3.5 Weighted Fuzzy Regression Model

We have proposed another model for weighted regression using a fuzzy clustering result obtained as

classification of the data consisting of independent variables (Sato-Ilic, 2004). The model is defined as:

y ¼ Uk
~Xbk þ êk; ð11:31Þ

where

Uk ¼
u1k � � � 0

..

. . .
. ..

.

0 � � � unk

0
B@

1
CA; êk ¼

ê1k

..

.

ênk

0
B@

1
CA;

under an assumption of

êik � Nð0; �2Þ: ð11:32Þ
The estimate of least squares of bk in Equation (11.31) is obtained as

~̂bk ¼ ð~XtU2
k
~XÞ�1 ~XtUky: ð11:33Þ

Notice that Equation (11.12) is different from Equation (11.33), even if we put m ¼ 2 in Equation (11.12).

The structure of Equation (11.12) is essentially the same as the estimate of conventional weighted

regression analysis shown in Equation (11.7). That is, in Equation (11.13), we assume that weights of

objects in the dependent variable are the same as the weights of objects in the independent variables.

However, in model (11.31), we consider that the clustering result for the data of a dependent variable is not

always the same as the clustering result for the data of independent variables. So, we multiplied the

weights only to ~X in Equation (11.31), since Uk is obtained as a classification result of ~X.

Figure 11.1 shows an example of the difference. In this figure, the abscissa shows values of the

independent variable and the ordinate shows values of the dependent variable for five objects

fx1; x2; x3; x4; x5g. Solid circles in this figure show the clustering result with respect to the bivariate,

dependent variable and independent variable. In this case, we assume that the classification structure of

data of the dependent variable is the same as the classification structure of data of the independent
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variable. On the other hand, the dotted circles show the clustering result of data with respect to

independent variable. Two solid lines show the result of regression for clusters obtained by using both

dependent and independent variables. Two dotted lines show the result of regression for clusters obtained

by using only the independent variable. The regressions represented by the solid line between objects x1

and x5 and the dotted line between objects x4 and x5 are perfectly fitted. Therefore, it is sufficient to

investigate the difference of fitness between the regressions L1 and L2.

Table 11.1 shows difference of coefficient of determination for regressions between L1 and L2. From

this table, we can see that L2 has a better fitness than L1. In other words, the regression that uses a

clustering result of data of an independent variable has a better fitness than the regression that assumes

that the classification structure of a dependent variable is the same as the classification structure of an

independent variable.
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Figure 11.1 Comparison between regressions by change of classification region.

Table 11.1 Coefficient of determination.

Regression Coefficient of determination

L1 0.13

L2 0.49

L1: Regression using clustering result of data for dependent and independent
variables.

L2: Regression using clustering result of data for independent variable.
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11.4 ANALYSES OF RESIDUALS ON FUZZY REGRESSION
CLUSTERING MODELS

In this section, we show several results of analyses of residuals for the models of fuzzy regression

clustering discussed in previous sections (Sato-Ilic, 2005). Basically, the analysis of residuals is based on

an idea that if the fitted regression model is correct, then the obtained residuals should satisfy the

assumptions that we have made. The assumptions are concerned with the normality and homoscedasticity

of variance for residuals. We discuss a statistical test score on the normality of residuals and check the

homoscedasticity of the variance for the residuals by using the analysis of residuals (Draper and Smith,

1966). That is, we investigate whether the estimates of the regression coefficients are satisfactory as the

best linear unbiased estimators or not and whether they are maximum likelihood estimators or not, since

the estimates of the regression coefficients in the target models are obtained using the weighted least

squares method or the least squares method.

For examining residuals shown in Equations (11.14) and (11.32), 90 data are randomly generated for

the normal distribution with mean equal to 0 and standard deviation equal to 1 as values for a dependent

variable. We denote the 90 data with respect to a dependent variable as

y ¼ ðy1; � � � ; y90Þt; ð11:34Þ
where yi � Nð0; 1Þ; i ¼ 1; � � � ; 90. We also randomly generated the 90 data with respect to two

independent variables as

~X ¼ ðxiaÞ; i ¼ 1; � � � ; 90; a ¼ 1; 2; ð11:35Þ
where

xia � Nð0; 1Þ; i ¼ 1; � � � ; 30; a ¼ 1; 2;

xia � Nð5; 1Þ; i ¼ 31; � � � ; 60; a ¼ 1; 2;

xia � Nð10; 1Þ; i ¼ 61; � � � ; 90; a ¼ 1; 2:

That is, we randomly generated 30 data from the first to 30th for the normal distribution with mean equal

to 0 and standard deviation equal to 1. For the 31st to 60th, we use the normal distribution with mean equal

to 5 and standard deviation equal to 1 in order to generate the second group of data. For the third group,

61st to 90th, the normal distribution with mean equal to 10 and standard deviation equal to 1 is used.

The principal ways for obtaining the residuals shown in Equation (11.32) are as follows:

(1) Using the data ~X shown in Equation (11.35) to the FANNY method, obtain the degree of belong-

ingness for the clusters shown in Equation (11.10). The number of clusters is assumed to be three. In

the numerical experiments in this section, we use the ‘‘R’’ package for obtaining a result with the

FANNY method.1

(2) Applying the data shown in Equations (11.34) and (11.35) and the fuzzy clustering result shown in

Equation (11.10) to the model (11.31), we obtain the estimate of regression coefficients, ~̂bk, shown in

Equation (11.33).

(3) Using the obtained ~̂bk; k ¼ 1; 2; 3; we calculate the following estimates

ŷk ¼ Uk
~X~̂bk:

(4) We obtain the residuals between y and ŷk as

êk ¼ y� ŷk; k ¼ 1; 2; 3: ð11:36Þ

Since we use the least squares method, minimizing êt
k êk; 8k is the same as minimizing ê, where

ê ¼
X3

k¼1

êt
kêk:

Therefore, we investigate for êk; k ¼ 1; 2; 3.

1The R Project for Statistical Computing. [http://www.r-project.org/].
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In the same way, from Equation (11.14) the residuals dk; k ¼ 1; 2; 3 can be obtained as

dk ¼ Uky� Uk
~X~~bk; ð11:37Þ

where
~~bk is the obtained estimate of regression coefficients when m ¼ 2 in Equation (11.12).

Figures 11.2 and 11.3 show the results on the analysis of residuals for homoscedasticity of variance for

residuals. In these figures, the abscissa shows 90 data and the ordinate shows residuals for each cluster.

Squares show residuals for cluster 1, black dots show residuals for cluster 2, and triangles are residuals for
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Figure 11.2 Residuals for weighted regression model based on fuzzy clustering.
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Figure 11.3 Residuals for fuzzy c-regression model.
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cluster 3. Figure 11.2 shows the residuals shown in Equation (11.36) and Figure 11.3 shows the residuals

shown in Equation (11.37). From Figure 11.2, we can clearly see the homoscedasticity of variance for

residuals for all of the three clusters.

However, from Figure 11.3, we can see heteroscedastic variance for residuals for each cluster. That is,

variance of residuals for each cluster has bias. For the first cluster, the variance of residuals is large for the

first 30 objects. The middle range objects from the 31st to 60th have large variance of residuals for the

second cluster. The third cluster gives large variance for the last 30 objects. The bias seems to be caused by

the assumption of the use of the same classification structure over the data with respect to the dependent

variable and the data with respect to independent variables, because it seems that 30 data for each cluster

cause the difference in variance in Figure 11.3.

In order to investigate the normality of the residuals shown in Equations (11.36) and (11.37), we use a test

of goodness-of-fit. Figure 11.4 shows the values of the chi-square test statistic. From the results shown in

Figure 11.4, it can be seen that the test does not reject the normality hypothesis with a significance level of

0.05 for all residuals for the weighted regression model based on fuzzy clustering that are shown as ê1; ê2,

and ê3. However, the test rejects the normality hypothesis with a significance level of 0.05 for the residuals of

the fuzzy c-regression model for cluster 1 that is shown as d1. From the result shown in Figure 11.4, we

cannot say that the estimate shown in Equation (11.33) is not a maximum likelihood estimator.

In order to investigate the features of residuals shown in Equation (11.18) of the model (11.17) and

compare the features of residuals shown in Equation (11.21), we again discuss the statistical test score on

the normality of the residuals and check the homoscedasticity of the variance for the residuals by using the

analysis of residuals. The difference between the two models (11.17) and (11.21) is whether to use the

weights or not, in order to estimate the fuzzy cluster loading. Model (11.21) uses the weights and model

(11.17) does not use the weights. In model (11.21), we obtain the estimate of the regression coefficients
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Figure 11.4 Results in test of goodness-of-fit for weighted regression model based on fuzzy clustering and fuzzy

c-regression model.
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that minimizes ðu�1
1k "1kÞ2 þ � � � þ ðu�1

nk "nkÞ2 shown in Equation (11.24). In model (11.17), we obtain the

estimate of the regression coefficients that minimizes "2
1k þ � � � þ "2

nk shown in Equation (11.20).

We randomly generated 100 data with respect to two independent variables for the normal distribution

with mean equal to 0 and standard deviation equal to 1. That is, if we denote the 100 data with respect to

independent variables as
~X ¼ ðxiaÞ; i ¼ 1; � � � ; 100; a ¼ 1; 2; ð11:38Þ

then

xia � Nð0; 1Þ; i ¼ 1; � � � ; 100; a ¼ 1; 2:

The principal ways for obtaining the residuals shown in Equation (11.18) are as follows:

(1) We apply the data ~X shown in Equation (11.38) to the FANNY method and obtain the degree of

belongingness for clusters shown in Equation (11.15). The number of clusters is assumed to be three.

(2) Applying the data shown in Equation (11.38) and the fuzzy clustering result shown in Equation

(11.15) to model (11.17), we obtain the estimate of fuzzy cluster loadings (regression coefficients),~zk,

shown in Equation (11.19).

(3) Using the obtained ~zk; k ¼ 1; 2; 3, we calculate the following estimates

ûk ¼ ~X~zk:

(4) Then we obtain the residuals between uk and ûk as

ek ¼ uk � ûk; k ¼ 1; 2; 3: ð11:39Þ

Next, we input the data shown in Equation (11.38) and the fuzzy clustering result shown in Equation

(11.15) into Equation (11.21), and obtain the estimate of fuzzy cluster loadings (regression coefficients),
~~zk shown in Equation (11.23). The residuals ek; k ¼ 1; 2; 3 shown in Equation (11.21) can be obtained as

ek ¼ 1� U�1
k

~X~~zk: ð11:40Þ

The results on the analysis of residuals for homoscedasticity of variance for residuals are shown in

Figures 11.5 and 11.6. In these figures, the abscissa shows 100 data and the ordinate shows residuals for

each cluster. Figure 11.5 shows the residuals shown in Equation (11.40) and Figure 11.6 shows the
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Figure 11.5 Residuals for weighted fuzzy cluster loading model.
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residuals shown in Equation (11.39). Squares show residuals for cluster 1, black dots show residuals for

cluster 2, and triangles are residuals for cluster 3. From Figures 11.5 and 11.6, we can clearly see the

homoscedasticity of variance for residuals for all of the three clusters.

Next, we investigate the normality of the residuals shown in Equations (11.39) and (11.40) using a test

of goodness-of-fit. Figure 11.7 shows the values of the chi-square test statistic. From the results shown in

Figure 11.7, we can see that the test does not reject the normality hypothesis with a significance level of

0.05 for all residuals for the weighted fuzzy cluster loading model which are shown as e1, e2, and e3.
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Figure 11.6 Residuals for fuzzy cluster loading model.
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However, the test rejects the normality hypothesis with a significance level of 0.05 for the residuals of the

fuzzy cluster loading model for cluster 2 that is shown as e2. From the result shown in Figure 11.7, we

cannot say that the estimate shown in Equation (11.23) is not a maximum likelihood estimator.

11.5 NUMERICAL EXAMPLES

The data is the Fisher iris data (Fisher, 1936) that consists of 150 samples of iris flowers with respect to

four variables, sepal length, sepal width, petal length, and petal width. The samples are observed from

three kinds of iris flowers, iris setosa, iris versicolor, and iris virginica. We use the data of sepal length as

values of a dependent variable, and the data with respect to sepal width, petal length, and petal width are

treated as values of independent variables. First, we apply the data of the independent variables for fuzzy

c-means method. We use the ‘‘R’’ package for obtaining a result of the fuzzy c-means method. The

number of clusters is assumed to be three.

Figure 11.8 shows the result of the fuzzy c-means method. (a) shows a result of cluster 1, (b) is a result

of cluster 2, and (c) is a result of cluster 3. In these figures, three axes show the three variables that are sepal

width, petal length, and petal width. The locations of dots show the observational values of each iris flower

and the cubes show the observation space. The gray tone shows the degree of belongingness for the

clusters and the darker color means a larger degree of belongingness for the cluster. From this figure, it can

be seen that there are three clusters that can show that the three kinds of iris flowers and the three clusters

are vaguely situated in relation to each other.
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Figure 11.8 Results of the fuzzy c-means for iris data: (a) for cluster 1, (b) for cluster 2, and (c) for cluster 3.
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Using the result of the fuzzy c-means shown in Figure 11.8, Figures 11.9 and 11.10 show the results of

regression coefficients of the fuzzy cluster loading model and the weighted fuzzy cluster loading model

shown in Equations (11.19) and (11.23), respectively. In these figures, the abscissa shows three inde-

pendent variables. v1 shows sepal width, v2 is petal length, and v3 shows petal width. The ordinate shows

values of the regression coefficients that are fuzzy cluster loadings. Each cluster is shown by a different

line. From these figures, we can see the significant explanation of v3 (petal width) for both of the results.

This is also captured by using the fuzzy clustering shown in Figure 11.8. That is, from Figure 11.8, we can

see a tendency for the classification result with respect to the three variables to be almost the same as the

classification with respect to only v3 (petal width). This feature is more clearly revealed by considering the

weights obtained as the fuzzy clustering result shown in Figure 11.10.
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Figure 11.9 Result of fuzzy cluster loading model.
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Figure 11.10 Result of weighted fuzzy cluster loading model.
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Moreover, Figure 11.11 shows the result of the kernel fuzzy cluster loading model shown in Equation

(11.30). We use the polynomial kernel of degree 2 shown in Equation (11.25) as the kernel function in

Equation (11.30). This result shows a clearer significance for the v3 (petal width) when compared to the

result of Figure 11.10.

Figure 11.12 shows the result of weighted fuzzy regression model shown in Equation (11.33). We use

the data for a dependent variable as sepal length in this case. As a comparison, Figure 11.13 shows the
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Figure 11.11 Result of kernel fuzzy cluster loading model.
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Figure 11.12 Result of weighted fuzzy regression model.
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result of regression coefficients using a conventional linear regression model shown in Equation (11.1).

From the result of the conventional regression model shown in Figure 11.13, we simply obtain that the

sepal length (dependent variable) is highly correlated with v1 (sepal width) that seems obvious. However,

using the fuzzy classification structure, the result shown in Figure 11.12 can show that each kind of iris

flower has a different tendency for the correlation of the three independent variables into the dependent

variable.

11.6 CONCLUSION

This chapter discusses several regression models using the results of fuzzy clustering. Following

conventionally defined terms related to these models, they are weighted regression models and also

nonlinear regression models. Despite many weighted regression models and nonlinear regression models,

the problem of how to estimate the weights and how to define the nonlinearity are still core issues. Fuzzy

clustering might offer a solution in which the weights are estimated by the degree of belongingness of the

fuzzy clustering result and the nonlinearity is assumed to be defined as the fuzzy classification structure.

Considering the fact that conventional weighted regression models have mainly challenged the correction

of local heteroscedastic variance of observation, the use of classification features in regression models is

deemed to be reasonable.
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12.1 INTRODUCTION

Fuzzy modeling has been viewed as an alternative to more traditional modeling paradigms in order to deal

with complex, ill defined, and less ‘‘tractable’’ systems. As many scholars would agree (Delgado, Gomez-

Skarmeta, and Vila, 1996; Sugeno and Yasukawa, 1993; Yoshinari, Pedrycz, and Hirota, 1993; Pedrycz,

2005), the most beneficial step throughout a fuzzy modeling procedure is to detect the underlying data

structure and to translate it into a collection of fuzzy rules. Fuzzy clustering can be very helpful in learning

fuzzy rules from data, since it is able to partition the available data-set into natural groupings. By using

fuzzy clustering in fuzzy modeling we do not have to be concerned about the fuzzy partition of the feature

space, since it is derived as a direct result of the clustering process (Sugeno and Yasukawa, 1993). Thus,

the modeling procedure becomes structure-free, since the clustering process reveals the model’s structure

(Yoshinari, Pedrycz, and Hirota, 1993). Moreover, fuzzy clustering offers an unsupervised learning

platform, which provides great flexibility throughout the model design (Delgado, Gomez-Skarmeta, and

Vila, 1996). The above benefits can well be justified when we have a lot of data without any other

information about the system. In this case, fuzzy clustering becomes a reliable tool to help construct

accurate fuzzy models starting from scratch. In the literature, a plethora of methods have been proposed to

incorporate different fuzzy clustering techniques into fuzzy modeling (Chiu, 1994; Wong and Chen,

1999; Yao, Dash, Tan, and Liu, 2000; Angelov, 2004; Panella and Gallo, 2005).

One of the most widely used clustering approaches in fuzzy modeling is the fuzzy C-means (FCM)

algorithm (Bezdek, 1981). However, the implementation of the fuzzy C-means suffers from three major

problems. The first one is related to the fact that the fuzzy C-means requires a priori knowledge of the
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number of clusters. Since each cluster is usually assigned to a specific fuzzy rule, the number of rules

must be known in advance. There are two general modeling frameworks that can be used to resolve this

problem. According to the first framework, the modeling procedure constitutes an iterative process,

where the number of rules gradually increase until the model’s performance meets a predefined

accuracy. Related algorithms have been developed by Kim, Park, Ji, and Park (1997), Kim, Park,

Kim, and Park (1998), Chen, Xi, and Zhang, (1998), Kukolj and Levi (2004), and Tsekouras (2005). The

second modeling framework is based on using optimal fuzzy clustering (Pal and Bezdek, 1995). Such

approaches were proposed by Sugeno and Yasukawa (1993), Emani, Turksen, and Goldenberg (1998),

Tsekouras, Sarimveis, Kavakli, and Bafas (2005), Chen and Linkens (2000, 2001), and Linkens and

Chen (1999).

The second problem concerns the dependence of fuzzy C-means on the initialization of the iterative

process. To deal with this issue, we need to obtain some information about possible structures that may

exist in the training data sample. A feasible way to accomplish this is to develop a clustering unit to

preprocess the available data. This unit detects a number of properly identified clusters that can be

used as initial conditions by the fuzzy C-means. The preprocessing clustering unit is usually

constructed by employing agglomerative hierarchical clustering (Emani, Turksen, and Goldenberg,

1998), self-organizing clustering networks (Linkens and Chen, 1999; Chen and Linkens, 2000, 2001;

Tsekouras, 2005), or nearest neighbor clustering (Tsekouras, Sarimveis, Kavakli, and Bafas, 2005).

The preprocessing clustering unit along with the fuzzy C-means constitutes a hierarchical clustering

scheme.

Finally, the third problem concerns the interpretability of the fuzzy model. An accurate fuzzy model is

not as functional as a fuzzy model that maintains its interpretability. On the other hand, a fully

interpretable fuzzy model may not be not accurate enough to fully describe a real system. Thus, there

is a trade off between accuracy and interpretability, which has to be taken into account during the

modeling process. A lot of work has been done in this direction (Chao, Chen, and Teng, 1996; Setnes,

Babuska, Kaymak, and van Nauta Lemke, 1998; Valente de Oliveira, 1999; Chen, and Linkens, 2004;

Guillaume and Charnomordic, 2004; Cassilas, Gordon, deJesus, and Herrera, 2005; Zhou and Gan, 2006).

When we use the fuzzy C-means to generate fuzzy rules, each rule corresponds to a specific cluster. Or, to

be more precise, each rule corresponds to a specific fuzzy set in each dimension. That is, the fuzzy sets are

not shared by the rules (Guillaume, 2001). However, in order to maintain interpretability, similar fuzzy

sets have to be merged. This directly implies that the structure of the rule base could be disturbed. A

feasible way to resolve this problem is to perform, at a later stage, some model simplification (Setnes,

Babuska, Kaymak, and van Nauta Lemke, 1998).

This chapter presents a systematic approach to fuzzy modeling that takes into account all the

aforementioned problems. To deal with the first problem the algorithm adopts the first modeling frame-

work mentioned above. To cope with the second problem, we use a two-level hierarchical clustering

scheme, where at the first level the self-organizing map (SOM) (Kohonen, 1988) is employed to

preprocess the data. The basic design issue of the hierarchical clustering scheme is the weighted fuzzy

C-means (Geva, 1999; Bezdek, 1981), in the second level of the hierarchy. As will be discussed later on in

this chapter, the weighted C-means is able to resolve certain difficulties involved when the classical fuzzy

C-means is applied. Moreover, our simulations showed that it provides very reliable initialization

capabilities with respect to the model parameters. Finally, to solve the third problem we employ a

standard model simplification technique.

This chapter is organized as follows: Section 12.2 briefly outlines the essence of the Takagi and

Sugeno’s fuzzy model to be used throughout this chapter. In Section 12.3 we elaborate on the modeling

method. Section 12.4 discusses the simulation results and Section 12.5 offers concluding remarks.

12.2 TAKAGI AND SUGENO’S FUZZY MODEL

One of the most well-known fuzzy models is the Takagi and Sugeno (TS) model (Takagi and Sugeno,

1985). We briefly outline its main features. Let us consider that the input space is a p-dimensional vector
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space, denoted as: X ¼ X1 � X2 � . . . � Xp. Therefore, a p-dimensional input data vector x 2 X can

be represented as x ¼ ½x1; x2; . . . ; xp�T with xj 2 Xj ð1 � j � pÞ. Assuming that there exist c fuzzy rules,

each fuzzy rule is described by the relationship:

Ri: If x1 is Oi
1 and x2 is Oi

2 and . . . and xp is Oi
p

then yi ¼ bi
0 þ bi

1x1 þ . . .þ bi
pxp ð1 � i � cÞ ð12:1Þ

where bi
j is a real number and Oi

j is a fuzzy set. Here, the fuzzy set membership functions are Gaussian

functions of the form

Oi
jðxjÞ ¼ exp �

xj � vi
j

�i
j

 !2
2
4

3
5 ð1 � i � c; 1 � j � pÞ: ð12:2Þ

Finally, the inferred output of the model is calculated as:

~y ¼

Pc

i¼1

!iðxÞyi

Pc

i¼1

!iðxÞ
ð12:3Þ

where

!iðxÞ ¼ min
j
fOi

jðxjÞg ð 1 � j � p; 1 � i � cÞ: ð12:4Þ

12.3 HIERARCHICAL CLUSTERING-BASED FUZZY MODELING

In the context of fuzzy modeling two basic steps dominate the model’s overall design procedure: (a)

structure identification and (b) parameter estimation. Structure identification is strongly related to the

determination of the number of rules. Moreover, it provides initial values for the model parameters. On

the other hand, parameter estimation refers to the calculation of the appropriate model parameter values

that relate to the detailed description of the real system.

Minimizing a certain error-based objective function carries out the parameter estimation. To do this, we

usually employ classical optimization tools. Thus, the key point is to provide the above minimization

procedure with good initial conditions, meaning that we mainly focus on the development of an efficient

structure identification strategy.

The modeling algorithm presented here achieves the above task by using a hierarchical clustering

structure. The algorithm uses N input–output data pairs of the form ðxk; ykÞ with xk 2 <p and

k ¼ f1; 2; . . . ; Ng, and consists of the five design steps shown in Figure 12.1. In the first step we

construct the data preprocessing clustering unit. In this chapter, the SOM (Kohonen, 1988) is applied to

partition the input space into an initial number of clusters. Then, we assign weight factors to the

resulting cluster centers. The cluster centers accompanied with their weights constitute a new data-set,

which is further clustered by the weighted fuzzy C-means, in the second step of the algorithm. The

above two steps define the hierarchical clustering scheme. The third step projects on each axis the

clusters obtained by the weighted fuzzy C-means and provides an initial estimation of the premise model

parameters. The respective consequent parameters are calculated by the least-squares method. The

fourth step utilizes a gradient-descent based approach to optimize the model parameters. The last three

steps are implemented through an iterative process, where the model’s complexity is increasing

during each iteration until the model’s performance lies within acceptable levels. With the fuzzy

model constructed, the algorithm proceeds to the fifth step, where the model simplification takes place.

This procedure is accomplished by applying a fuzzy set merging technique and a rule elimination–

combination process.
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Before proceeding with the theoretical description of each design step, we must analyze in more detail

the main criteria used in the above modeling scheme. The first criterion refers to the weighted fuzzy

c-means. Similar approaches (Chen and Linkens, 2000; Linkens and Chen, 1999) utilized the classical

fuzzy C-means to elaborate the cluster centers produced by the pre-processing unit. Apparently, the

implementation of the fuzzy C-means assumes that all these centers are of equal significance. However,

this may be not true because two different initial clusters may contain different number of training

instances. Thus, by applying the fuzzy C-means we delete all the information that relates the original data-

set to the above centers. Therefore, the real data structure may not be discovered. To resolve this problem

we assign weights to the centers and we elaborate them using the weighted version of the fuzzy C-means.

Each of the above weights is defined by the cardinality of the respective initial cluster. In this way, all the

necessary information related to the original data-set is taken into account during the whole model’s

design process. The second criterion concerns the SOM. The SOM strongly depends on the parameter

initialization. The main impact of this fact is that some clusters may contain a small number of data or, at

worst, no data at all due to the competitive nature of the learning process (winner takes all). However, the

use of the weighted fuzzy C-means cancels the contribution of these clusters to the final fuzzy partition,

since the respective weights will be close to zero or equal to zero, respectively. Thus, we can benefit from

the advantages provided by the SOM algorithm such as its simplicity and its speed. At this point, it has to

be noticed that the implementation of the weighted fuzzy C-means is too fast, since the algorithm is

applied to a substantially smaller data-set than the original one. Therefore, the computational time needed

to run the hierarchical clustering scheme is approximately equal to the time needed by the SOM. Hence,

whenever we have a system with a large number of inputs, the computational complexity of the

hierarchical clustering method is approximately equal to the complexity of the SOM, i.e., it is a fast

approach that is easy to implement.
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Stop  
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Figure 12.1 The overall structure of the modeling algorithm.
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12.3.1 Preprocessing Clustering Unit Design

Here, we apply the self-organizing map (SOM) (Kohonen, 1988) algorithm to group all the input training

data vectors into a number of clusters. The SOM is a two-layer feed-forward neural network that can

discover topological structures hidden in the data, by using unsupervised competitive learning. The

implementation of the SOM is based on defining an appropriate distance norm function. This distance

measures the dissimilarity between data vectors and thus it enables the SOM to classify efficiently

the data into natural structures. The distance norm usually used is the Euclidean distance, which for the

p-dimensional space is defined as:

jjx� yjj ¼
Xp

j¼1

jx j� yjj2
�����

�����

1=2

ð12:5Þ

where x and y are p-dimensional data vectors. The above distance function is a subclass of the general

Minkowski q-norm distance that is given by the equation

jjx� yjjq ¼
Xp

j¼1

jxj� yjjq
�����

�����

1=q

:

The SOM algorithm is briefly described below.

The Self-Organizing Map Algorithm

Suppose that we are given a set of N input data vectors X ¼ fx1; x2; . . . ; xNg � <p. Also suppose that

the SOM network consists of n neurons, where the synaptic weight of the lth neuron is a point in the

p-dimensional space: tl ¼ ½�l1; �l2; . . . ; �lp�T .

Step 1 Choose random values for the neuron synaptic weights tl ð1 � l � nÞ. Also, select a value for

the maximum number of iterations tmax, and set t ¼ 0.

Step 2 For k ¼ 1 to N

determine the best matching neuron (l0) to the current data vector (xk) according to the nearest

neighbor rule:

jjxk � tl0ðtÞjj
2 ¼ min

1�l�n
fjj xk � tlðtÞjj2g:

Update the synaptic weight of each neuron:

tlðt þ 1Þ ¼ tlðtÞ þ ZðtÞhl; l0 ; kðtÞ ðxk � tlðtÞÞ: ð12:6Þ

End for

Step 3 If no noticeable changes in the synaptic weights are observed or t > tmax then stop. Else set

t ¼ t þ 1 and go to step 2.

In the above algorithm, all the distances are calculated using (12.5). The function hl;l0 ;kðtÞ defines the

later interaction phenomenon between the neurons l and l0. Here we use the following form of this

function,

hl;l0 ;kðtÞ ¼
1; if l ¼ l0
0; if l 6¼ l0:

�
ð12:7Þ

In (12.6), ZðtÞ is the learning rate parameter, which is required to decrease monotonically,

ZðtÞ ¼ Z0 1� t

tmax

� �
ð12:8Þ
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where Z0 is an initial value of Z. The above algorithm classifies the input training data into n clusters,

where the lth cluster is given as

Al ¼ fxk 2 X : jj xk � tl jj2 ¼ min
1�j�n
½jj xk � tj jj2�g ð1 � l � n; 1 � k � NÞ

and its center element is the tl. Then, the weight of significance that is assigned to tl can simply be

determined using the cluster cardinalities:

wl ¼
@ðAlÞ
Pn

j¼1

@ðAjÞ
ð1 � l � nÞ ð12:9Þ

where @ðAlÞ is the cardinality of the lth cluster. Thus, each weight is the normalized cardinality of the

corresponding cluster. Since the set A ¼ A1 [ A2 [ . . . [ An is a crisp partition on X, it follows that:

Xn

j¼1

@ðAjÞ ¼ N:

Finally, the set ftl; wlg ð1 � l � nÞ is considered as a new training data-set, which will be further

clustered in the next step of the algorithm.

12.3.2 Implementation of the Weighted Fuzzy c-means

The objective function for the weighted fuzzy C-means is

JmðU;VÞ ¼
Xn

l¼1

Xc

i¼1

wlðuilÞmjjtl � vijj2 ð12:10Þ

where c is the number of the final clusters that coincides with the number of rules,

U ¼ f½uil�; 1 � i � c; 1 � l � ng is the partition matrix, V ¼ f½vi�; 1 � i � cg the cluster center

matrix, tl ð1 � l � nÞ are the data to be clustered, m 2 ð1;1Þ is a factor to adjust the membership

degree weighting effect, and wl is given in Equation (12.9). The parameter m is the fuzzification

coefficient and its values must be greater than unity. When m equals unity the partition becomes crisp.

On the other hand, as m increases the overlapping degree between clusters also increases and the partition

becomes fuzzy. A wide range of applications has shown that choosing a value in the interval [1.5, 4]

provides very credible results (Pal and Bezdek, 1995). In this chapter we use the value m ¼ 2, since it is

the one being commonly used in the literature.

The scope is to minimize JmðU;VÞ under the following constraint

Xc

i¼1

uil ¼ 1 8l:

The final prototypes and the membership functions that solve this constrained optimization problem are

given by the equations:

vi ¼

Pn

l¼1

wl ðuilÞmti

Pn

l¼1

wl ðuilÞm
1 � i � c ð12:11Þ

uil ¼
1

Pc

j¼1

jj�l � vijj
jjtl � vjjj

� �2=ðm�1Þ ; 1 � i � c; 1 � l � n: ð12:12Þ

Equations (12.11) and (12.12) constitute an iterative process, which is described next.
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The Weighted Fuzzy c-Means Algorithm

Step 1 Select the number of clusters c, a value for the factor m, and initial values for the prototypes

v1; v2; . . . ; vc.

Step 2 Employ Equation (12.12) to calculate the membership values uil ð1 � i � c; 1 � l � nÞ.
Step 3 Calculate the updated cluster center values vnew

1 ; vnew
2 ; . . . ; vnew

c using Equation (12.11).

Step 4 If max
i
fjjvi � vnew

i jjerrg � " then stop. Else go to step 2.

In the case where all the weights are equal the weighted fuzzy C-means is equivalent to the classical fuzzy

C-means algorithm.

12.3.3 Model Parameter Initialization

The centers vi
j ð1 � j � p; 1 � i � cÞ of the fuzzy sets in Equation (12.2) are obtained by simply

projecting the final cluster centers viði ¼ 1; 2; . . . ; cÞ in each axis. To calculate the respective standard

deviations ð�i
jÞ we utilize the fuzzy covariance matrix

Fi ¼

Pn

l¼1

wl ðuilÞm ðtl � viÞ ðtl � viÞT

Pn

l¼1

wl ðuilÞm
ð1 � i � cÞ:

Then, the standard deviations are,

�i
j ¼ ½DiagðFiÞ�1=2

1 � j � p; 1 � i � c: ð12:13Þ

After the premise parameters have been initialized, we can expand the output of the model, given in

Equation (12.3), into the following fuzzy basis functions (FBFs) form

~yk ¼
Xc

i¼1

piðxkÞ yi
k ð12:14Þ

with

piðxkÞ ¼ !iðxkÞ
,
Xc

j¼1

! jðxkÞ ð12:15Þ

where yi
k is the value of the consequent part of the ith fuzzy rule when xk is the input vector. For the N

input–output data pairs, the consequent parameters are obtained through the minimization of the function:

J1 ¼
XN

k¼1

ðyk � ~ykÞ2: ð12:16Þ

To minimize J1 we employ the well-known least squares method. To this end, the values of the premise

and consequent parameters are used as an initial choice for the tuning process that follows.

12.3.4 Model Parameter Optimization

In this step the system parameters obtained in the previous section are fine tuned using the gradient

descent algorithm. The objective function used for this purpose comes in the form

J2 ¼
1

2N

XN

k¼1

ðyk � ~ykÞ2: ð12:17Þ
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By applying the gradient descent method to minimize J2, the values of the premise parameters of the fuzzy

model can be adjusted by the learning rules:

�vi
j ¼

Z1

N

XN

k¼1

ðyk � ~ykÞ ðyi
k � ~ykÞ

piðxkÞ
!iðxkÞ

@½!iðxkÞ�
@vi

j

( )
ð12:18Þ

and

��i
j ¼

Z2

N

XN

k¼1

ðyk � ~ykÞ ðyi
k � ~ykÞ

piðxkÞ
!iðxkÞ

@½!iðxkÞ�
@�i

j

( )
: ð12:19Þ

Based on (12.2) and (12.4) the partial derivatives in (12.18) and (12.19) can be easily derived. Similarly,

for the consequent parameters the learning formule are

�bi
0 ¼

Z3

N

XN

k¼1

½ðyk � ~ykÞ piðxkÞ� ð12:20Þ

and

�bi
j ¼

Z3

N

XN

k¼1

½ðyk � ~ykÞ piðxkÞ xkj�: ð12:21Þ

In the above equations the parameters Z1; Z2; and Z3 are the gradient-descent learning rates.

12.3.5 Model Simplification

Interpretability can be easily maintained when the number of rules is small enough to be comprehensible,

each rule is consistent, and the membership function forms provide linguistic meaning to the user.

However, the model obtained by the above steps may exhibit redundant behavior in terms of highly

overlapping fuzzy sets, which are not distinguishable. Therefore, it is difficult to assign any meaning to

them. Three issues characterize this behavior (Setnes, Babuska, Kaymak, and van Nauta Lemke, 1998):

(a) similarity between fuzzy sets, (b) similarity of a fuzzy set to the universal set, and (c) similarity of a

fuzzy set to a singleton set. To take into account the above issues, we have to define a suitable and efficient

similarity measure between fuzzy sets. There are two types of similarity measures: set-theoretic measures

and geometric based measures. Set-theoretic measures are able to detect similarities between overlapping

sets, while geometric measures can be efficiently used for distinct fuzzy sets. Then, the simplification

procedure consists of two processes: (i) fuzzy set merging and (ii) fuzzy rule elimination and

combination.

12.3.5.1 Merging of Fuzzy Sets

The most representative set-theoretic similarity measure is of the form

SðA; BÞ ¼ jA \ Bj
jA [ Bj ð12:22Þ

where A, B are fuzzy sets and j � j stands for the fuzzy set cardinality. More specifically, the cardinality of a

fuzzy set A is calculated as

jAj ¼
X

x2A

uAðxÞ

where uAðxÞ is the membership degree of x in the set A.
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We can merge A and B whenever SðA;BÞ � �, with � 2 ½0; 1�. According to this merging process,

the parameters of the new fuzzy set are the mean values of the respective parameters of A and B.

When we use Gaussian membership functions, however, the calculation of the intersection between

two fuzzy sets is very complex because of their nonlinear shape. However, we can approximate a

Gaussian function using triangular (Chao, Chen, and Teng, 1996) or trapezoidal (Chen and

Linkens, 2004) membership functions. Here, we use the approach developed by Chao, Chen, and

Teng, (1996).

Consider two Gaussian fuzzy sets A ¼ fvA; �Ag and B ¼ fvB; �Bg. We distinguish the following four

cases:

(a) vA ¼ vB and �A � �B then: SðA;BÞ ¼ �B=�A: ð12:23Þ

(b) j�A � �Bj
ffiffiffi
�
p � vA � vB � ð�A þ �BÞ

ffiffiffi
�
p

and vA > vB then

SðA;BÞ ¼ ðc1 þ c2Þh1

2ð�A þ �BÞ
ffiffiffi
�
p � ðc1 þ c2Þh1

; ð12:24Þ

where

c1 ¼
�AðvB � vAÞ þ �Að�A þ �BÞ

ffiffiffi
�
p

�A þ �B

; c2 ¼
�BðvB � vAÞ þ �Bð�A þ �BÞ

ffiffiffi
�
p

�A þ �B

and h1 ¼
ðvB � vAÞ þ ð�A þ �BÞ

ffiffiffi
�
p

ð�A þ �BÞ
ffiffiffi
�
p .

(c) vA � vB � j�B � �Aj
ffiffiffi
�
p

, vA > vB and �A � �B then,

SðA;BÞ ¼ c1h1 þ c2h2 þ c3h3

2ð�A þ �BÞ
ffiffiffi
�
p � ðc1h1 þ c2h2 þ c3h3Þ

ð12:25Þ

where

c1 ¼
�AðvB � vAÞ þ �Að�A þ �BÞ

ffiffiffi
�
p

�A þ �B

; c2 ¼
�AðvB � vAÞ þ �Að�B � �AÞ

ffiffiffi
�
p

�B � �A

;

c3 ¼ 2�A

ffiffiffi
�
p
� ðc1 þ c2Þ; h1 ¼

ðvB � vAÞ þ ð�A þ �BÞ
ffiffiffi
�
p

ð�A þ �BÞ
ffiffiffi
�
p ;

h2 ¼
ðvB � vAÞ þ ð�B � �AÞ

ffiffiffi
�
p

ð�B � �AÞ
ffiffiffi
�
p and h3 ¼ h1 þ h2:

(d) vA � vB > ð�A þ �BÞ
ffiffiffi
�
p

and vA > vB then SðA;BÞ ¼ 0:

For the interested reader, a more detailed analysis of the above approach is given by Chao, Chen, and Teng

(1996).

12.3.5.2 Rule Elimination and Combination

After the fuzzy set merging process takes place, some rules may also exhibit redundancy. For

example, when a fuzzy membership function is always close to zero, then the firing degree of the

respective rule is always close to zero. Therefore, such kinds of rules have to be deleted. Moreover,

we can use the above similarity measures to relate two fuzzy rules. This is accomplished by

determining the similarities between the fuzzy sets that participate in these rules and belong to

same universe of discourse. Then, if the minimum of these similarities becomes greater than a certain

threshold, the two fuzzy rules are merged (Chen and Linkens, 2004). In this case, the parameter

values for the new rule are obtained as the mean values of the respective parameters of the original

rules.
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12.4 SIMULATION STUDIES

In this section, we test the algorithm with respect to three issues: (a) the performance of the initial model,

which is the model obtained before the gradient-descent is applied, (b) the performance of the final model,

which is the resulting model after the gradient-descent implementation, and (c) the performance of the

simplified model. If we want to assign qualitative meanings to the above three models we can make the

following comments. The initial model is the result of the weighted fuzzy C-means application. There-

fore, its performance is directly related to the initialization capabilities offered by the weighted fuzzy C-

means, as far as the gradient-descent is concerned. Roughly speaking, this issue is one of the most

important issues in the modeling method, since providing good initial conditions to the gradient-descent

we expect to obtain an accurate and reliable fuzzy model. The final model reflects the impact of the

gradient-descent on the iterative training process. The performance of this model is a quantitative

measure of the overall prediction capabilities of the algorithm. Finally, the simplified model is the

interpretable fuzzy model. Its performance is expected to be inferior when compared with the perfor-

mance of the final model. However, this model is more functional than the previous one.

12.4.1 Nonlinear Static Function Approximation

In this example we study the function approximation capabilities of the algorithm. The function is

described by:

y ¼ ð1þ x�2
1 þ x�1:5

2 Þ2; 1 � x1; x2 � 5:

To build the fuzzy model 50 input–output data pairs were used. To run the SOM we used n ¼ 15 clusters.

The model’s performance index was calculated in terms of the mean-square error (MSE):

MSE ¼
XN

k¼1

ðyk � ~ykÞ2
,

N:

The implementation of the iterative process produced a final model with c ¼ 4 fuzzy rules. The MSE of

this model was equal to 0.0019, while the respective performance of the initial fuzzy model was 0.0581.

The premise parameters of the final model are depicted in Table 12.1. The rules are:

R1 : if x1 is O1
1 and x2 is O1

2 then y ¼ 14:38603� 1:96250 x1 � 0:97448 x2

R2 : if x1 is O2
1 and x2 is O2

2 then y ¼ 12:52732� 0:15062 x1 � 0:11260 x2

R3 : if x1 is O3
1 and x2 is O3

2 then y ¼ 7:13280 � 4:64877 x1 þ 1:27211 x2

R4 : if x1 is O4
1 and x2 is O4

2 then y ¼ 6:05905� 1:26086 x1 � 0:15812 x2:

ð12:26Þ

To test the performance of the final model, we carried out a 10-fold cross-validation procedure, where we

generated 10 fuzzy models. Each of this models consisted of four fuzzy rules. The mean and the standard

Table 12.1 Premise parameter values of the final model for the

static function example.

Oi
1 Oi

2

i v1
i �1

i
v2

i �2
i

1 2.20167 2.18865 �0.52216 1.68843

2 2.94248 1.60927 3.08207 2.41844

3 �0.36051 1.75746 2.66382 1.09466

4 2.75782 0.60507 1.64110 0.32758
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deviation of the performance index for the training data were 0.0021 and 0.00101, while for the test data

were 0.00949 and 0.00722, respectively. Thus, the performance of the final model in (12.26) lies within

the limits provided by the cross-validation procedure.

The next experiment concerns the model simplification. Initially, we performed the model simplifica-

tion using the fuzzy set merging process, only. Then, we applied the gradient descent to optimize the

consequent parameters. This procedure gave a four-rule simplified fuzzy model. Figure 12.2(a) illustrates

the input space fuzzy sets before the model simplification, and Figure 12.2(b) after the implementation of

this process. The resulting rule base is:

R1: if x1 is large and x2 is small then y ¼ 9:80056� 0:87872 x1 � 0:64935 x2

R2 : if x1 is large and x2 is large then y ¼ 2:34883� 0:22419 x1 þ 0:03410 x2

R3 : if x1 is small and x2 is large then y ¼ 13:5639� 4:52583 x1 � 0:85026 x2

R4 : if x1 is large and x2 is medium then y ¼ 6:17259� 0:61819 x1 � 1:06178 x2:

The fuzzy set labels in the above rules are shown in Figure 12.2(b). The MSE obtained by the four-rule

simplified fuzzy model was equal to 0.0132, which is inferior to the original model. Comparing

Figures 12.2(a) and 12.2(b), we can easily notice that while the interpretability has been improved,
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Figure 12.2 Fuzzy sets for the static function example of: (a) the final fuzzy model, (b) the four-rule simplified fuzzy

model, and (c) the two-rule simplified fuzzy model.
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some fuzzy sets are subnormal in the universe of discourse. The reason behind this is that we

have determined the model parameters using an unconstrained optimization process. Thus, the

resulting local minimum may not be able to guarantee that the fuzzy partition can provide meaningful

semantic information for the input space membership functions. A systematic way to solve this problem is

to perform constrained model parameter estimation (Valente de Oliveira, 1999), but in this case

the computational cost will increase. Here we applied the fuzzy set merging and the rule combination–

elimination process and we obtained a two-rule simplified fuzzy model. The MSE for this model was

equal to 0.1239, which is substantially inferior when compared to the performance of the four-rule

simplified model. The resulting input space fuzzy partition is depicted in Figure 12.2(c). From this

figure it is obvious that the interpretability has been further improved and the subnormal sets have

been absorbed. However, some fuzzy sets still have significant overlap. This fact directly implies that

it is very difficult to obtain a fully interpretable model through an automated process, retaining at

the same time its accurate performance. With this regard, the use of constrained optimization might be

useful, but this approach is beyond the scope of this chapter. The rule base of the two-rule simplified

fuzzy model is:

R1 : if x1 is large and x2 is small then y ¼ 5:20606� 0:42646 x1 � 0:49237 x2

R2 : if x1 is small and x2 is large then y ¼ 14:55039� 4:26635 x1 � 2:20197 x2:

Finally, Table 12.2 compares the performances of the models generated here with the performances

of other methods that exist in the literature. This table depicts some very interesting results. First, the

performances of the final model and the mean of the 10-fold cross-validation analysis are the best of

all the other performances. Moreover, these performances were achieved by using a small number of

rules and parameters. Secondly, the four-rule simplified model exhibited very accurate behavior,

which is strongly comparable with methods that do not use any simplification procedure. Thirdly, the

initial model’s performance is also comparable with other performances that use an optimization

approach to estimate the model parameter values. The last remark should be strongly emphasized,

since it directly indicates that the initialization capabilities provided by the weighted fuzzy C-means

were accurate.

Table 12.2 Performance comparison for the static function example.

Model No. of rules No. of Parameters MSE

Chen and Linkens (2004) (final model) 4 28 0.0043

Chen and Linkens (2004) (simplified model) 4 22 0.0078

Emani, Turksen, and Goldenberg (1998) 8 91 0.0042

Kim, Park, Ji, and Park (1997) 3 21 0.0197

Kim, Park, Kim, and Park (1998) 3 21 0.0090

Lee and Ouyang (2003) 10 — 0.0148

Nozaki, Iishibuchi, and Tanaka (1997) 25 125 0.0085

Sugeno and Yasukawa (1993) (initial model) 6 65 0.3180

Sugeno and Yasukawa (1993) (final model) 6 65 0.0790

Tsekouras, Sarimveis, Kavakli, and Bafas (2005) 6 42 0.0110

Tsekouras (2005) 6 30 0.0051

This model (initial model) 4 28 0.0581

This model (final model) 4 28 0.0019

This model (10-fold training data) 4 28 0.0021

This model (10-fold test data) 4 28 0.0095

This model (four-rule simplified) 4 22 0.0132

This model (two-rule simplified) 2 14 0.1239
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12.4.2 Mackey–Glass System

In this section we use the proposed modeling algorithm to predict the Mackey–Glass time series. The

Mackey–Glass time series is generated by the following time-delay differential equation

dxðtÞ
dt
¼ 0:2 xðt � �Þ

1þ x10ðt � �Þ � 0:1 xðtÞ:

When the parameter � is large, the system displays a chaotic behavior. In our simulations we set � ¼ 17

and generated a sample of 1000 points, which are depicted in Figure 12.3. The first 500 points were used

as training data, and the last 500 points as test data to validate the fuzzy model. The input variables of the

model were: xðk � 18Þ; xðk � 12Þ; xðk � 6Þ; and xðkÞ, while the output was the point xðk þ 6Þ. To

measure the model’s performance we employed the root mean-square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k¼1

ðyk � ~ykÞ2
,

N:

vuut

For implementing the SOM algorithm we used n ¼ 12 initial clusters. The iterative process gave c ¼ 5

rules. The performances of the initial and final model on the test data were equal to 0.0232 and 0.0052,

respectively. The performance of the final model on the training data-set was 0.005. Figure 12.4 shows the

predictions of the final model when compared with the original output values.

To further test the model’s performance, we applied a 10-fold cross-validation. According to this

analysis, the mean and the standard variation for the training data were equal to 0.00532 and 0.00061, and

for the test data 0.00565 and 0.00098, respectively.

In the next experiment, we applied the fuzzy set merging and the rule elimination–combination

processes. The resulting simplified fuzzy partition of the input space is depicted in Figure 12.5. The

simplified model consisted of the following c ¼ 3 fuzzy rules,

R1: if x1 is large and x2 is large and x3 is large and x4 is medium

then y ¼ 1:96854� 0:41024 x1 � 1:02690 x2 � 0:06285 x3 þ 0:50012 x4

R2: if x1 is large and x2 is medium and x3 is small and x4 is small

then y ¼ 1:55146� 0:04672 x1 � 1:40628 x2 þ 0:65099 x3 þ 0:18154 x4

R3: if x1 is small and x2 is small and x3 is medium and x4 is large

then y ¼ �0:16365þ 0:38428 x1 þ 0:29107 x2 þ 0:74229 x3 þ 0:12890 x4:
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Figure 12.3 A sample of 1000 points for the Mackey–Glass example.
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Figure 12.4 Original (solid line) and predicted (dashed line) values of the final model for the Mackey–Glass

example.
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Figure 12.5 Fuzzy sets for the Mackey–Glass example of: (a) the final fuzzy model and (b) the simplified fuzzy model.



To obtain the simplified rule base we optimized only the consequent model parameters using (12.20)

and (12.21). The RMSE for the simplified model was 0.0251. In Figure 12.5(b) there still exist some fuzzy

sets with a high overlapping degree. It is clear that we can further increase the model’s interpretability, but

as shown in the previous example the performance of the model will substantially decrease. Finding a

balance between interpretability and accurate performance is a very challenging problem. So far, no

systematic methodology exists to address this issue because the problem differs from application to

application.

Table 12.3 compares the three models with other methods. While the simplified model utilizes the

smallest number of rules and parameters, it eventually achieves an accurate performance. On the other

hand, the initial model outperformed the simplified model, as well as the model developed by Kim and

Kim (1997), indicating once again the effective impact of the weighted fuzzy C-means. Finally, the final

model’s performance is one of the best performances reported in this table.

12.5 CONCLUSIONS

In this chapter, we extended the fuzzy clustering-based fuzzy modeling, by incorporating the weighted

fuzzy C-means into the model’s designing procedure. This task was accomplished through the imple-

mentation of a hierarchical clustering scheme, which consisted of two levels. At the first level the SOM

algorithm was employed to preprocess the available training data. At the second level, the weighted fuzzy

C-means was applied. As was shown, the utilization of the weighted fuzzy C-means exhibits three

appealing features. First, it is able to deal with several difficulties that appear when dealing with the

classical fuzzy c-means. Secondly, it cancels the undesired effects produced by the application of the

preprocessing unit. Thirdly, it provides reliable initialization capabilities for the model parameters.

Finally, we presented several experimental studies illustrating the impact of the above features on the

performances of the final as well as the simplified model.
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13.1 INTRODUCTION

Clustering algorithms partition a collection of data into a certain number of clusters (groups, subsets, or

categories). Though there is no universally agreed definition, most researchers describe a cluster by

considering the internal homogeneity and the external separation (Xu and Wunsch, 2005), i.e., patterns in

the same cluster should be similar to each other, while patterns in different clusters should not (Jain, Murty,

and Flynn 1999; Su and Chou, 2001). Thus, the correct identification of clusters depends on the definition

of similarity. Typically, similarity (more often dissimilarity) is expressed in terms of some distance

function, such as the Euclidean distance or the Mahalanobis distance. The choice of the (dis)similarity

measure induces the cluster shape and therefore determines the success of a clustering algorithm on the

specific application domain. For instance, the Euclidean and Mahalanobis distances lead clustering

algorithms to determine hyperspherical-shaped or hyperellipsoidal-shaped clusters, respectively. Typi-

cally, when we apply a clustering algorithm, we do not know a priori the most natural and effective cluster

shapes for the specific data-set. Each data-set is characterized by its own data distribution and therefore

requires cluster shapes different from other data-sets. Nevertheless, we have to choose the dissimilarity

measure before starting the clustering process. For instance, when we apply the classical fuzzy C-means

(FCM) (Bezdek, 1981), which is one of the best known partitional fuzzy clustering algorithms, we decide

a priori to use the Euclidean distance and therefore to identify hyperspherical-shaped clusters. To

overcome this problem, in the literature, several approaches have been proposed. For instance, den-

sity-based clustering algorithms determine on-line the shape of clusters. In density-based clustering,

clusters are regarded as regions in the data space in which the objects are dense. These regions may have

an arbitrary shape and the points inside a region may be arbitrarily distributed. To determine if a region is
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dense, we need to define the concept of neighborhood, based on a priori defined proximity (see, for

instance, DBSCAN, Ester, Kriegel, Sander, and Xu, 1996, or OPTICS, Ankerst, Breunig, Kriegel, and

Sander, 1999). Though proximity can be defined in terms of any dissimilarity measure, applications of

density-based clustering algorithms proposed in the literature adopt a distance function to determine

spatial proximity. Thus, again, though the shapes of clusters may be different from each other, they still

depend on the a priori choice of a distance.

When applying clustering to data with irregular distribution, as is often the case for image segmentation

and pattern recognition (Jain and Flynn, 1993), distance functions cannot adequately model dissimilarity

(Valentin, Abdi, O’Toole, and Cottrell, 1994; Kamgar-Parsi and Jain, 1999; Santini and Jain, 1999; Latecki

and Lakamper, 2000). Consider, for example, the pixels of an image made up of distinguishable elements

with irregular-shaped contours (for instance, bikes, cars, houses, trees). The dissimilarity between pixels

should be small (large) when the pixels belong to the same image element (different image elements).

To solve this problem, some approaches have been proposed in the literature. For example, Jarvis and

Patrick (1973) defined the dissimilarity between two points as a function of their context, i.e., the set of

points in the neighborhood of each such point. Michalski, Stepp, and Diday (1983) used predefined

concepts to define the ‘‘conceptual similarity’’ between points. Yang and Wu (2004) proposed adopting a

total similarity related to the approximate density shape estimation as objective function of their

clustering method. Jacobs, Weinshall, and Gdalyahu (2000) observed that classification systems, which

can model human performance or use robust image matching methods, often exploit similarity judgement

that is non-metric. Makrogiannis, Economou, and Fotopoutos (2005) introduced a region dissimilarity

relation that combines feature-space and spatial information for color image segmentation.

Pedrycz (2005) suggested exploiting some auxiliary information (knowledge-based hints), which

reflect some additional sources of domain knowledge, in order to guide the clustering process. He, first,

proposed a general taxonomy of knowledge-based hints. Then, he discussed some clustering algorithms

which partition the data-set guided by these hints. In particular, he considered a partially supervised

version of the classical FCM algorithm (Pedrycz and Waletzky, 1997), which uses some labeled patterns

as knowledge-based hints: these labeled patterns serve as reference elements in modeling the cluster

shapes. Further, he discussed a proximity-based fuzzy clustering algorithm where knowledge-based hints

are represented by proximity values between pairs of patterns (Pedrycz, Loia, and Senatore, 2004).

Similarly, Lange, Law, Jain, and Buhmann (2005) or Law, Topchy, and Jain (2005) proposed exploiting

a priori knowledge about a desired model via two types of pairwise constraints: must-link and must-not-

link constraints. The two constraints correspond to the requirements that two objects should and should

not be associated with the same label, respectively.

A different approach proposed extracting the dissimilarity relation directly from the data by guiding the

extraction process itself with as little supervision as possible (Pedrycz et al., 2001). Following this

approach, Hertz, Bar-Hillel, and Weinshall (2004) suggested learning distance functions by using a subset

of labeled data. In particular, they trained binary classifiers with margins, defined over the product space

of pairs of images, to discriminate between pairs belonging to the same class and pairs belonging to

different classes. The signed margin is used as a distance function. Both support vector machines and

boosting algorithms are used as product space classifiers. Using some benchmark databases from the UCI

repository, the authors showed that their approach significantly outperformed existing metric learning

methods based on learning the Mahalanobis distance.

Recently, some methods have been proposed to exploit pairwise dissimilarity information for learning

distance functions (Xing, Ng, Jordan, and Russell, 2003). Tsang, Cheung, and Kwok (2005), for instance,

proposed learning distance metric from a subset of pairwise dissimilarity values by a kernelized version of

the relevant component analysis method. Chang and Yeung (2005) formulated the metric learning

problem as a kernel learning problem, which is efficiently solved by kernel matrix adaptation.

Similarly, in this chapter, we will discuss how the dissimilarity relation can be extracted directly from a

few pairs of data with known dissimilarity values rather than from pairs of data with known labels. We will

discuss the application of two different techniques based on, respectively, neural networks and fuzzy

systems. More precisely, we use a multilayer perceptron (MLP) with supervised learning (Haykin, 1999)

and a Takagi–Sugeno (TS) fuzzy system (Takagi and Sugeno, 1985). The rules of the TS are identified by
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using the method proposed by Setnes and Roubos (2000). Once the MLP has been trained and the TS has

been identified, the two models can associate a dissimilarity value with each pair of patterns in the data-

set. This relation, extracted from the data, can be exploited by a relational clustering algorithm to partition

the data-set into a suitable number of clusters.

In real applications, clusters are generally overlapped and their boundaries are fuzzy rather than crisp. The

identification of these clusters demands appropriate fuzzy relational clustering algorithms. To the best of our

knowledge, fuzzy relational clustering algorithms proposed in the literature require dissimilarity relations

which are symmetric and irreflexive (Bezdek, Keller, Krisnapuram, and Pal, 1999). On the other hand, the

generalization performed by the MLP and by the TS may produce a relation that is neither symmetric nor

irreflexive. For instance, a pattern not included in the training set may be judged slightly dissimilar to itself.

Further, the dissimilarity value between pattern xi and pattern xj may be different from the dissimilarity

value between pattern xj and pattern xi. Thus, though fuzzy relational algorithms may work correctly on the

relation produced by the two models, sometimes they converge to solutions which are not sound.

Actually, we observed that some of the best known fuzzy clustering algorithms, when applied to the

dissimilarity relations extracted by the MLP and the TS, converge to a partition composed completely

superimposed clusters, that is, each pattern in the data-set belongs to all clusters with the same member-

ship grade. To overcome this unstable behavior, in a previous paper we proposed a new approach to fuzzy

relational clustering: (Corsini, Lazzerini, and Marcelloni, 2005) starting from the definition of relational

clustering algorithm, we transformed a relational clustering problem into an object clustering problem.

This transformation allows us to apply any object clustering algorithm to partition sets of objects

described by relational data. In the implementation based on the classical FCM algorithm and denoted

ARCA (Corsini, Lazzerini, and Marcelloni, 2005), we verified that this approach produces partitions

similar to the ones generated by the other fuzzy relational clustering algorithms, when these converge to a

sound partition. On the other hand, as FCM has proved to be one of the most stable fuzzy clustering

algorithms, ARCA is appreciably more stable than the other fuzzy relational clustering algorithms. In this

chapter we show the effectiveness of the combinations MLP–ARCA and TS–ARCA using a synthetic

data-set and the Iris data-set, respectively. We describe how these combinations achieve very good

clustering performance using a limited number of training samples. Further, we show how the TS can

provide an intuitive linguistic description of the dissimilarity relation. Finally, we discuss the perfor-

mance obtained by the combination TS–ARCA on three real data-sets from the UCI repository.

We wish to point out that the combination of supervised and unsupervised learning discussed in this

chapter is intended for use in all cases in which the dissimilarity relation can be learnt from a reasonably

small portion of samples, which form the training set. The method works, in principle, with any kind of

data-set. In fact, as it unfolds the entire data onto as many dimensions as the number of data points in order

to transform the relational clustering to object-based clustering, it is more appropriate for moderate-size

data-sets, typically containing up to a few hundreds of patterns.

13.2 DISSIMILARITY MODELING

Our approach to fuzzy clustering is based on extracting the dissimilarity measure that drives the clustering

strategy from a small set of known similarities. Thus, we have to generate a model that, given a pair (xi, xj)

of input data, outputs the dissimilarity degree di;j between xi and xj. The generation of this model is a

typical identification problem, which has been tackled by different techniques such as classical mathe-

matical theory, support vector machines, neural networks, and fuzzy modeling. In this work, we discuss

the application of two of these techniques: neural networks and fuzzy modeling. In particular, to model

the dissimilarity relation, we used a multilayer perceptron (MLP) neural network with supervised

learning and a Takagi–Sugeno (TS) fuzzy system. We assume that the patterns are described by numerical

features (possibly, nonnumerical features are appropriately transformed into numerical ones) and the

dissimilarity degrees1 between a few pairs of patterns are known. Let T ¼ fz1; . . . ; zNg be the set of

1Actually, our method can deal with both similarity and dissimilarity relations.

DISSIMILARITY MODELING 267



known data, where zn ¼ ½xi; xj; di;j� 2 <2Fþ1. In the following two sections, we briefly describe the MLP

and the TS used in our experiments.

13.2.1 The Multilayer Perceptron

We use a standard feedforward three-layer MLP neural network. Each neuron is equipped with a

sigmoidal nonlinear function. The standard back-propagation algorithm with a dynamically decreasing

learning rate is used as a learning scheme. Errors less than 0.001 are treated as zero. Initial weights are

random values in the range b�1=
ffiffiffiffi
m
p

; 1=
ffiffiffiffi
m
p
c, with m being the number of inputs to a neuron. As

described by Corsini, Lazzerini, and Marcelloni (2006), to determine the best structure of the neural

network with respect to the generalization capability, we performed a number of experiments with two-

layer and three-layer MLP and with a different number of neurons for each hidden layer. For the data-sets

discussed in this chapter, we observed that the best generalization properties are obtained by using an

architecture with 20 and eight neurons for the first and second hidden layers, respectively. Further, we

experimentally verified that this result is quite independent of the size of the training set, at least for the

sizes used in the experiments.

13.2.2 The Takagi–Sugeno System

The rules of the TS have the following form:

ri: If X1;1 is Ai;1;1 and . . . X1;F is Ai;1;F and X2;1 is Ai;2;1 and . . . X2;F is Ai;2;F

then di ¼ aT
i;1X1 þ aT

i;2X2 þ bi; i ¼ 1::R

where R is the number of rules, Xe ¼ ½Xe;1; . . . ;Xe;F �, with e¼1, 2, are the two input variables of F

components that represent the pair of patterns whose dissimilarity has to be evaluated, Ai;e;1,. . ., Ai;e;F are

fuzzy sets defined on the domain of Xe;1, . . ., Xe;F , respectively, aT
i;e ¼ ½ai;e;1; . . . ; ai;e;F �, with ai;e;f 2 <,

and bi 2 <. The model output d, which represents the dissimilarity between two input patterns, is

computed by aggregating the conclusions inferred from the individual rules as follows:

d ¼

PR

i¼1

bidi

PR

i¼1

bi

ð13:1Þ

where bi ¼
QF

f¼1

Ai;1; f ðxj; f Þ
QF

f¼1

Ai;2; f ðxk; f Þ is the degree of activation of the ith rule, when the pair (xj, xk) is

fed as input to the rule.

ATS model is built through two steps, called the structure identification and the parameter identifica-

tion (Babuška, 1996). The structure identification determines the number of rules and the variables

involved in the rule antecedents. The parameter identification estimates the parameters that define,

respectively, the membership functions of the fuzzy sets in the antecedents and the consequent functions.

The number of rules is generally computed by exploiting a clustering algorithm (Angelov and Filev, 2004;

Abonyi, Babuška, and Szeifert, 2002). More precisely, the number of rules coincides with the number of

clusters of the input-output space partition, which results to be the best with respect to an appropriate

validity index. The parameter identification is obtained by first computing the fuzzy sets in the antecedent

of the rules, and then estimating the parameters of the mathematical functions in the consequent (Angelov

and Filev, 2004). One of the most used clustering algorithms to identify the structure of a TS is the

classical FCM with Euclidean distance. As the FCM algorithm finds the fuzzy partition starting from a

fixed number of clusters, and the number of clusters determines the number of rules that compose the

fuzzy model, a criterion has to be adopted to determine the optimal number of clusters. The most common

approach is to identify an interval of possible values of the number R of clusters and execute the FCM for
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each value in the interval. Each execution is therefore assessed against a validity index. Several different

validity indexes have been proposed in the literature (Bezdek, Keller, Krisnapuram, and Pal, 1999). The

most used among these indexes are the Xie and Beni’s index (XB, Xie, and Beni, 1991), the Fukuyama

and Sugeno’s index (Pal and Bezdek, 1995), the Gath and Geva’s index (Gath and Geva, 1989), and the

Rezaee, Lelieveldt, and Reiber’s index (Rezaee, Lelieveldt, and Reiber, 1998). As is well known in the

literature, there does not exist a validity index which is good for each data-set (Pal and Bezdek, 1995). In

order to choose the most reliable index for the data-sets used in the experiments, we compared the

aforementioned validity indexes against the TS accuracy obtained with the number of rules determined by

the indexes. We observed that the XB index guarantees the best results. The Xie–Beni index is defined as

XBðU;V ; TÞ ¼
PR

i¼1

PN
n¼1 u2

i;n k zn � vik2

Nðminj 6¼k k vj � vkk2Þ
;

where V is the vector of cluster prototypes vi and U is the fuzzy partition matrix whose generic element u2
i;n

represents the grade of membership of zn to cluster i. The numerator of the fraction measures the

compactness of the clusters while the denominator measures the degree of separation of the cluster

prototypes. For compact and well-separated clusters we expect small values of XB. We execute the FCM

algorithm with increasing values of the number R of clusters for values of the fuzzification constant m in

{1.4, 1.6, 1.8, 2.0} and plot the Xie–Beni index versus R. We choose, as the optimal number of clusters,

the value of R corresponding to the first distinctive local minimum.

The combination of the FCM and the Xie–Beni index helps determining only the rules that describe

important regions of the input/output space, thus leading to a moderate number of rules. Fuzzy sets Ai;e; f are

obtained by projecting the rows of the partition matrix U onto the fth component of the input variable Xe and

approximating the projections by triangular membership functions Ai;e;f ðli;e;f ;mi;e;f ; ri;e;f Þ with

li;e;f < mi;e;f < ri;e; f real numbers on the domain of definition of Xe;f . We computed the parameter

mi;e;f , which corresponds to the abscissa of the vertex of the triangle, as the weighted average of the Xe;f

components of the training patterns, the weights being the corresponding membership values. Parameters

li;e;f and ri;e;f were obtained as intersection of the Xe;f axis with the lines obtained as linear regression of the

membership values of the training patterns, respectively, on the left and the right sides of mi;e;f . Obviously, if

li;e;f and ri;e;f are beyond the extremes of the definition domain of variable Xe;f , the sides of the triangles are

truncated in correspondence to the extremes. The use of triangular functions allows easy interpretation of the

fuzzy sets in linguistic terms. Once the antecedent membership functions have been fixed, the consequent

parameters ½ai;1; ai;2; bi�, i ¼ 1::R, of each individual rule i are obtained as a local least squares estimate.

The strategy used so far to build the TS is aimed at generating a rule base characterized by a number of

interesting properties, such as a moderate number of rules, membership functions distinguishable from

each other, and space coverage, rather than at minimizing the model error. We experimentally verified that

this TS could show a poor performance, in particular for training sets composed of a high number of pairs.

Thus, we apply a genetic algorithm (GA) to tune simultaneously the parameters in the antecedent and

consequent parts of each rule in a global optimization. To preserve the good properties of the fuzzy model,

we impose that no gap exists in the partition of each input variable. Further, to preserve distinguishability

we allow the parameters that define the fuzzy sets to vary within a range around their initial values. Each

chromosome represents the entire fuzzy system, rule by rule, with the antecedent and consequent parts

(see Figure 13.1). Each rule antecedent consists of a sequence of 2 � F triplets (l, m, r) of real numbers

representing triangular membership functions, whereas each rule consequent contains 2 � F þ 1 real

numbers corresponding to the consequent parameters. The fitness value is the inverse of the mean square

error (MSE) between the predicted output and the desired output over the training set.

We start with an initial population composed of 70 chromosomes generated as follows. The first

chromosome codifies the system generated by the FCM, the others are obtained by perturbing the first

chromosome randomly within the ranges fixed to maintain distinguishability. At each generation, the

arithmetic crossover and the uniform mutation operators are applied with probabilities 0.8 and 0.6,

respectively. Chromosomes to be mated are chosen by using the well-known roulette wheel selection

method. At each generation, the offspring are checked against the aforementioned space coverage
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criterion. To speed up the convergence of the algorithm without significantly increasing the risk of

premature convergence to local minima, we adopt the following acceptance mechanism: 40 % of the new

population is composed of offspring, whereas 60 % consists of the best chromosomes of the previous

population. When the average of the fitness values of all the individuals in the population is greater than

99.9 % of the fitness value of the best individual or a prefixed number of iterations has been executed

(6000 in the experiments), the GA is considered to have converged.

The fairly large size of the population and the mutation probability higher than usual have been chosen

to counteract the effect of the strong exploitation of local linkages. Indeed, due to real coding (Wright,

1991) and to constraints imposed on the offspring so as to maintain distinguishability, exploitation could

lead to a premature convergence to sub-optimal solutions. The values of the GA parameters used in the

experiments reduce this risk. To strengthen this consideration, we observed in the experiments that,

varying the data-set, the values of the GA parameters do not need to be changed.

13.2.3 MLP versus TS

To compare the two approaches, we used the synthetic data-set shown in Figure 13.2 and the Iris data-set

(UCI, 2006). The first data-set was chosen because clustering algorithms, which measure the dissimilarity

antecedenti

Ai,1,1 

li,1,1 mi,1,1 ri,1,1 … li,2,F mi,2,F ri,2,F ai,1,1 … bi

…

   li,1,1     mi,1,1  ri,1,1

Ai,2,F

   li,2,F  mi,2,F ri,2,F

1

consequenti

ai,2,F

ri

1

… …
r1

… …

rR

Figure 13.1 The chromosome structure.

Figure 13.2 The synthetic data-set.
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between two points as the distance between the two points, cannot partition it correctly. Indeed, both the

Euclidean and the Mahalanobis distances that induce, respectively, spherical and ellipsoidal cluster

shapes lead, for instance, the FCM algorithm and the GK algorithm (Gustafson and Kessel, 1979) to

partition the data-set incorrectly (Corsini, Lazzerini, and Marcelloni, 2006).

For each data-set, we carried out five experiments. In these experiments, we aimed to assess how much

the size of the training pool affected the performance of the MLP and the TS. For this purpose, we

randomly extracted a pool of patterns (called the training pool) from the data-set. This pool was

composed of 5 %, 10 %, 15 %, 20 %, and 25 % of the data-set, respectively, in the five experiments.

Then, we built the training set by selecting a given number of pairs of patterns from the training pool.

More precisely, assume that C is the number of clusters, which we expect to identify in the data-set. Then,

for each pattern xi in the training pool, we formed q �C pairs (xi,xj), with q 2 ½1::8�, by randomly selecting

q �C patterns xj of the training pool as follows: q patterns were chosen among those with dissimilarity

degree lower than 0.5 with xi, and the remaining q � (C-1) patterns were chosen among those with

dissimilarity degree higher than 0.5.

This choice tries to provide the same number of training samples for pairs of points belonging to

different clusters as for pairs of points belonging to the same cluster. Obviously, since we do not know a

priori the membership of each point to a class, this choice is only an approximation. However, we

experimentally verified that it provides reliable results. It is obvious that increasing values of q leads to

better classification performance, but also to increasing execution times. Obviously, we assumed the

dissimilarity degrees between all the pairs that can be built from patterns in the training pool were known.

This assumption, which is not actually necessary, was made to test the effects of q on the performance of

the MLP and the TS. For the two data-sets, we observed that q¼ 5 provides a good trade off between

classification accuracy and execution time. Let di;j be the degree of dissimilarity between xi and xj. We

inserted both ½xi; xj; di;j� and ½xj; xi; di;j� into the training set.

We carried out the five experiments described above and, for each experiment, we executed 10 trials.

For the sake of simplicity, in the experiments, we used only 0 and 1 to express the dissimilarity degree of

two input points belonging to the same class or to different classes, respectively. Please note that we use

the knowledge about classes just to assign dissimilarity degrees to pairs of points in the training pool.

To assess the generalization properties, for each trial and each experiment we tested the two models on

all possible pairs of points in the data-set and measured the percentage of the point pairs with dissimilarity

degree lower than (higher than) 0.5 for pairs of points belonging (not belonging) to the same class.

Tables 13.1 and 13.2 show the percentages of correct dissimilarity values obtained by applying the

MLP to the synthetic and the Iris data sets. In the tables, the columns show, respectively, the percentage of

points composing the training pool and the percentage (in the form (mean� standard deviation)) of

pattern pairs with correct dissimilarity.

Tables 13.3 and 13.4 show the percentages of correct dissimilarity values obtained by applying the TS

system to the synthetic and the Iris data-sets. In the tables, the columns indicate, respectively, the

percentage of points composing the training pool, the number of rules of the TS model (in the form

(mean� standard deviation)) and the percentage of correct dissimilarity values before and after the GA

optimization. It can be observed that the application of the GA sensibly improves the percentage of correct

dissimilarity values generated by the TS model independently of the cardinality of the training pool.

Table 13.1 Percentage of point pairs with correct dissimilarity values

(MLP system on the synthetic data-set).

Training pool Correct dissimilarity values

5% 70.1%� 5.2%

10% 73.8%� 4.5%

15% 81.5%� 4.3%

20% 85.1%� 3.3%

25% 89.8%� 2.2%
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As shown in the tables, the two approaches have similar performance. Both the MLP and the TS

achieve about 90 % of correct dissimilarity values with 25 % of the points. We have to consider that the

percentage of total pairs of points included in the training set is much lower than the percentage of total

points in the training pool. For instance, for the synthetic data-set, a training pool composed of 25 % of the

points corresponds to a training set composed of 2.78 % of the dissimilarity values. Taking this into

account, the percentages achieved by the two approaches are undoubtedly remarkable.

As regards the computational overhead, to achieve the results shown in Tables 13.1 and 13.2, the

identification of the best performing architecture of the MLP has required several experiments. We used

architectures with both two layers and three layers and with a different number of neurons for each hidden

layer. For the two-layer architecture, we used 10, 20, 30, 40, 50, 60, and 70 neurons in the hidden layer and for

the three-layer architecture, we used 12, 16, 20, 24, and 28 neurons in the first hidden layer and 4, 6, 8, 10, and

12 in the second hidden layer (Corsini, Lazzerini, and Marcelloni, 2006). For each architecture, we trained the

MLP and evaluated the percentage of point pairs with correct dissimilarity. Similarly, to determine the

structure of the TS system, we executed the FCM algorithm with increasing values of the number R of clusters

for different values of the fuzzification constant m and assessed the goodness of each resulting partition using

the Xie–Beni index. Since the execution of the FCM is generally faster than the learning phase of an MLP, the

determination of the TS structure is certainly quicker than the identification of the MLP architecture.

Once the structure has been identified, the TS requires the execution of the GA for tuning the

membership functions and the consequent parameters so as to minimize the mean square error. As is

well known in the literature, GAs are generally computationally heavy. We verified, however, that the GA

used in this work performs a good optimization after a reasonable number of iterations. As an example,

Figure 13.3 shows the percentage of correct dissimilarity values versus the number of generations in five

trials with the Iris data-set and a training pool of 25 %. We can observe that a thousand generations allow

the genetic algorithm to achieve a good approximation of the dissimilarity relation. If we consider that, as

discussed in the next section, we can obtain good clustering results with 70–75 % of correct dissimilarity

values, we can stop the genetic algorithm after a few hundreds of generations. This solution provides the

further advantage of preventing overfitting problems, which may occur for small and unrepresentative

training sets. The results shown in Tables 13.3 and 13.4 were obtained by stopping the GA after 2000

generations. Thus, we can conclude that the generation of the TS requires less effort than the generation of

the MLP. Indeed, the determination of the best MLP network requires iteration through a number of MLP

architectures with a different number of hidden layers and of nodes for each layer. The different networks

Table 13.2 Percentage of point pairs with correct dissimilarity values

(MLP system on Iris data-set).

Training pool Correct dissimilarity values

5% 81.2%� 3.2%

10% 85.5%� 3.8%

15% 88.1%� 3.4%

20% 90.4%� 3.5%

25% 90.7%� 2.7%

Table 13.3 Percentage of point pairs with correct dissimilarity values (TS system on the synthetic data-set).

Correct dissimilarity Correct dissimilarity

Training pool Number of rules values before GA values after GA

5% 10.5� 3.3 61.8%� 6.7% 69.6%� 7.6%

10% 10.1� 3.2 66.3%� 3.8% 75.7%� 5.2%

15% 11.7� 3.2 65.6%� 6.8% 82.6%� 4.2%

20% 12.6� 2.9 67.8%� 3.0% 85.3%� 3.9%

25% 14.2� 1.5 69.7%� 2.8% 90.4%� 3.5%
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are compared against accuracy. Each architecture has to be trained and this operation generally requires a

considerable amount of time, depending on the number of layers and neurons for each layer. On the

contrary, the determination of the TS structure requires iteration of the execution of FCM with different

values of the number of clusters. The execution of FCM is certainly faster than the training of the MLP

network and also the number of executions of FCM needed is generally smaller than the number of MLP

networks to be trained. On the other hand, the generation of the TS systems requires the execution of the

GA, which is quite time consuming. We have to consider, however, that the GA is executed just one time.

Finally, unlike the MLP, the TS allows describing the dissimilarity relation intuitively. Figure 13.4 shows

the antecedent and the consequent of the rules that compose a TS model (after the optimization performed

by GA) generated with the training pool composed of 15 % of the synthetic data-set. Here, we have

associated a label with each fuzzy set based on the position of the fuzzy set in the universe of definition.

Since each rule defines its fuzzy sets, which may be different from the other rules, we used the

following method to assign a meaningful linguistic label to each fuzzy set. First, we uniformly partition

the universes of discourse into G triangular fuzzy sets (denoted as reference terms in the following) and

associate a meaningful label with each fuzzy set. In the example, labels L, ML, M, MH, and H denote,

respectively, low, medium-low, medium, medium-high, and high (see Figure 13.5). Then, we compute the

similarity between each fuzzy set used in the rules and the reference terms using the formula

Si;e;f ;l ¼
Ai;e;f \ Pl;e;f

�� ��
Ai;e;f [ Pl;e;f

�� �� ;

Figure 13.3 Percentage of correct dissimilarity values versus the number of generations.

Table 13.4 Percentage of pattern pairs with correct dissimilarity values (TS system on Iris data-set).

Correct dissimilarity Correct dissimilarity

Training pool Number of Rules values before GA values after GA

5% 8.9� 2.4 80.0%� 4.1% 80.5%� 4.5%

10% 6.4� 1.6 82.7%� 4.8% 87.7%� 3.1%

15% 4.8� 0.6 80.8%� 3.0% 90.2%� 2.2%

20% 4.4� 0.8 78.5%� 7.0% 91.6%� 2.0%

25% 4.7� 0.5 80.7%� 4.7% 91.6%� 1.8%
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where Ai;e;f and Pl;e;f are, respectively, a fuzzy set and a reference term defined on the domain of input Xe;f

(Sugeno and Yasukawa, 1993). Finally, if there exists a value of Si;e;f ;l, with l ¼ 1::G, larger than a fixed

threshold � , the reference term Pl;e;f is associated with Ai;e;f (if there exist more Pl;e;f with Si;e;f ;l > � , then

Ai;e;f is associated with the Pl;e;f corresponding to the highest Si;e;f ;l); otherwise, Ai;e;f is added to the

reference terms after associating a meaningful label with it. This association is carried out as follows. We

first determine the reference term Pl;e;f more similar to Ai;e;f . Then we generate four fuzzy sets. Two fuzzy

sets are obtained by halving and doubling the support of Pl;e;f . We name the two fuzzy sets very Pl;e;f and

more or less Pl;e;f , respectively. The other two fuzzy sets are generated as ðPl;e;f þ Pl;e;f�1Þ=2, if f 6¼ 0, and

ðPl;e;f þ Pl;e;fþ1Þ=2, if f 6¼ F (in the cases f ¼ 0 and f ¼ F, no fuzzy set is generated). The results

of ðPl;e;f þ Pl;e;f�1Þ=2 and ðPl;e;f þ Pl;e;fþ1Þ=2 are two triangular fuzzy sets defined as

ll;e; f þ ll;e; f�1

2
;
ml;e; f þ ml;e; f�1

2
;
rl;e; f þ rl;e; f�1

2

� �

Figure 13.4 Rules after GA (synthetic data-set).

 L       ML        M       MH        H 

xmin xmax Xe,k

1

0

µ(x) 

Figure 13.5 Reference terms for a generic input variable Xe; k .

274 FUZZY CLUSTERING BASED ON DISSIMILARITY RELATIONS EXTRACTED FROM DATA



and

ll;e;f þ ll;e;fþ1

2
;
ml;e;f þ ml;e;fþ1

2
;
rl;e;f þ rl;e;fþ1

2

� �
;

respectively. We name these two fuzzy sets as Pl;e;f � Pl;e;f�1 and Pl;e;f � Pl;e;fþ1, respectively. For

instance, if Pl;e;f ¼ ML, we obtain very ML, more or less ML, L-ML, and ML-M. Finally, we select the

most similar among the four fuzzy sets to Ai;e;f and assign the corresponding label to Ai;e;f . Once the fuzzy

sets of all the rules have been examined, we again compute the similarity between each fuzzy set and the

current reference terms in order to associate the most appropriate label with each fuzzy set. To generate

the labels associated with the fuzzy sets shown in Figure 13.4, we have used a threshold � ¼ 0:5:Note that

no further reference term has been added.

To interpret the rules, we follow this procedure: for each pattern zn ¼ ½xi; xj; di;j� in the training set, we

feed as input the values of the coordinates of xi and xj to the TS model and measure the activation degree

of each rule. We aim to discover whether there exists a relation between the activation of a rule and the

values of dissimilarity. Table 13.5 shows, for each rule, the mean value �di;j of dissimilarity di,j of the pairs

(xi,xj) of patterns of the training set that activate this rule more than the other rules. This association

between rules and dissimilarity values helps us interpret the meaning of the rules. From rule r4, for

instance, we can deduce that if the abscissa and the ordinate of the first point are, respectively, MH and

MH, and the abscissa and the ordinate of the second point are, respectively, ML and M, then the

dissimilarity is high. This rule can be easily verified by observing the data-set in Figure 13.2.

We note that rules are activated by pairs of points with either high or low dissimilarity. Indeed, the mean

value of dissimilarity is close to 0 or 1. This means that the antecedents of the rules determine regions of

the plane which contain points belonging either to the same class or to different classes. This observation

confirms the results shown in Table 13.3: using 15 % of points in the training pool, we achieved 82.6 % of

correct classification.

13.3 RELATIONAL CLUSTERING

Let Q ¼ ½x1; . . . ; xM� be the data-set. Once the MLP has been trained or the TS has been generated and

optimized, we compute the dissimilarity value between each possible pair ðxi; xjÞ of patterns in the data-

set Q. Such dissimilarity values are provided as an M �M relation matrix D ¼ ½di;j�. The value di;j

represents the extent to which xi is dissimilar to xj. Thus, the issue of partitioning patterns described

through a set of meaningful features is transformed into the issue of partitioning patterns described

through the values of their reciprocal relations. This issue is tackled by relational clustering in the

literature. One of the most popular relational clustering algorithms is the sequential agglomerative

Table 13.5 The qualitative model.

Rule X1,1 X1,2 X2,1 X2,2
�di;j

r1 ML M M M 0.92

r2 M ML M H 0.73

r3 ML ML ML M 0.00

r4 MH MH ML M 1.00

r5 M H M H 0.00

r6 M MH M L 0.70

r7 ML M ML M 0.00

r8 M MH M M 0.73

r9 M ML M ML 0.32

r10 M M ML M 0.50

r11 ML M M H 0.38
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hierarchical nonoverlapping clustering algorithm, which generates clusters by sequentially merging pairs of

clusters which are the closest to each other at each step (Sneath and Sokal, 1973). Another well-known

relational clustering algorithm partitions the data-set around a fixed number of representative objects,

denoted medoids. The medoids are chosen from the data-set in such a way that the sum of the intra-cluster

dissimilarity is minimized (Kaufman and Rousseeuw, 1987, 1990). Two versions of this algorithm aimed at

handling large data-sets were proposed by Kaufman and Rousseeuw (1987) and by Ng and Han (1994),

respectively. The aforementioned algorithms generate crisp clusters. As we are interested in finding a fuzzy

partition of the data-set, in the following we discuss fuzzy relational clustering algorithms. The most popular

examples of fuzzy relational clustering are the fuzzy nonmetric model (FNM, Roubens, 1978), the assign-

ment prototype model (AP, Windham, 1985), the relational fuzzy C-means (RFCM, Hathaway, Davenport,

and Bekdek, 1989), the non-Euclidean relational fuzzy C-means (NERFCM, Hathaway, and Bezdek, 1994),

the fuzzy analysis (FANNY, Kaufman, and Rousseeuw, 1990), the fuzzy C-medoids (FCMdd, Krishna-

puram, Joshi, Nasraoni, and Yi, 2001), and fuzzy relational data clustering (FRC, Davé, and Sen, 2002). All

these algorithms assume (at least) that D ¼ ½di;j� is a positive, irreflexive, and symmetric fuzzy square binary

dissimilarity relation, i.e., 8i; j 2 ½1::M�, di;j � 0, di;i ¼ 0, and di;j ¼ dj;i. Unfortunately, the relation D

produced by the two models may be neither irreflexive nor symmetric, thus making the existing fuzzy

relational clustering algorithms theoretically not applicable to this relation. Actually, as shown by Corsini,

Lazzerini, and Marcelloni (2002, 2004), these algorithms can be applied, but their convergence to a

reasonable partition is not guaranteed (see, for instance, Corsini, Lazzerini, and Marcelloni, 2005). Indeed,

in some data-sets used in our experiments, we observed that these algorithms tend to converge to a partition

with completely superimposed fuzzy sets, that is, each object belongs to all clusters with equal membership

value. To overcome this difficulty, we suggested transforming a relational clustering problem into an object

clustering problem (Corsini, Lazzerini, and Marcelloni, 2005).

The basic idea of our approach arises from the definition of relational clustering algorithm itself: a

relational clustering algorithm groups together objects that are ‘‘closely related’’ to each other, and ‘‘not

so closely’’ related to objects in other clusters. Given a set of M patterns, and a square binary relation

matrix D ¼ ½di;j�, with i; j in [1..M], two patterns xi and xj should belong to the same cluster if the two

vectors of the M strengths of relation between, respectively, xi and all the patterns in the data-set Q, and xj

and all the patterns in Q, are close to each other. The two vectors correspond to the rows Di and Dj of the

matrix D. As the relation strengths are real numbers, the two vectors Di and Dj can be represented as points

in the metric space �M . The closeness between Di and Dj can be computed by using any metric defined in

�M; for instance, we could adopt the Euclidean or the Mahalanobis distance. Then, patterns xi and xj have

to be inserted into the same cluster if and only if the distance between Di and Dj is small (with respect to

the distances between Di (resp. Dj) and all the other row vectors). Based on this observation, the problem

of partitioning M patterns, which are described by relational data, moves to the problem of partitioning M

object data Dk, k ¼ 1::M, in the metric space �M . Thus, any clustering algorithm applicable to object data

can be used. In particular, as proposed by Corsini, Lazzerini, and Marcelloni (2005, 2006), where the

resulting clustering algorithm has been named ARCA, we can use the classical FCM. In the experiments,

we used m ¼ 2 and " ¼ 0:001, where " is the maximum difference between corresponding membership

values in two subsequent iterations. Moreover, we implemented the FCM algorithm in an efficient way in

terms of both memory requirement and computation time, thanks to the use of the technique described by

Kolen and Hutcheson (2002).

We executed ARCA with C ranging from two to five and chose the optimal number of clusters based

on the Xie–Beni index. Tables 13.6 and 13.7 show the percentage of correctly classified points in the five

experiments when C ¼ 2 for the synthetic dataset and C ¼ 3 for the Iris data-set, respectively. Here, the

second and fourth columns indicate the percentage of correctly classified points for dissimilarity

relations extracted by, respectively, the MLP and the TS, and the third and fifth columns the correspond-

ing partition coefficients. The partition coefficient (PC) is defined as the average of the squared

membership degrees. PC essentially measures the distance the partition U is from being crisp by

assessing the fuzziness in the rows of U. PC varies in the interval 1
C
; 1

� �
. Empirical studies show that

maximizing PC leads to a good interpretation of data. Thus, the closer PC is to one, the better the

partition is. As expected, the percentage of correctly classified points increases with the increase of
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points in the training pool. Just for small percentages of points in the training pool, the combinations

MLP–ARCA and TS–ARCA are able to trace the boundaries of the classes conveniently. The quality of

the approximation improves when the points of the training pool are a significant sample of the overall

data-set. The tables show that the class shape is almost correctly identified just with 5 % of the points of

the data-set. Note that, as reported in Tables 13.1–13.4, the MLP and the TS are able to output only

70.1 % and 69.6 % of correct dissimilarity values for the synthetic data-set, and 81.2 % and 80.5 % for

the Iris data-set, when trained with training pools containing the same percentage of points. Finally, the

high values of the partition coefficient highlight that the partition determined by the relational clustering

algorithm is quite good.

Tables 13.8 and 13.9 show the number of clusters (in the form (mean� standard deviation)) in the five

experiments for, respectively, the synthetic and Iris data-sets when using the TS. It can be observed that

the percentage of trials in which the number of clusters is equal to the number of classes increases very

quickly (up to 100 %) with the increase of the percentage of points in the training pool.

As shown in Tables 13.6 and 13.7, ARCA achieves very interesting results and is characterized by a

certain stability. As comparison, we applied some of the most popular fuzzy clustering algorithms to the

same relations extracted by the TS and we observed a strong dependence of the results on the initial

partition and on the fuzzification constant m. In several trials, we found out that the algorithms converge to

a partition composed completely superimposed fuzzy sets. Anyway, since ARCA adopts the Euclidean

distance, it suffers from the well-known curse of dimensionality problems: when the dimensionality

increases, distances between points become relatively uniform, thus making the identification of clusters

practically impossible. Actually, the curse of dimensionality problems could arise because the dimension

of the space is equal to the number of objects in the data-set. Thus, for very large data-sets, we should

adopt distance functions more suitable for high-dimensional spaces in place of the Euclidean distance. We

did not adopt this solution in the examples simply because it was not strictly necessary. We performed,

however, some experiments with the version of FCM proposed by Klawonn and Keller (1999), which

adopts the cosine distance in place of the Euclidean distance. We used large dissimilarity relations

Table 13.6 Percentage of correctly classified points of the synthetic data-set in the five experiments.

TS system MLP system

Training Correctly Partition Correctly Partition

pool classified points coefficient classified points coefficient

5% 84.4%� 6.5% 0.84� 0.07 87.1%� 2.8% 0.83� 0.10

10% 87.5%� 5.4% 0.89� 0.05 88.9%� 2.8% 0.86� 0.07

15% 93.7%� 3.5% 0.90� 0.04 93.8%� 1.5% 0.88� 0.04

20% 94.1%� 2.9% 0.92� 0.02 94.6%� 1.5% 0.91� 0.03

25% 97.0%� 1.8% 0.94� 0.03 97.3%� 1.3% 0.92� 0.02

Table 13.7 Percentage of correctly classified points of the Iris data-set in the five experiments.

TS system MLP system

Training Correctly Partition Correctly Partition

pool classified points coefficient classified points coefficient

5% 89.8%� 5.5% 0.74� 0.08 90.8%� 4.4% 0.78� 0.09

10% 92.5%� 4.6% 0.86� 0.04 91.3%� 3.7% 0.91� 0.07

15% 94.4%� 3.0% 0.91� 0.04 94.1%� 2.4% 0.88� 0.05

20% 95.2%� 2.1% 0.93� 0.04 95.6%� 2.7% 0.90� 0.05

25% 95.8%� 1.6% 0.92� 0.03 96.0%� 1.3% 0.91� 0.04
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(10 000� 10 000) created artificially. We verified that, also in this case, the results obtained by the two

versions of FCM are comparable. For instance, we generated a data-set composed of three clusters using

uniform random distribution of points over three nonoverlapping circles centered in (700, 400), (400,

900), and (1000, 900), with radius equal to 530. The three clusters are composed of 3606, 3733, and 3606

points, respectively. Then, we generated a dissimilarity relation (10 945� 10 945) using the Euclidean

distance. We executed the FCM algorithm with the fuzzification coefficient m and the termination error "
equal to 1.4 and 0.01, respectively. We obtained 100 % classification rate for both the versions of FCM,

with a partition coefficient equal to 0.95 and 0.98 for the version with the Euclidean distance and for the

version with the cosine distance, respectively.

To further verify the validity of ARCA, we applied a well-known density-based algorithm, named

OPTICS (Ankerst, Breuing, Kriegel, and Sander, 1999), to the dissimilarity relation produced by the TS.

OPTICS is an extension of DBSCAN (Ester, Kriegel, Sander, and Xu, 1996), one of the best known

density-based algorithms. DBSCAN defines a cluster to be a maximum set of density-connected points,

which means that every core point in a cluster must have at least a minimum number of points (MinPts)

within a given radius (Eps). DBSCAN assumes that all points within genuine clusters can be reached from

one another by traversing a path of density-connected points and that points across different clusters

cannot. DBSCAN can find arbitrarily shaped clusters if the cluster density can be determined beforehand

and the cluster density is uniform. DBSCAN is very sensitive to the selection of MinPts and Eps. OPTICS

reduces this sensitivity by limiting it to MinPts. To perform clustering, density-based algorithms assume

that points within clusters are ‘‘density reachable’’ and points across different clusters are not. Obviously,

the cluster shape depends on the concept of ‘‘density reachable’’ that, in its turn, depends on the definition

of dissimilarity. Thus, we cannot consider adopting density-based algorithms to solve the initial problem,

that is, to determine the most suitable dissimilarity measure and therefore the most suitable cluster shape.

As an example, let us consider the data-set shown in Figure 13.6 (XOR problem). The points belong to two

different classes: each class is composed of two compact clusters located on the opposite corners of a

square, respectively.

A density-based clustering process performed in the feature space is not able to detect the correct

structure, unless a specific proximity measure is defined. Indeed, the OPTICS algorithm finds four

different clusters, i.e., it achieves 50 % classification rate. Figure 13.7 shows the output of the OPTICS

algorithm.

Table 13.9 Number of clusters in the five experiments (Iris data-set).

Percentage of trials with number of

Training pool Number of clusters clusters equal to number of classes

5% 2.5� 0.5 50%

10% 2.8� 0.6 60%

15% 3.3� 0.5 70%

20% 2.9� 0.3 100%

25% 3.0� 0.0 100%

Table 13.8 Number of clusters in the five experiments (synthetic data-set).

Percentage of trials with number of

Training pool Number of clusters clusters equal to number of classes

5% 2.1� 0.3 90%

10% 2.0� 0.0 100%

15% 2.0� 0.0 100%

20% 2.0� 0.0 100%

25% 2.0� 0.0 100%
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On the contrary, our approach achieves 96.7 %� 2.6 % classification rate using 20 % of points as

training pool. Furthermore, we achieve a better classification rate than OPTICS even with 5 % points in

the training pool. This example shows that our approach does not depend on the distribution of data and

therefore on the concept of spatial density. Our method is certainly more time-consuming, but it has been

introduced to solve clustering problems that are not automatically solvable with density-based clustering

algorithms.

Figure 13.6 The XOR problem data-set.

Figure 13.7 Output of the OPTICS algorithm.
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On the other hand, since some density-based algorithms do not require distances but rather generic

dissimilarity measures to determine the closeness of points, we can adopt OPTICS to cluster data

described by the dissimilarity relations produced by the MLP and the TS. We performed different

experiments and verified that the performance of OPTICS and ARCA are quite similar. In the XOR

example, for instance, OPTICS achieves 95.6 %� 2.3 % classification rate using 20 % of points as

training pool.

13.4 EXPERIMENTAL RESULTS

In this section, we briefly discuss some results obtained by applying the combination TS–ARCA to some

well-known data-sets provided by the University of California (UCI, 2006), namely the Wisconsin Breast

Cancer (WBC) data-set, the wine data-set, and the Haberman’s Survival (HS) data-set. We discuss only

the TS approach because, as shown in Section 13.2, it is characterized by more interesting features.

The WBC data-set consists of 699 patterns belonging to two classes: 458 patterns are members of the

‘‘benign’’ class and the other 241 patterns are members of the ‘‘malignant’’ class. Each pattern is

described by nine features: clump thickness, uniformity of cell size, uniformity of cell shape, marginal

adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. Since 16

patterns have a missing value, we decided to use only 683 patterns in our experiments.

The Wine data-set contains the chemical analysis of 178 wines grown in the same region in Italy but

derived from three different cultivars, which represent the classes. As known in the literature (Setnes and

Roubos, 2000), only some of the 13 features are effective for classification. Thus, we performed a feature

selection based on the correlation between classes and features, and selected the following four features:

total phenols, flavanoids, color intensity, and OD280/OD315 of diluted wines.

The HS data-set contains 306 cases from a study on the survival of patients who had undergone surgery for

breast cancer. The three attributes represent the age of the patient, the year of the operation, the number of the

positive axillary nodes. The two classes represent the survival status after 5 years. In this data-set, features

have a low correlation with classes and therefore the data-set is quite difficult for clustering algorithms.

We carried out the same experiments described in previous sections. Tables 13.10–13.12 show the

percentage of correctly classified points of the WBC, Wine, and HS data sets in the five experiments. We

Table 13.10 Percentage of correctly classified points of the WBC data-set in the five

experiments.

Training pool Correctly classified points Partition coefficient

5% 95.9%� 0.5% 0.94� 0.03

10% 96.1%� 0.3% 0.97� 0.00

15% 96.8%� 0.7% 0.96� 0.00

20% 96.8%� 0.3% 0.95� 0.01

25% 97.1%� 0.1% 0.96� 0.01

Table 13.11 Percentage of correctly classified points of the wine data-set in the five

experiments.

Training pool Correctly classified points Partition coefficient

5% 83.7%� 4.6% 0.84� 0.05

10% 85.5%� 3.4% 0.88� 0.03

15% 89.7%� 3.2% 0.91� 0.02

20% 91.3%� 3.2% 0.93� 0.02

25% 94.1%� 1.4% 0.95� 0.02

280 FUZZY CLUSTERING BASED ON DISSIMILARITY RELATIONS EXTRACTED FROM DATA



can observe that the percentages of correct classifications are just quite high with training pools composed

of only 5 % of patterns. These results compare favorably with several classification techniques proposed

in the literature. Since our method is not a classification method because we do not suppose to know the

labels of the classes, but rather some similarities between patterns, the results prove the effectiveness of

the combination of learning algorithms and relational clustering algorithms.

13.5 CONCLUSIONS

Object clustering algorithms generally partition a data-set based on a dissimilarity measure expressed in

terms of some distance. When the data distribution is irregular, for instance in image segmentation and

pattern recognition where the nature of dissimilarity is conceptual rather than metric, distance functions

may fail to drive the clustering algorithm correctly. Thus, the dissimilarity measure should be adapted to

the specific data-set. For this reason, we have proposed extracting the dissimilarity relation directly from a

few pairs of patterns of the data-set with known dissimilarity values. To this aim, we have used two

different techniques: a multilayer perceptron with supervised learning and a Takagi–Sugeno fuzzy

system. We have discussed and compared the two approaches with respect to generalization capabilities,

computational overhead, and capability of explaining intuitively the dissimilarity relation. We have

shown that the TS approach provides better characteristics than the MLP approach.

Once the dissimilarity relation has been generated, the partitioning of the data-set is performed by a

fuzzy relational clustering algorithm, denoted ARCA, recently proposed by the authors. Unlike well-

known relational clustering algorithms, this algorithm can manage the dissimilarity relations generated

by the MLP and the TS, which are neither irreflexive nor symmetric. The experiments performed on some

real data-sets have shown the good qualities of our approach. In particular, we have observed that just

using a significantly low percentage of known dissimilarities, our method is able to cluster the data-sets

almost correctly.
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Louisville, USA

14.1 INTRODUCTION

The problem of selecting or weighting the best subset of features constitutes an important part of the

design of good learning algorithms for real word tasks. Irrelevant features can degrade the generalization

performance of these algorithms significantly. As a result, several methods have been proposed for feature

selection and weighting [1, 20, 31, 37, 30]. In feature selection, the task’s dimensionality is reduced by

completely eliminating irrelevant features. This amounts to assigning binary relevance weights to the

features (1 for relevant and 0 for irrelevant). Feature weighting is an extension of the selection process

where the features are assigned continuous weights which can be regarded as degrees of relevance.

Because it provides a richer feature relevance representation, continuous weighting tends to outperform

feature selection from an accuracy point of view in tasks where some features are useful but less important

than others.

Most feature weighting (and selection) methods assume that feature relevance is invariant over the

task’s domain, and hence learn a single set of weights for the entire data-set. This assumption can impose

unnecessary and pernicious constraints on the learning task when the data is made of different categories

or classes. If the data is already labeled (supervised learning), then it is possible to learn a different set of

weights for each class. On the other hand, if the data is unlabeled (unsupervised learning), then existing

feature weighting algorithms cannot be used to learn cluster-dependent feature weights. The classical

approach in this case is to determine a single subset of features or feature weights for the entire unlabeled

data prior to clustering. However, by ignoring the existence of different sub-structures in the data-set,

which require different subsets of feature weights, the performance of any clustering procedure can be

severely degraded. Hence, it is clear that the clustering and feature selection/weighting steps are coupled,

and applying these steps in sequence can degrade the performance of the learning system. In fact, even if
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the data is labeled according to several known classes, it is preferable to model each complex (non-

convex) class by several simple sub-classes or clusters, and to use a different set of feature weights for

each cluster.

To illustrate the need for different sets of feature weights for different clusters, we consider the

unsupervised learning problem of segmenting the color image shown in Figure 14.1(a). In this problem,

the pixels of the image must be categorized into meaningful clusters corresponding to different homo-

geneous regions of the image without any prior knowledge about its contents. In order to be categorized,

the pixels are first mapped to feature vectors as will be explained in Section 14.5. Figure 14.1(b) and (c)

show the segmentation results with different feature subsets using the fuzzy C-means (FCM) algorithm

[2], when the number of clusters is fixed to four. The FCM, like other clustering algorithms, has no

provision for cluster dependent feature weights. Any given feature must either be used (completely

relevant) or ignored (irrelevant) for all clusters. Figure 14.1(b) shows the segmentation results when the

x and y position features are not used during clustering. It can be seen that some clusters suffer from a

fragmentation phenomenon. That is, instead of being clean and compact, these clusters are scattered

around the image. Figure 14.1(c) shows the results when the x and y position features are used. As

expected, the clusters obtained are more compact. However, except for the tiger cluster, the remaining

clusters do not correspond to homogeneous regions in the original image. This is because, for example for

the dirt region, the y-position feature is relevant while the x-position feature is irrelevant since this region

forms a narrow strip that extends over the entire width of the image. For the grass region, both the x- and

y- position features are irrelevant because grass can be found in almost all areas of the image. We conclude

that in this case, the x- and y-position features are both useful, and thus relevant for delineating clusters

corresponding to the compact regions of the image such as the tiger. However, that is not the case for

noncompact regions such as the background. The remaining features cannot be easily visualized as in the

case of position. However, their relevance is also expected to vary across the different regions of the image

because of the inherent differences in their color and texture properties. This simple example shows how

feature relevance can vary widely within the domain of a data-set.

In light of the above discussion, it is only natural to conclude that ideally, clustering and feature

selection should be performed simultaneously. In this chapter, we describe an approach, called simulta-

neous clustering and attribute discrimination (SCAD)[12, 13], that performs clustering and feature

weighting simultaneously. When used in conjunction with a supervised or unsupervised learning system,

SCAD offers several advantages. First, it uses continuous feature weighting, hence providing a much

richer feature relevance representation than feature selection. Second, SCAD learns the feature relevance

representation of each cluster independently and in an unsupervised manner. Moreover, SCAD can adapt

to the variations that exist within a data-set by categorizing it into distinct clusters, which are allowed to

overlap because of the use of fuzzy membership degrees. Based on the SCAD approach, we present

two clustering algorithms, called SCAD-1 and SCAD-2 respectively. These two algorithms achieve the

same goal, however, they minimize different objective functions. We also present a coarse version of

SCAD (SCADc) that avoids over-fitting when the dimensionality of the feature space is high. Instead of

learning a weight for each feature, we divide the features into logical subsets and learn a relevance weight

Figure 14.1 (a) Original color image, (b) results of the FCM with no position features, (c) results of the FCM with

position features.
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for each subset. Finally, because the number of categories in a data-set is not always known a priori, we

present an extension of SCAD that can determine the optimal number of clusters using competitive

agglomeration.

The rest of the chapter is organized as follows. In Section 14.2, we review existing approaches to

feature selection/weighting, and prototype-based clustering algorithms. In Section 14.3, we introduce

SCAD-1 and SCAD-2. In Section 14.4, we describe the coarse SCAD , and in Section 14.5, we extend

SCAD to the case where the number of clusters is unknown. In Sections 14.6, 14.7 and 14.8, we illustrate

the performance of SCAD when applied to the problems of image segmentation, text document

categorization, and to learn associations between visual features and textual keywords. Finally, Section

14.9 contains the summary conclusions.

14.2 BACKGROUND

14.2.1 Feature Selection and Feature Weighting

Feature selection and weighting techniques generally rely on a criterion function and a search strategy.

The criterion function is used to decide whether one feature subset is better than another, while the search

strategy determines feature subset candidates. Depending on the criterion function used, there are two

types of feature selection/weighting methods: the wrapper and filter approaches [18]. The wrapper

approach relies on feedback from the performance algorithm, such as classifier accuracy, to learn feature

weights or to decide whether a particular feature subset is superior to another. The filter approach

optimizes a classifier independent criterion function. The wrapper approach tends to perform better,

however it can cause overfitting [21]. Moreover, it should only be applied in combination with classifiers

of low complexity to limit its computational cost.

Feature selection methods have exploited several search strategies. The most rudimentary strat-

egy, exhaustive search, considers 2n � 1 (where n is the maximum number of features) possible

feature subsets, and is impractical for large n. As a result, other optimized search strategies such

as forward selection and backward selection [14] can be used. These approaches are computationally

feasible. Unfortunately, they are only appropriate for binary weighting and are prone to yielding sub-

optimal solutions [18]. Other strategies include random mutation hill climbing [33] and parallel

search [26].

Feature selection/weighting can either be applied to the entire data-set to obtain a single set of features

or weights, or to each class independently to obtain a different set of features or weights for each class. It is

also possible to use the entire data and the class labels to learn a different set of weights for each class [22,

33]. In general, class dependent feature selection/weighting is superior to the approach yielding a single

set of features/weights. Unfortunately, class dependent feature selection/weighting cannot be applied

when the data is unlabeled.

14.2.2 Prototype-based Clustering

Let X ¼ fxj j j ¼ 1; . . . ;Ng be a set of N feature vectors in an n-dimensional feature space. Let

B ¼ ðb1; . . . ; bcÞ represent a C-tuple of prototypes each of which characterizes one of the C clusters.

Each bi consists of a set of parameters. Let uij represent the grade of membership of feature point xj in

cluster bi. The C � N matrix U ¼ ½uij� is called a constrained fuzzy C-partition matrix if it satisfies the

following conditions [2]

uij 2 ½0; 1� 8i; 0 <
XN

j¼1

uij < N 8i; j;
XC

i¼1

uij ¼ 1 8j: ð14:1Þ
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The problem of fuzzily partitioning the feature vectors into C clusters can be formulated as the

minimization of an objective function JðB;U; XÞ of the form

JðB;U; XÞ ¼
XC

i¼1

XN

j¼1

ðuijÞmd2
ij; ð14:2Þ

subject to the constraint in (14.1). In (14.2), m 2 ½1;1Þ is a weighting exponent called the fuzzifier, and

d2
ij represents the distance from feature point xj to prototype bi. Minimization of (14.2) with respect to U

subject to (14.1) yields [2]:

uij ¼
1

PC
k¼1 d2

ij=d2
kj

� � 1
m�1

: ð14:3Þ

Minimization of (14.2) with respect to B varies according to the choice of the prototypes and the distance

measure. For example, in the fuzzy C-means (FCM) algorithm, the Euclidean distance is used, and each of

the prototypes is described by the cluster center ci, which may be updated in each iteration using [2]:

ci ¼
PN

j¼1 um
ij xj

PN
j¼1 um

ij

: ð14:4Þ

14.2.3 Competitive Agglomeration

The objective function in (14.2), which is essentially the sum of (fuzzy) intra-cluster distances, has a

monotonic tendency with respect to the number of clusters, C, and has the minimum value of zero when

C ¼ N. Therefore, it is not useful for the automatic determination of the ‘‘optimum’’ number of clusters,

and C has to be specified a priori. The competitive agglomeration (CA) algorithm [11, 10] overcomes this

drawback by adding a second regularization term to prevent over-fitting the data with too many

prototypes. The CA algorithm starts by partitioning the data into a large number of small clusters. As

the algorithm progresses, adjacent clusters compete for data points, and clusters that lose in the

competition gradually vanish. The CA algorithm minimizes the following objective function

JAðB;U; XÞ ¼
XC

i¼1

XN

j¼1

ðuijÞ2d2
ij � a

XC

i¼1

XN

j¼1

uij

" #2

; ð14:5Þ

subject to the constraints in (14.1). It should be noted that the number of clusters C in (14.5) is

dynamically updated in the CA. The first term in (14.5) controls the shape and size of the clusters and

encourages partitions with many clusters, while the second term penalizes solutions with a large number

of clusters and encourages the agglomeration of clusters. When both terms are combined and a is chosen

properly, the final partition will minimize the sum of intra-cluster distances, while partitioning the data

into the smallest possible number of clusters. It can be shown [10] that the membership update equation

for (14.5) is given by

uij ¼ uFCM
ij þ uBias

ij ; ð14:6Þ

where

uFCM
ij ¼

1=d2
ijPC

k¼1 1=d2
kj

; ð14:7Þ

and

uBias
ij ¼ a

d2
ij

Ni � Nj

� �
: ð14:8Þ
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In (14.8),

Ni ¼
XN

j¼1

uij;

is the cardinality of cluster i, and

Nj ¼
PC

k¼1 1=d2
kjNk

PC
k¼1 1=d2

kj

;

is a weighted average of the cardinalities of all clusters. The first term in (14.6) is the membership term in

the FCM algorithm [2] (see Equation (14.3)) which takes into account only the relative distances of the

feature point to all clusters. The second term is a signed bias term which allows good clusters to

agglomerate and spurious clusters to disintegrate.

The value of a needs to be initially small to encourage the formation of small clusters. Then, it should be

increased gradually to promote agglomeration. After a few iterations, when the number of clusters

becomes close to the ‘‘optimum,’’ the value of a should again decay slowly to allow the algorithm to

converge. In [10], it is recommended to update a in every iteration (t) using

aðtÞ ¼ �ðtÞ
PC

i¼1

PN
j¼1ðu

ðt�1Þ
ij Þ2ðd2

ijÞ
ðt�1Þ

PC
i¼1

PN
j¼1 u

ðt�1Þ
ij

h i2
; ð14:9Þ

where

�ðtÞ ¼ �0 e�jt0�tj=� if t > 0

0 if t ¼ 0:

�
ð14:10Þ

In (14.10), �0 is the initial value, � is a time constant and t0 is the iteration number at which � starts to

decrease. The superscript (t � 1) is used on uij and d2
ij to denote their values in the previous iteration,

(t � 1). The default values for (�0; �; t0) are (1, 10, 20).

14.3 SIMULTANEOUS CLUSTERING AND ATTRIBUTE
DISCRIMINATION (SCAD)

The Simultaneous Clustering and Attribute Discrimination (SCAD) algorithm [12, 13] is designed to

search for the optimal prototype parameters, B, and the optimal set of feature weights, V, simultaneously.

Each cluster i is allowed to have its own set of feature weights Vi ¼ ½vi1; � � � ; vin�. We present two versions

of SCAD: SCAD-1 tries to balance between the two terms of a compound objective function in order to

determine the optimal attribute relevance weights, while SCAD-2 minimizes a single term criterion.

14.3.1 Simultaneous Clustering and Attribute
Discrimination – Version 1 (SCAD-1)

The SCAD-1 algorithm minimizes the following objective function:

J1ðC;U;V; XÞ ¼
XC

i¼1

XN

j¼1

um
ij

Xn

k¼1

vikd2
ijk þ

XC

i¼1

�i

Xn

k¼1

v2
ik; ð14:11Þ

subject to the constraint on fuzzy memberships, uij in (14.1), and the following constraint on the feature

weights:

vik 2 ½0; 1� 8 i; k; and
Xn

k¼1

vik ¼ 1; 8 i: ð14:12Þ
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In (14.11), vik represents the relevance weight of feature k in cluster i, and dijk is given by

dijk ¼ jxjk � cikj; ð14:13Þ

where xjk is the kth feature value of data point xj, and cik is the kth component of the ith cluster center

vector. In other words, dijk is the projection of the displacement vector between feature point xj and the ith

class center (ci) along the kth dimension.

The objective function in (14.11) has two components. The first one, which is similar to the FCM

objective function [2], is the sum of feature-weighted Euclidean distances to the prototypes, additionally

weighted by constrained memberships. This component allows us to obtain compact clusters. From a

feature-relevance point of view, this term is minimized when, in each cluster, only one feature is

completely relevant, while all other features are irrelevant. The second component in Equation (14.11)

is the sum of the squared feature weights. The global minimum of this component is achieved when all the

features are equally weighted. When both components are combined as in (14.11), and the coefficients �i

are chosen properly, the final partition will minimize the sum of intra-cluster weighted distances, where

the weights are optimized for each cluster.

To optimize J1, with respect to V, we use the Lagrange multiplier technique, and obtain

J1ðK;VÞ ¼
XC

i¼1

XN

j¼1

ðuijÞm
Xn

k¼1

vikd2
ijk þ

XC

i¼1

�i

Xn

k¼1

v2
ik �

XC

i¼1

li

Xn

k¼1

vik � 1

 !
;

where � ¼ ½l1; � � � ; lc�t. Since the rows of V are independent of each other, we can reduce the above

optimization problem to the following C independent problems:

J1iðli;ViÞ ¼
XN

j¼1

ðuijÞm
Xn

k¼1

vikðxjk � cikÞ2 þ �i

Xn

k¼1

v2
ik � li

Xn

k¼1

vik � 1

 !
;

for i ¼ 1; � � � ;C, where Vi is the ith row of V. By setting the gradient of J1i to zero, we obtain

@J1iðli;ViÞ
@li

¼
Xn

k¼1

vik � 1

 !
¼ 0; ð14:14Þ

and

@J1iðli;ViÞ
@vik

¼
XN

j¼1

ðuijÞmd2
ijk þ 2�ivik � li ¼ 0: ð14:15Þ

Solving (14.14) and (14.15) for vik, we obtain

vik ¼
1

n
þ 1

2�i

XN

j¼1

ðuijÞm
jjxj � cijj2

n
� d2

ijk

" #
: ð14:16Þ

The first term in (14.16), (1=n), is the default value if all attributes are treated equally, and no feature

discrimination is performed. The second term is a bias that can be either positive or negative. It is positive

for compact features where the projected distance along the corresponding dimension is, on average, less

than the average projected distance values along all the dimensions. In other words, if an attribute is very

compact, compared to the other attributes, for most of the points that belong to a given cluster (high uij),

then it is considered to be very relevant for that cluster.

The choice of �i in Equation (14.11) is important to the performance of SCAD-1 since it reflects the

importance of the second term relative to the first term. If �i is too small, then the first term dominates, and

only one feature in cluster i will be maximally relevant and assigned a weight of one, while the remaining

features are assigned zero weights. On the other hand, if �i is too large, then the second term will dominate,

and all features in cluster i will be relevant, and assigned equal weights of 1=n. Hence, the values of �i
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should be chosen such that both terms are of the same order of magnitude. This can be accomplished by

updating �i in iteration, t, using

�
ðtÞ
i ¼ K

PN
j¼1

�
u
ðt�1Þ
ij

�mPn
k¼1 v

ðt�1Þ
ik

�
d
ðt�1Þ
ijk

�2

Pn
k¼1

�
v
ðt�1Þ
ik

�2
: ð14:17Þ

In (14.17), K is a constant and the superscript ðt � 1Þ is used on uij, vik and dijk to denote their values in

iteration ðt � 1Þ.
It should be noted that depending on the values of �i, the feature relevance values vik may not be

confined to [0,1]. This inequality constraint could be added to the objective function in (14.11), and the

Karush–Kuhn–Tucker (KKT) Theorem [25] could be used to derive the necessary conditions. A much

simpler and practical heuristic, that proved almost as effective as the KKT optimization conditions, is to

simply set negative values to zero and to clip values that are greater than one to one. However, if this

constraint is violated very often, then it is an indication that the value of � is too small and it should be

increased (increase K).

To minimize J1 with respect to U, we rewrite the objective function in (14.11) as

J1ðC;U;V; XÞ ¼
XC

i¼1

XN

j¼1

um
ij

~d
2

ij þ
XC

i¼1

�i

Xn

k¼1

v2
ik; ð14:18Þ

where ~d
2

ij ¼
Pn

k¼1 vikd2
ijk is the weighted Euclidean distance. Since the second term in (14.18) does not

depend on uij explicitly, the update equation of the memberships is similar to that of the FCM (see

Equation (14.3)), i.e.,

uij ¼
1

PC
k¼1

~d
2

ij=
~d

2

kj

� �1=m�1
: ð14:19Þ

To minimize J1 with respect to the centers, we fix U and V, and set the gradient to zero. We obtain

@J

@cik

¼ �2
XN

j¼1

ðuijÞmvikðxjk � cikÞ ¼ 0: ð14:20Þ

Solving (14.20) for cik, we obtain

cik ¼
vik

PN
j¼1ðuijÞmxjk

vik

PN
j¼1ðuijÞm

: ð14:21Þ

There are two cases depending on the value of vik:

� Case 1: vik ¼ 0. In this case, the kth feature is completely irrelevant relative to the ith cluster. Hence,

regardless of the value of cik, the values of this feature will not contribute to the overall weighted

distance computation. Therefore, in this situation, any arbitrary value can be chosen for cik. In practice,

we set cik ¼ 0.

� Case 2: vik 6¼ 0. For the case when the kth feature has some relevance to the ith cluster, Equation

(14.21) reduces to

cik ¼
PN

j¼1ðuijÞmxjk
PN

j¼1ðuijÞm
:

To summarize, the update equation for the centers is

cik ¼
0 if vik ¼ 0;
PN

j¼1
ðuijÞmxjkPN

j¼1
ðuijÞm

if vik > 0:

8
><

>:
ð14:22Þ
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The SCAD-1 algorithm is summarized below.

Simultaneous Clustering and Attribute Discrimination: SCAD-1

Fix the number of clusters C;

Fix m, m 2 ½1;1Þ;
Initialize the centers;

Initialize the relevance weights to 1=n;

Initialize the fuzzy partition matrix U;

REPEAT

Compute d2
ijk for 1 � i � C, 1 � j � N, and 1 � k � n;

Update the relevance weights vik by using (14.16);

Update the partition matrix UðkÞ by using (14.19);

Update the centers by using (14.22);

Update �i by using (14.17);

UNTIL (centers stabilize);

14.3.2 Simultaneous Clustering and Attribute
Discrimination – Version 2(SCAD-2)

The SCAD-2 algorithm omits the second term from its objective function by incorporating a discriminant

exponent, q, and minimizing

J2ðB;U;V; XÞ ¼
XC

i¼1

XN

j¼1

ðuijÞm
Xn

k¼1

ðvikÞqd2
ijk; ð14:23Þ

subject to (14.1) and (14.12).

To optimize J2 with respect to V, we use the Lagrange multiplier technique, and obtain

J2ðK;VÞ ¼
XC

i¼1

XN

j¼1

ðuijÞm
Xn

k¼1

ðvikÞqd2
ijk �

XC

i¼1

li

Xn

k¼1

vik � 1

 !
;

where K ¼ ½l1; � � � ; lc�t is a vector of Lagrange multipliers corresponding to the C constraints in (14.12).

Since the rows of V are independent of each other and d2
ijk is independent of V, we can reduce the above

optimization problem to the following C independent problems:

J2iðli;ViÞ ¼
XN

j¼1

ðuijÞm
Xn

k¼1

ðvikÞqd2
ijk � li

Xn

k¼1

vik � 1

 !
for i ¼ 1; � � � ;C;

where Vi is the ith row of V. By setting the gradient of J2i to zero, we obtain

@J2iðli;ViÞ
@li

¼
Xn

k¼1

vik � 1

 !
¼ 0; ð14:24Þ

and

@Jiðli;ViÞ
@vit

¼ q ðvitÞðq�1ÞXN

j¼1

ðuijÞmd2
ijt � li ¼ 0: ð14:25Þ

Equation (14.25) yields

vit ¼
li

q
PN

j¼1ðuijÞmd2
ijt

" #1=ðq�1Þ

: ð14:26Þ
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Substituting (14.26) back into (14.24), we obtain

Xn

k¼1

vik ¼ ½li=q�1=ðq�1ÞXn

k¼1

1
PN

j¼1ðuijÞmd2
ijk

" #1=ðq�1Þ

¼ 1:

Thus,

½li=q�1=ðq�1Þ ¼ 1

Pn
k¼1

1PN

j¼1
ðuijÞmd2

ijk
Þ

" #1=ðq�1Þ :

Substituting this expression back in (14.26), we obtain

vit ¼

1PN

j¼1
ðuijÞmd2

ijt

" #1=ðq�1Þ

Pn
k¼1

1PN

j¼1
ðuijÞmd2

ijk

" #1=ðq�1Þ : ð14:27Þ

Simplifying (14.26) and using k to represent the dimension, we obtain

vik ¼
1

Pn
t¼1

~Dik=~Dit

� �1=ðq�1Þ ; ð14:28Þ

where ~Dik ¼
PN

j¼1ðuijÞmd2
ijk, can be interpreted as a measure of dispersion of the ith cluster along the kth

dimension, and
Pn

t¼1
~Dit can be viewed as the total dispersion of the ith cluster (taking all dimensions into

account). Hence, vik is inversely related to the ratio of the dispersion along the kth dimension to the total

dispersion for the ith cluster. This means that the more compact the ith cluster is along the kth dimension

(smaller ~Dik), the higher will the relevance weight, vik, be for the kth feature.

Equation (14.28) may be likened to the estimation and use of a covariance matrix in an inner-product

norm-induced metric in various clustering algorithms [17, 8]. In fact, if d2
ijk is defined to be the Euclidean

distance between xjk and cik, then ~Dik becomes a measure of the fuzzy variance of the ith cluster along the

kth dimension, and SCAD-2 becomes similar to the Gustafson-Kessel (GK) algorithm [17] with a

diagonal covariance matrix. However, the estimation of a covariance matrix relies on the assumption

that the data has a multivariate Gaussian distribution. On the other hand, SCAD-2 is free of any such

assumptions when estimating the feature weights. This means that SCAD-2 can incorporate more general

dissimilarity measures.

The role of the attribute weight exponent, q, can be deduced from Equation (14.28), and is subject to the

following theorem.

Theorem 14.1

lim
q!1þ

vik ¼ 1 if ~Dik ¼ minn
t¼1

~Dit;
0 otherwise:

�

Proof (see Appendix).

Theorem 14.1 implies that as q approaches 1, vik tends to take binary values. This case is analogous to

the winner-take-all situation where the feature along which the ith cluster is the most compact gets all the

relevancy (vik ¼ 1), while all other attributes get assigned zero relevance, and hence do not contribute to

the distance or center computations. On the other hand, when q approaches infinity, it can easily be shown

that vik ¼ 1=n. This means that all attributes share the relevancy equally. This is equivalent to the situation

where no feature selection/weighting takes place. For the case where q takes finite values in ð1;1Þ, we

obtain weights that provide a moderate level of feature discrimination. For this reason, we will refer to q as

a ‘‘discrimination exponent.’’
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To minimize J2 with respect to U, we follow similar steps and obtain

uij ¼
1

PC
k¼1

~d
2

ij

~d
2

kj

2

4

3

5
1=ðm�1Þ ; ð14:29Þ

where

~d
2

ij ¼
Xn

k¼1

ðvikÞqd2
ijk: ð14:30Þ

To minimize J2 with respect to the centers, we fix U and V, and set the gradient to zero. We obtain

@J

@cik

¼ �2
XN

j¼1

ðuijÞmðvikÞqðxjk � cikÞ ¼ 0: ð14:31Þ

Equation (14.31) is similar to (14.20), and its solution yields the same equation to update the centers as in

SCAD-1.

The SCAD-2 algorithm is summarized below.

Simultaneous Clustering and Attribute Discrimination: SCAD-2

Fix the number of clusters C;

Fix the fuzzifier m, m 2 ½1;1Þ;
Fix the discrimination exponent q, q 2 ½1;1Þ;
Initialize the centers and the fuzzy partition matrix U;

Initialize all the relevance weights to 1=n;

REPEAT

Compute d2
ijk for 1 � i � C, 1 � j � N, and 1 � k � n;

Update the relevance weights matrix V by using (14.28);

Compute ~d
2

ij by using (14.30);

Update the partition matrix U by using (14.29);

Update the centers by using (14.22);

UNTIL (centers stabilize);

We now illustrate the performance of SCAD-1 and SCAD-2 on a simple data-set. Table 14.1 contains

the coordinates of 20 points of two synthetic Gaussian clusters with ð�1;
P

1Þ ¼ ð½0; 0�
T ; I2Þ and

ð�2;
P

2Þ ¼ ð½5; 5�
T ; I2Þ. In this example, m, K (for SCAD-1) and q (for SCAD-2) were set to 2.0, and

the centers and the fuzzy partition matrix were initialized by running the FCM algorithm for two

iterations. SCAD-1 converged after four iterations, and SCAD-2 converged after five iterations giving

the results displayed in Tables 14.2 and 14.3 respectively. Since both features are relevant, SCAD-1 and

SCAD-2 assigned high weights for both features, and the estimated center coordinates are close to those

of the actual centers.

To demonstrate the ability of these algorithms to cluster and identify relevant features, we increase the

number of features to four by adding two irrelevant features to each cluster which are highlighted in Table

14.4. The first two features of the first cluster are uniformly distributed in the intervals [0,20] and [0,10]

respectively. Features two and four of the second cluster are uniformly distributed in the intervals [0,10]

and [0,5] respectively. A traditional feature selection algorithm can only discriminate against the second

feature since it is irrelevant for both clusters. Clustering the remaining three features will not provide a

compact description of each cluster. SCAD-1 converged after 10 iterations and SCAD-2 converged after

five iterations, and their results are displayed in Tables 14.5 and 14.6 respectively. The first feature of the

first cluster is correctly identified as irrelevant by both algorithms. The second feature of the first cluster is
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identified as irrelevant by SCAD-2 (relevance¼0.05), but was assigned a larger weight by SCAD-1

(relevance¼0.23) because it has a relatively smaller dynamic range. Feature four of the second cluster was

not identified as totally irrelevant by both algorithms. This is because it has a dynamic range that is close to

that of the actual features, and therefore this feature will be treated as almost equally important. Notice,

however, that this feature was judged by SCAD-2 to be more irrelevant compared with the remaining

features than SCAD-1.

We have used SCAD-1 and SCAD-2 to cluster several other data-sets, and we have observed that they

have similar behavior. Both algorithms succeed in identifying the relevant and irrelevant features, and

assign similar weights. In the rest of this chapter, we will extend only SCAD-1 to the case of high-

dimensional feature space and to the case where the number of clusters is unknown. The extension of

SCAD-2 follows similar steps.

Table 14.1 Two two-dimensional Gaussian clusters.

Cluster # 1 Cluster # 2

x1 x2 x1 x2

�0.33 1.11 4.66 6.11

�2.02 �0.73 2.97 4.26

�0.33 0.72 4.66 5.72

�0.25 0.04 4.74 5.04

�1.08 �0.37 3.91 4.62

0.15 �0.36 5.15 4.63

�1.22 0.11 3.77 5.11

1.80 1.43 6.80 6.43

�1.48 �0.70 3.51 4.29

�0.87 1.02 4.12 6.02

�0.21 �0.45 4.78 4.54

�0.28 1.06 4.71 6.06

0.45 0.16 5.45 5.16

�2.29 1.98 2.70 6.98

0.84 �0.68 5.84 4.31

1.49 1.61 6.49 6.61

�0.23 0.31 4.76 5.31

�0.46 �0.82 4.53 4.17

�1.58 �1.09 3.41 3.90

0.72 1.27 5.72 6.27

Table 14.2 Results of SCAD-1 on the data-set in Table 14.1.

Cluster # 1 Cluster # 2

Features x1 x2 x1 x2

Centers �0.4 0.24 4.65 5.27

Relevance weights 0.49 0.51 0.48 0.52

Table 14.3 Results of SCAD-2 on the data-set in Table 14.1

Cluster # 1 Cluster # 2

Features x1 x2 x1 x2

Centers �0.37 0.27 4.64 5.28

Relevance weights 0.43 0.57 0.43 0.57
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14.4 CLUSTERING AND SUBSET FEATURE WEIGHTING

Learning a relevance weight for each feature may not be appropriate for high-dimensional data and may

lead to over-fitting. This is because the generated clusters tend to have a few relevant features and may not

reflect the actual distribution of the data. In this section, we present a coarse approach to the feature

weighting problem. Instead of learning a weight for each feature, we divide the set of features into logical

subsets, and learn a weight for each feature subset. The partition of the features into subsets is application

dependent. For instance, in image segmentation, we can have a subset for the color features, another

subset for the shape features, and a third subset for the texture features.

Table 14.4 Two four-dimensional clusters.

Cluster # 1 Cluster # 2

x1 x2 x3 x4 x1 x2 x3 x4

19.00 2.09 �0.33 1.11 4.66 2.13 6.11 0.28

4.62 3.79 �2.02 �0.73 2.97 6.43 4.26 1.76

12.13 7.83 �0.33 0.72 4.66 3.20 5.72 4.06

9.71 6.80 �0.25 0.04 4.74 9.60 5.04 0.04

17.82 4.61 �1.08 �0.37 3.91 7.26 4.62 0.69

15.24 5.67 0.15 �0.36 5.15 4.11 4.63 1.01

9.12 7.94 �1.22 0.11 3.77 7.44 5.11 0.99

0.37 0.59 1.80 1.43 6.80 2.67 6.43 3.01

16.42 6.02 �1.48 �0.70 3.51 4.39 4.29 1.36

8.89 0.50 �0.87 1.02 4.12 9.33 6.02 0.99

12.30 4.15 �0.21 �0.45 4.78 6.83 4.54 0.07

15.83 3.05 �0.28 1.06 4.71 2.12 6.06 3.73

18.43 8.74 0.45 0.16 5.45 8.39 5.16 2.22

14.76 0.15 �2.29 1.98 2.74 6.28 6.98 4.65

3.52 4.98 0.84 �0.68 5.84 1.33 4.31 2.33

8.11 7.67 1.49 1.61 6.49 2.07 6.61 2.09

18.70 9.70 �0.23 0.31 4.76 6.07 5.31 4.23

18.33 9.90 �0.46 �0.82 4.53 6.29 4.17 2.62

8.20 7.88 �1.58 �1.09 3.41 3.70 3.90 1.01

17.87 4.38 0.72 1.27 5.72 5.75 6.27 3.36

Table 14.5 Results of SCAD-1 on the data-set in Table 14.4.

Cluster # 1 Cluster # 2

Features x1 x2 x3 x4 x1 x2 x3 x4

Centers 13.06 5.56 �0.32 0.22 4.67 5.17 5.19 2.08

Relevance 0.00 0.23 0.38 0.40 0.28 0.16 0.29 0.27

Weights

Table 14.6 Results of SCAD-2 on the data-set in Table 14.4.

Cluster # 1 Cluster # 2

Features x1 x2 x3 x4 x1 x2 x3 x4

Centers 12.72 5.39 �0.40 0.26 4.62 5.26 5.26 2.03

Relevance Weights 0.02 0.05 0.40 0.53 0.32 0.06 0.42 0.20
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In the following, we assume that the n features have been partitioned into K subsets: FS1;FS2; � � � ;FSK ,

and that each subset, FSs, includes ks features. Let ds
ij be the partial distance between data vector xj and

cluster i using the sth feature subset. Note that we do not require that ds
ij be the Euclidean distance.

Moreover, different distance measures could be used for different feature subsets. For instance, the Lp

norm, Mahalanobis distance, and fuzzy t-norm and t-conorm could be used for different subsets. We only

require the different measures be normalized to yield values in the same dynamic range.

Let vis be the relevance weight for feature subset FSs with respect to cluster i. The total distance, Dij,

between xj and cluster i is then computed by aggregating the partial degrees of similarities and their

weights. In the following, we derive the equations for the simple case of a weighted average operator. That

is, we let

D2
ij ¼

XK

s¼1

visðds
ijÞ

2: ð14:32Þ

Other aggregation operators such as the ordered weighted averaging operator (OWA) [38], and the fuzzy

integral [16, 19] can be integrated into this approach.

The coarse SCAD algorithm (SCADc) minimizes

J ¼
XC

i¼1

XN

j¼1

um
ij

XK

s¼1

visðds
ijÞ

2 þ
XC

i¼1

�i

XK

s¼1

v2
is; ð14:33Þ

subject to (14.1), and

vis 2 ½0; 1� 8 i; s; and
XK

s¼1

vis ¼ 1; 8 i: ð14:34Þ

To optimize J, with respect to V, we use the Lagrange multiplier technique, follow similar steps to those

outlined in Section 14.3.1, and obtain

vis ¼
1

K
þ 1

2�i

XN

j¼1

ðuijÞm
�
D2

ij=K � ðds
ijÞ

2
�
: ð14:35Þ

The first term in (14.35), (1=K), is the default value if all K feature subsets are treated equally, and no

discrimination is performed. The second term is a bias that can be either positive or negative. It is positive

for compact feature subsets where the partial distance is, on average, less than the total distance

(normalized by the number of feature subsets). If a feature subset is compact, compared with the other

subsets, for most of the points that belong to a given cluster (high uij), then it is very relevant for that

cluster.

To minimize J with respect to U, we rewrite the objective function in (14.33) as

J ¼
XC

i¼1

XN

j¼1

um
ij D2

ij þ
XC

i¼1

�i

XK

s¼1

v2
is ð14:36Þ

Since the second term in (14.36) does not depend on uij explicitly, the update equation of the memberships

is similar to that of the FCM (see Equation (14.3)), i.e.,

uij ¼
1

PC
k¼1 D2

ij=D2
kj

� � 1
m�1

: ð14:37Þ

Minimization of J with respect to the prototype parameters depends on the choice of the partial distance

measures ds
ij. Since the partial distances are treated independent of each other (i.e., disjoint feature

subsets), and since the second term in (14.33) does not depend on prototype parameters explicitly, the

objective function in (14.33) can be decomposed into K independent problems:

Js ¼
XC

i¼1

XN

j¼1

um
ij visðds

ijÞ
2

for s ¼ 1; � � � ;K: ð14:38Þ
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Each Js would be optimized with respect to a different set of prototype parameters. For instance, if ds
ij is a

Euclidean distance, minimization of Js would yield the update equation for the centers of subset s (same as

FCM). Also, if ds
ij is the weighted Mahalanobis distance proposed in [17] (or in [15]), minimization of Js

would yield the update equations for the centers and covariance matrices of subset s.

Finally, we should note that if each feature subset includes only one feature, SCADc reduces to SCAD-1.

Thus, SCADc can be viewed as a generalization of SCAD-1.

14.5 CASE OF UNKNOWN NUMBER OF CLUSTERS

The objective function of SCADc (Equation (14.33)) can be easily combined with the objective function

of the competitive agglomeration (CA) [10] algorithm (Equation (14.5)). The algorithm that minimizes

the resulting objective function would inherit the advantages of the CA and the SCADc algorithms. This

algorithm, called SCADc–CA, minimizes the following objective function

J ¼
XC

i¼1

XN

j¼1

ðuijÞ2D2
ij þ

XC

i¼1

�i

XK

s¼1

v2
is � a

XC

i¼1

XN

j¼1

uij

" #2

: ð14:39Þ

The additional third term in (14.39) does not depend on vis explicitly. Thus, minimization of (14.39) with

respect to V yields the same update equation for vis as in SCADc (see Equation (14.35)). Moreover, since

the second term in (14.39) does not depend on uij, minimization of (14.39) with respect to the uij yields the

same membership update equation as the CA [10]. That is

uij ¼ uFCM
ij þ uBias

ij ; ð14:40Þ

where

uFCM
ij ¼

1=D2
ijPC

k¼1 1=D2
kj

; ð14:41Þ

and

uBias
ij ¼ a

D2
ij

XN

j¼1

uij �
PC

k¼1 1=D2
kjNk

PC
k¼1 1=D2

kj

 !
:

14.6 APPLICATION 1: COLOR IMAGE SEGMENTATION

In this section, we illustrate the ability of SCAD to perform clustering and learn cluster-dependent feature

weighting by using it to segment color images. First, we use a small set of features and use SCAD to

partition the image into homogeneous regions and learn a relevance weight for each feature in each

region. Then, we increase the number of features and use SCADc–CA to learn relevance weights for

subsets of features.

14.6.1 Segmentation with SCAD

We start by mapping each pixel in the original image to a feature vector consisting of color, texture and

position features. These are the same features used by Carson et al. in their Blobword content-based

image retrieval system [6]. In the following, we will first give a brief description of these features, then

show the results of using SCAD–CA to segment several images.

14.6.1.1 Feature Data Extraction

Texture Features. First, the image Iðx; yÞ is convolved with Gaussian smoothing kernels G�ðx; yÞ of

several scales, �, as follows:

M�ðx; yÞ ¼ G�ðx; yÞ � ðrIðx; yÞÞðrIðx; yÞÞt:
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Then, the following three features are computed at each pixel location [6]:

(1) Polarity: p ¼ jEþ�E�j
EþþE�

, where Eþ and E� represent the number of gradient vectors in the window

G�ðx; yÞ that are on the positive and negative sides of the dominant orientation, respectively. For each

pixel, an optimal scale value is selected such that it corresponds to the value where polarity stabilizes

with respect to scale. Let p� be the polarity at the selected scale.

(2) Anisotropy: a ¼ 1� l2=l1, where l1 and l2 are the eigenvalues of M�ðx; yÞ at the selected scale.

(3) Normalized texture contrast: c ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 þ l2

p
Þ3.

Since the anisotropy and polarity are meaningless in regions of low contrast, these two features are scaled

by the contrast value to yield the texture feature vector ½ac; p�c; c�.
Color Features. The three color features are the L*a*b* coordinates of the color image computed after

smoothing the image with a Gaussian kernel at the selected optimal scale. Note that smoothing is

performed to avoid over-segmentation of regions due to local color variations.

Position Features. The ðx; yÞ coordinates of each pixel are used to reduce over-segmentation of some

regions, and to obtain smoother regions.

14.6.1.2 Feature Data Clustering

The first color image to be segmented is shown in Figure 14.2(a). This is the same image that was used to

illustrate the need for adaptive relevance weights in Section 14.1 (See Figure 14.1(a)). As discussed in the

introduction, the FCM succeeds in delineating the compact cluster corresponding to the tiger, but fails to

correctly delineate the different regions in the background. This is because the FCM is unable to assign

cluster dependent feature relevance weights. When the number of clusters is also fixed to four, SCAD-1

succeeds in simultaneously segmenting the image into four meaningful clusters as shown in Figure

14.2(b), and in determining appropriate relevance weights for each cluster, as displayed in Table 14.7.

Since a total of eight features were used in this experiment, the resulting feature weights should be

compared to 1=8 � 0:12, for the purpose of judging their relevancy. As it can be seen, the x-position

feature is found to be irrelevant (v ¼ 0:014) for the ‘‘dirt’’ cluster (cluster #4 in Figure 14.2(b)), while the

y-position (v ¼ 0:102) is deemed relevant for this cluster. This is because the ‘‘dirt’’ region forms a narrow

Figure 14.2 (a) Original color image, (b) results of SCAD-1.

Table 14.7 Feature relevance weights of the segmented objects in Figure 14.2(b).

Color features Texture features Position features

Clusters C1 C2 C3 T1 T2 T3 x y

Cluster # 1 0.194 0.107 0.207 0.029 0.208 0.039 0.074 0.141

Cluster # 2 0.142 0.156 0.038 0.301 0.232 0.108 0.009 0.013

Cluster # 3 0.117 0.073 0.417 0.131 0.046 0.084 0.042 0.091

Cluster # 4 0.048 0.069 0.295 0.207 0.093 0.173 0.014 0.102
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strip that extends over the entire width of the image. For the ‘‘grass’’ cluster (cluster #2 in Figure 14.2(b)),

both the x and y features are found to be irrelevant because this region is scattered around the entire image.

Similarly, the color and texture features receive unequal weights depending on the cluster. This is because

the regions are not all characterized by the same features. For instance, the normalized texture contrast for

the tiger region (cluster #1) was determined to be practically irrelevant (v ¼ 0:039) because this feature

has a large dynamic range. In fact, the value of this feature varies from small (in the uniformly textured

areas) to large. Also, for the tiger cluster, the first texture feature, ac, was found to be practically irrelevant

(v ¼ 0:029). This means that the anisotropy feature (a ¼ 1� l2=l1) is irrelevant. This is because the

orientation of the stripes varies significantly in some parts of the tiger cluster. In other words, some

locations of this cluster have a dominant orientation (l1 	 l2), while others do not.

In the next experiment, we compare the performance of CA and SCAD-1–CA to illustrate the

importance of the simultaneous clustering and feature weighting mechanism when the number of clusters

is unknown. The six color images in Figure 14.3(a) are to be segmented into an unknown number of

Figure 14.3 Image segmentation with CA and SCAD-1–CA: (a) original color images, (b) CA segmentation results,

(c) SCAD-2–CA segmentation results, and (d) feature relevance weights for the regions labeled in (c).
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clusters. Both CA and SCAD-1–CA were initialized by first dividing the image into a grid of 16

subimages. Then, the average of each feature within the ith subimage is computed to yield the

corresponding initial feature value of the ith prototype. For the agglomeration coefficient, we set

ð�0; �; k0Þ ¼ ð1:0; 10; 20Þ. Figure 14.3(b), displays the segmentation results using CA, and Figure

14.3(c) displays the segmentation results using SCAD-1–CA. The identified regions (i.e., clusters)

are enumerated in Figure 14.3(c), and their feature relevance weights are plotted in Figure 14.3(d). As

can be seen, the feature relevance weights differ not only from one feature to another, but also from one

cluster to another.

As in the previous experiment, we notice that the SCAD-1–CA performs better than CA, and it is able to

yield meaningful clusters corresponding to both the objects in the foreground and the different areas of the

background. This is because, unlike CA, SCAD-2–CA is capable of assigning distinct feature weights

to different clusters. For example, the position features x and y are useful to delineate clusters correspond-

ing to compact regions such as the animals in some pictures. Hence, both algorithms are able to delineate

these clusters. However, the x-position feature is irrelevant for most of the areas in the background such as

the sky or the grass regions. Without an unsupervised feature weighting mechanism, the CA is unable to

recognize this selective irrelevance. The same phenomenon can also be observed if an object in the

foreground is too large. For example, the plane image in the last row of Figure 14.3(b) gets over-segmented

by CA into two clusters. In contrast, SCAD-1–CA was capable of segmenting all the foreground and

background regions in all the images in Figure 14.3 into an appropriate number of clusters. These

examples clearly demonstrate the effectiveness of SCAD-1–CA in color image segmentation.

14.6.2 Segmentation with SCADc

In this section, we increase the number of features and use SCADc–CA to learn relevance weights for

subsets of features. We increase the number of features from eight to 14 by adding six features that were

used in the SIMPLIcity [36] content-based image retrieval (CBIR) system.

14.6.2.1 Feature Extraction and Grouping

� FS1 Texture Features. This subset of features includes the polarity, anisotropy and normalized texture

contrast described in Section 14.6.1.1.

� FS2 L*a*b* Color Features. The L*a*b* coordinates of the color image computed after smoothing

the image with a Gaussian kernel at the selected optimal scale are used as a subset of three color

features.

� FS3 LUV Color Features. The color image is transformed to the LUV color space, and the three

coordinates of each pixel in this space are used as a feature subset.

� FS4 Wavelet Texture Features. First, we apply a one-level Daubechies-4 wavelet transform to the L

component of the image. Then, three features were extracted from the HL, LH and HH bands. Each

feature corresponds to the average coefficients in a 2� 2 block (see [36] for more details).

� FS5 Horizontal Position Feature. The x coordinate of each pixel is used as a position feature subset.

� FS6 Vertical Position Feature. The y coordinate of each pixel is used as another position feature subset.

Notice that the x and y position features are treated as two independent feature sets. This is because it is

typical to find regions where one of these position features is important while the other is not.

14.6.2.2 Feature Data Clustering

The extracted features are normalized in the range [0,1], and the Euclidean distance is used for each feature

subset. The initial number of clusters is fixed at 25. Figure 14.4(a) shows the original color image to be

segmented. Figure 14.4(b) shows the segmentation results using CAwhen the x and y position features are

not used. In this case, the CA fails to identify compact regions. For instance, there are two clusters that

combine pixels from the animal and the background. Figure 14.4(c) displays the results of CA when
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position features were used. In this case, not all clusters correspond to different homogeneous regions in

the image. This is because most of the regions that make up the background tend to be noncompact. Figure

14.4(d) shows the segmentation results of SCADc–CA, which are clearly better than the CA results. This is

because SCADc–CA is able to assign cluster-dependent weights that can adjust feature relevancy to the

individual regions of the images. These feature weights are displayed in Table 14.8 (the cluster numbers

listed in the table correspond to the annotated regions in Figure 14.4(d)). These weights should be

compared with the default value (1=K ¼ 0:167) to quantify their relevancy. For instance, FS6 (y-position)

is completely irrelevant for regions 1,2,3 and 6. This is because these regions extend over the entire width

of the image. Region 4 is another instance where weights vary significantly: the color features (FS2 and

FS3) are either weakly relevant (0.07) or completely irrelevant (due to the shaded areas on the animal).

Notice also that the two texture (or color) feature sets are not equally relevant for the same regions (e.g.,

region 5). This fact illustrates the need for multiple feature sets to segment generic images.

Figure 14.5 displays the segmentation results obtained by SCADc–CA on three more images. As in the

previous example, the relevance weights for the different feature subsets are not equally important for the

different clusters and have similar behavior to those listed in Table 14.8.

14.7 APPLICATION 2: TEXT DOCUMENT CATEGORIZATION
AND ANNOTATION

14.7.1 Motivation

One of the important tasks performed as part of many text mining and information retrieval systems is

clustering. Clustering can be used for finding the nearest neighbors of a document efficiently [5], for

improving the precision or recall in information retrieval systems [35, 24], for aid in browsing a collection

Figure 14.4 (a) Original Image, (b) results of CA without position features, (c) results of CA with position features,

and (d) results of SCADc–CA.

Table 14.8 Feature relevance weights of the segmented objects in Figure 14.4(d).

Clusters FS1 FS2 FS3 FS4 FS5 FS6

1 0.208 0.195 0.196 0.199 0.202 0.000

2 0.213 0.203 0.198 0.197 0.189 0.000

3 0.209 0.176 0.152 0.213 0.251 0.000

4 0.159 0.070 0.000 0.247 0.298 0.227

5 0.074 0.156 0.113 0.210 0.249 0.198

6 0.200 0.196 0.184 0.219 0.201 0.000
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of documents [7], for the organization of search engine results [39] and lately for the personalization of

search engine results [29].

Most document clustering approaches work with the vector-space model, where each document is

represented by a vector in the term-space. This vector consists of the keywords important to the document

collection. For instance, the respective term or word frequencies (TF) [23] in a given document can be

used to form a vector model for this document. In order to discount frequent words with little

discriminating power, each word can be weighted based on its inverse document frequency (IDF) [23,

29] in the document collection. It is expected that the distribution of words in most real document

collections can vary drastically from one cluster of documents to another. Hence, relying solely on the

IDF for keyword selection can be inappropriate and can severely degrade the results of the clustering and/

or any other learning tasks that follow it. For instance, a group of ‘‘News’’ documents and a group of

‘‘Business’’ documents are expected to have different sets of important keywords. Note that if the

documents have already been manually preclassified into distinct categories, then it would be trivial to

select a different set of keywords for each category based on IDF. However, for large, dynamic and

unlabeled document collections, such as those on the World Wide Web, this manual classification is

impractical. Hence, the need for automatic or unsupervised classification/clustering that can handle

categories that differ widely in their best keyword sets.

Selecting and weighting subsets of keywords in text documents is similar to the problem of clustering

and feature weighting in pattern recognition. Thus, this task can be accomplished by SCAD. Using

SCAD to categorize text documents offers the following advantages compared to existing document

clustering techniques. First, its continuous term weighting provides a much richer feature relevance

representation than binary feature selection. This is especially true when the number of keywords is large.

For example, one would expect the word ‘‘playoff’’ to be more important than the word ‘‘program’’ to

distinguish a group of ‘‘sports’’ documents. Secondly, a given term is not considered equally relevant in

all categories: For instance, the word ‘‘film’’ may be more relevant to a group of ‘‘entertainment’’ related

documents than to a group of ‘‘sports’’ documents.

14.7.2 Adapting SCAD to Document Clustering

In Section 14.3, SCAD was derived for data lying in some Euclidean space, and relied on the Euclidean

distance. For the special case of text documents, it is well known that the Euclidean distance is not

Figure 14.5 Segmentation of diverse color images: (a) original images, (b) segmented images.
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appropriate. This is due mainly to the high dimensionality of the problem, and to the fact that two

documents may not be considered similar if keywords are missing in both documents. In this section, we

adapt SCAD to cluster text documents and to learn dynamic category-dependent keyword set weights.

Since only one logical set of features is used (term frequency), we do not divide the features into subsets,

and we use the standard SCAD.

The SCAD’s criterion function can be modified to incorporate other dissimilarity measures. The only

constraint is the ability to decompose the dissimilarity measure across the different attribute directions.

An appropriate similarity for text document clustering is the cosine measure [23]. Let xi ¼ ðxi1; � � � ; xinÞ
be the vector representation of document i, where xij is the frequency of the jth term in this document. The

cosine similarity measure between two documents xi and xj is given by:

Sðxi; xjÞ ¼
Pn

k¼1 xik � xjk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1 x2
ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1 x2

jk

q : ð14:42Þ

To incorporate this measure into SCAD, we define the dissimilarity between document xj and the ith

cluster center vector as:

~Dij ¼
Xn

k¼1

vikDk
ij; ð14:43Þ

where

Dk
ij ¼

1

n
� ðxjk � cikÞ: ð14:44Þ

~Dij is a weighted aggregate sum of cosine-based distances along the individual dimensions, cik is the kth

component of the ith cluster center vector and V ¼ ½vik� is the relevance weight of keyword k in cluster i.

Note that the individual products are not normalized in (14.43) because it is assumed that the data vectors

are normalized to unit length before they are clustered, and that all cluster centers are normalized after

they are updated in each iteration.

14.7.3 Categorization Results

We illustrate the performance of SCAD on text documents collected from the World Wide Web from

several preclassified categories. Students were asked to collect 50 distinct documents from each of the

following categories: news, business, entertainment, and sports. Thus, the entire collection consists of 200

documents. The documents’ contents were preprocessed by eliminating stop words and stemming words

to their root source. Then the inverse document frequencies (IDF) [23] of the terms were computed and

sorted in descending order so that only the top 200 terms were chosen as final keywords. Finally, each

document was represented by the vector of its document frequencies, and this vector was normalized to

unit length. We should note here that the class labels were not used during the clustering process. They

were used only to validate the final partition.

SCAD converged after 27 iterations, resulting in a partition that closely resembles the distribution of

the documents with respect to their respective categories. The class distribution is shown in Table 14.9.

Table 14.10 lists the six most relevant keywords for each cluster. As can be seen, the terms with the highest

Table 14.9 Distribution of the 50 documents from each class into the four clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(business) (entertainment) (news) (sports)

Class 1 48 1 1 0

Class 2 7 31 5 7

Class 3 2 1 47 0

Class 4 0 0 3 47
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feature relevance weights in each cluster reflected the general topic of the category winning the majority

of the documents that were assigned to the cluster. Thus, these cluster-dependent relevant keywords could

be used to provide a short summary for each cluster and to annotate documents automatically.

The partition of the documents of class 2 showed most of the error in assignment due to the mixed

nature of some of the documents therein. For example, by looking at the excerpts (shown below) from

documents from Class 2 (entertainment) that were assigned to Cluster 1 with relevant words relating to

business as seen in Table 14.10, one can see that these documents are hard to classify into one category,

and that the keywords present in the documents in this case have mislead the clustering process. However,

in the case of document 78, the fuzzy membership values in the business and entertainment clusters do not

differ much, indicating a document related to several topic classes simultaneously. This illustrates the

advantage of fuzzy memberships in text clustering.

Excerpt from Document 70 (memberships u0j ¼ 0:853; u1j ¼ 0:140; u2j ¼ 0:005; u3j ¼ 0:003):

LOS ANGELES (Reuters) - Ifilm and Pop.com, the would-be Web site backed by film makers Steven

Spielberg, Ron Howard and other Hollywood moguls, have ended talks to merge, according to an e-mail

sent to Ifilm employees on Friday. . . . ‘‘The companies will continue to enjoy many overlapping

shareholder and personal relationships,’’ the memo said. Industry observers said the founders of Pop.com,

which has never aired a single show or launched its Web site, are looking for a graceful exit strategy out of

the venture, which has been plagued by infighting and uncertainty about the company’s direction and

business plan . . .
Excerpt from Document 78 (memberships u0j ¼ 0:319; u1j ¼ 0:252; u2j ¼ 0:232; u3j ¼ 0:197):

. . . The Oxford-based quintet’s acclaimed fourth release, ‘‘Kid A,’’ opened at No. 1 with sales of

207,000 copies in the week ended Oct. 8, the group’s Capitol Records label said Wednesday. The tally is

more than four times the first-week sales of its previous album.

The last Stateside No. 1 album from the U.K was techno act Prodigy’s ‘‘The Fat of the Land’’ in July

1997. That very same week, Radiohead’s ‘‘OK Computer’’ opened at No. 21 with 51,000 units sold. It

went on to sell 1.2 million copies in the United States . . .

14.8 APPLICATION 3: BUILDING A MULTI-MODAL THESAURUS
FROM ANNOTATED IMAGES

In this section, we illustrate the application of SCAD to learn associations between low-level visual

features and keywords. We assume that a collection of images is available and that each image is globally

annotated. The objective is to extract representative visual profiles that correspond to frequent homo-

geneous regions, and to associate them with keywords. These labeled profiles would be used to build a

multi-modal thesaurus that could serve as a foundation for hybrid navigation and search algorithms in

content-based image retrieval (CBIR) [27, 34]. This application involves two main steps. First, each

image is coarsely segmented into regions, and visual features are extracted from each region. Second, the

regions of all training images are grouped and categorized using SCADc–CA. As a result, we obtain

Table 14.10 Term relevance for the top six relevant words in each cluster.

Cluster # 1 Cluster # 2 Cluster # 3 Cluster # 4

v1ðkÞ wðkÞ v2ðkÞ wðkÞ v3ðkÞ wðkÞ v4ðkÞ wðkÞ

0.029 compani 0.031 film 0.016 polic 0.025 game

0.016 percent 0.012 star 0.011 govern 0.015 season

0.011 share 0.010 week 0.010 state 0.010 plai

0.010 expect 0.008 dai 0.009 offici 0.009 york

0.008 market 0.008 peopl 0.009 nation 0.009 open

0.008 stock 0.008 open 0.009 sai 0.009 run
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clusters of regions that share subsets of relevant features. Representatives from each cluster and their

relevant visual and textual features would be used to build a thesaurus.

14.8.1 Feature Extraction and Representation

We assume that we have a large collection of training images and that each image is annotated by a few

keywords. We do not assume that the annotation is complete or accurate. For instance, the image may

contain many objects, and we do not have a one-to-one correspondence between objects and words. This

scenario is very common as images with annotations are readily available, but images where the regions

themselves are labeled are rare and difficult to obtain. Moreover, we do not know which specific visual

attributes best describe the keywords. Figure 14.6 displays three images annotated at the image level.

Some keywords, such as ‘‘grass,’’ can be clearly associated with color features. Others, such as ‘‘house,’’

may be associated with shape features. Other words may be associated with any combination of color,

texture, and shape features. This information, if it could be learned, would improve the efficiency of image

annotation and hybrid searching and browsing.

First, each training image needs to be segmented into homogeneous regions based on color and/or

texture features. It is not required to have an accurate segmentation as subsequent steps can tolerate

missing and over-segmented regions. Then, each region would be described by visual features such as

color, texture, shape and a set of keywords. Let ff ðiÞj1
; � � � ; f ðiÞjkj

g be a kj dimensional vector that encodes the

jth visual feature set of region Ri of a given image. For the keywords, we use the standard vector space

model with term frequencies as features [32]. Let fw1;w2; � � � ;wpg be the representation of the keywords

describing the given image (not region-specific). An image that includes n regions (R1; . . . ;Rn) would be

represented by n vectors of the form:

f
ðiÞ
11 ; � � � ; f

ðiÞ
1k1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

visual feat 1 of Ri

; � � � ; f
ðiÞ
C1 ; � � � ; f

ðiÞ
CkC|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

visual feat C of Ri

;w1; � � � ;wp|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Keywords

; i ¼ 1 � � � n:

Figure 14.7 illustrates the image representation approach. We should note here that since the keywords

are not specified per region, they get duplicated for each region representation. The assumption is that if

word w describes a given region Ri then a subset of its visual features would be present in many instances

across the image database. Thus, an association rule among them could be mined. On the other hand, if

none of the words describe Ri, then these instances would not be consistent and will not lead to strong

associations.

Figure 14.6 Examples of image-level annotations that refer to different and not segmented regions in the image.
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14.8.2 Categorization and Thesaurus Construction

A subset of the Corel image collection is used to illustrate the ability of SCAD to learn associations

between multimodal features and to construct a multimodal thesaurus. We used a total of 1331 images,

where each image is labeled by one to six keywords. The keywords provide a global description of the

image and are not explicitly associated with specific regions. A total of 24 words were used. First, each

image is coarsely segmented as described in Section 14.6.1. Segmentation of all the images resulted in

6688 regions. Second, each region is characterized by one color, one texture and one textual feature set.

The color feature consists of a 64 bin RGB histogram. The texture feature consists of one global 5-Dim

edge histogram [28]. The textual feature set consists of a 24-Dim vector that indicates the presence/

absence of each keyword. Each feature set is normalized such that its components sum to one.

The 6688 feature vectors with the three feature subsets were clustered by SCADc into C ¼ 100 clusters

of homogeneous regions and the relevant feature sets for each cluster were identified. Figure 14.8 displays

some regions that were assigned to one of the clusters. For each region, we show the keywords that were

used to annotate the original images from which the region was extracted. As can be seen, not all words

are valid. However, some of the words (in this case ‘‘Sky’’) would be more consistent across all the regions

Figure 14.7 Representation of visual and textual features.

Figure 14.8 Sample regions from the ‘‘Sky’’ cluster.
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of the cluster. Consequently, these words will be the dominant terms in the textual feature set. The visual

features of this cluster consist of a bluish color and smooth texture.

After categorizing all the regions, the dominant keywords, the representative visual features and the

feature relevance weights of each cluster would be used to create one entry in the thesaurus. Figure 14.9

displays samples of clusters’ representatives. For each representative (i.e., cluster center), we show the

image of the closest region, the color feature components (color histogram), the texture feature compo-

nents (edge histogram where the five components indicate the proportion of horizontal, vertical, diagonal,

anti-diagonal, and non-edge pixels in the region), and one or two dominant components (keywords) of the

textual features. We also show the relevance weight of each feature subset. The second profile

corresponds to the cluster sampled in Figure 14.8. From this profile, we can deduce that: ‘‘if the color

is bluish and the texture is smooth, then the label is sky.’’ Moreover, texture is the most consistent and thus

the most important feature of this profile. For other profiles, such as the fourth sample in Figure 14.9, color

is the most important feature.

14.8.3 Image Annotation

The constructed multimodal thesaurus could be used to annotate new test images as follows. Given a test

image, we first segment it into homogeneous regions (as described in Section 14.6.1). Then for each

region, Rk, we extract its color feature, Rc
k, its texture feature Rt

k, and compare it to the clusters’

representatives using

Di ¼ vicdist Rc
k; c

c
i

� �
þ vitdist Rt

k; c
t
i

� �
; i ¼ 1; � � � ;C: ð14:45Þ

Figure 14.9 Samples of clusters’ representatives with their visual and textual features.
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In (14.45), cc
i and ct

i are the center of the color and texture feature subsets of the ith entry of the constructed

thesaurus, and vic, vit are their respective relevance weights. Based on the distances Di and the distribution

of the clusters, several ways could be used to annotate Rk and assign a confidence value to each label.

Here, we show the results using a simple approach that selects one word from the closest cluster

only.

Figure 14.10 displays samples of test images that were segmented and labeled correctly. The first two

images have good segmentation, and a correct label was assigned to each region. The last two images

were over-segmented as both the sky and the tree were split into two regions. In this case, both regions of

the same object were assigned the same correct label.

Figure 14.11 displays typical cases where this approach can fail. For the first image, the ‘‘deer’’ region

was labeled incorrectly as ‘‘tree.’’ This is because in the training image collection, there are several

instances of trees that have the same visual features (brown color with small edges in all directions). The

second image has an object (bird) that was not included in the training data, and the word ‘‘bird’’ was not

included in the thesaurus. Since the adopted labeling approach did not assign a confidence value to each

selected label, it does not have the option of rejecting the label.

14.9 CONCLUSIONS

In this chapter, we presented an approach that performs clustering and feature weighting simultaneously.

When used as part of an unsupervised learning system, SCAD-1 and SCAD-2 can categorize the unlabeled

data while determining the best feature weights within each cluster. Both SCAD-1 and SCAD-2 minimize

one objective function for the optimal prototype parameters and feature weights for each cluster. This

optimization is done iteratively by dynamically updating the prototype parameters and the feature weights.

This makes the proposed algorithms computationally simple and efficient. Moreover, since the objective

functions of SCAD-1 and SCAD-2 are based on that of the FCM, they inherit most of the advantages of

FCM-type clustering algorithms. In fact, the SCAD approach can easily benefit from the advances and

improvements that led to several K means and fuzzy C-means variants in the data mining and pattern

recognition communities. In particular, the techniques developed to handle noise [11], to determine the

number of clusters [10], to cluster very large data-sets [3, 9] and to improve initialization [4].

We have also presented SCADc, a generalization of SCAD that learns feature relevance weights for

subsets of features. If each extracted attribute is considered a feature subset (with one feature), then

Figure 14.10 Samples of segmented images that were labeled correctly.

Figure 14.11 Samples of segmented images with some regions labeled incorrectly.
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SCADc reduces to SCAD. There are two main advantages of using SCADc as opposed to using SCAD.

First, if there are too many features, then learning a relevance weight for each one may cause overfitting as

clusters tend to be small and characterized by few relevant features. Second, SCADc allows the use of

different distance measures tailored for the different feature subsets. For instance, one could use the

Mahalanobis distance for texture features, L1 norm for the position features, cosine similarity (or fuzzy

t-norm and t-conorm) for histogram-based features, etc. The only requirement is that the different

distances should be normalized to yield values in the same dynamic range.

The SCAD paradigm was validated with three applications that involve clustering large data-sets with

different types of features. In the image segmentation application, we have shown that learning cluster-

dependent feature relevance weights improves the partition of the feature space and results in more

homogeneous regions. In the text document categorization, we have shown that in addition to improving

the quality of the categorization, the relevant features (keywords) could be used to provide a brief

summary of each collection. In the third application, we used SCAD to learn associations between visual

features of image regions and textual keywords. These associations are based on the identified relevant

features from each modality, and were used to construct a multimodal thesaurus.

APPENDIX 14A.1

Theorem 1 limq!1þ vik ¼
1 if ~Dik ¼ minn

t¼1
~Dit

0 otherwise:

(

Proof

The relevance weight of feature k in cluster i is defined as

vik ¼
1

Pn
t¼1ð~Dik=~DitÞ1=ðq�1Þ ; ð14:46Þ

Since the exponent 1
q�1
!1 as q! 1þ, the individual terms in the denominator have the following

tendency

limq!1þð~Dik=~DitÞ1=ðq�1Þ ¼
1 if ~Dik > ~Dit;
0 if ~Dik < ~Dit;
1 if ~Dik ¼ ~Dit:

8
<

:

Therefore, two cases arise:

� Case 1:

9 t 6¼ k j ~Dik > ~Dit¼)~Dik 6¼ minn
t¼1

~Dit:

The denominator in (14.46) becomes infinite, and

limq!1þvik ¼ 0:

� Case 2:

6 9 t 6¼ k j ~Dik > ~Dit¼)~Dik ¼ minn
t¼1

~Dit:

Hence,

vik ¼
1

ð~Dik=~DitÞ1=ðq�1Þ þ
Pn

t¼1;t 6¼kð~Dik=~DitÞ1=ðq�1Þ

¼ 1

1þ
Pn

t¼1;t 6¼kð~Dik=~DitÞ1=ðq�1Þ :
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Since limq!1þð~Dik=~DitÞ1=ðq�1Þ ¼ 0 for all t 6¼ k,

limq!1þvik ¼ 1:

Therefore, we conclude that

limq!1þvik ¼
1 if ~Dik ¼ minn

t¼1
~Dit;

0 otherwise:

(
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15.1 INTRODUCTION

During the past 20 years or so we have witnessed the successful performance of data mining systems in

many companies and organizations worldwide. Most of these systems are, however, static in the sense that

they do not explicitly take into consideration a changing environment. If we want to improve such systems

and/or update them during their operation the dynamics of the data should be considered.

Since data mining is just one step of an iterative process called knowledge discovery in databases (KDD,

Han, and Kamber, 2001), the incorporation of dynamic elements could also affect the other steps. The entire

process consists basically of activities that are performed before doing data mining (such as selection,

preprocessing, transformation of data (Famili, Shen, Weber, and Simoudis, 1997)), the actual data mining

part and subsequent steps (such as interpretation and evaluation of results). Clustering techniques are used for

data mining if the task is to group similar objects in the same classes (segments) whereas objects from

different classes should show different characteristics (Jain, Murty, and Flynn, 1999). Such clustering

approaches could be generalized in order to treat different dynamic elements, such as dynamic objects and/or

dynamic classes as shown below. Incorporating fuzzy logic into clustering algorithms offers various advantages,

especially for the treatment of dynamic elements occurring in the problem as will be seen in this chapter.

Section 15.2 reviews the literature related to dynamic clustering using crisp as well as fuzzy approaches.

Section 15.3 presents recently developed methods for dynamic fuzzy clustering. Applications of these

techniques are shown in Section 15.4. Future perspectives and conclusions are provided in Section 15.5.

15.2 REVIEW OF LITERATURE RELATED TO DYNAMIC CLUSTERING

In data mining various methods have been proposed in order to find interesting information in databases.

Among the most important ones are decision trees, neural networks, association rules, and clustering
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methods (Han and Kamber, 2001). Since the analyzed objects in many real-world domains depend on

time-evolving phenomena, the related dynamic aspects have to be explicitly taken into account. Model

updating is one way to address the problem caused by continuously receiving new data.

For each of the above-mentioned data mining methods updating can be done in different ways and

several approaches have been proposed in literature:

� Decision trees: Various techniques for incremental learning and tree restructuring (see, for example,

Utgoff (1997)) as well as the identification of concept drift (see, for example, Black and Hickey

(1999)), have been proposed.

� Neural networks: Updating is often used in the sense of re-learning or improving the network’s

performance by presenting new examples.

� Association rules: Raghavan and Hafez (2000) have developed systems for dynamic data mining for

association rules.

� Clustering: In this section, we describe in more detail approaches for dynamic data mining using

clustering techniques that can be found in literature.

One of the first dynamic cluster methods has been presented in Diday (1973) where groups of objects

called ‘‘samplings’’ adapt over time and evolve into interesting clusters. In order to structure the following

considerations dynamic clustering approaches can be characterized regarding the nature of input data,

i.e., whether the respective input data is static or dynamic. We call input data static if no time-dependent

variation is considered; in the opposite case we speak about dynamic input data. Several clustering

systems have been proposed that treat static input data but are using dynamic elements during classifier

design, i.e., dynamic adaptations of the respective algorithm are performed while applying it to a set of

static input data. ‘‘Chameleon’’ is such a system, which uses hierarchical clustering where the merging

decision on each hierarchy dynamically adapts to the current cluster characteristics (Karypis, Han, and

Kumar 1999).

Other than in hierarchical clustering, objective function-based clustering methods such as, for

example, C-means and fuzzy C-means, need to specify the number of clusters (here c) before running

the respective algorithm. The determination of an appropriate number of clusters has been the subject of

several investigations (see, for example, Bezdek, Keller, Krishnapuram, and Pal (1999)). ‘‘Dynamic

partitional clustering using evolution strategies’’ is an approach where the cluster number is optimized

during runtime (Lee, Ma, and Antonsson, 2001) using evolutionary algorithms. Adaptive fuzzy clustering

(AFC) estimates dynamically the respective parameters during the classifier construction (see, for

example, Krishnapuram and Kim (1999)).

The clustering methods mentioned above are using dynamic elements during their application to a set

of static input data. Next, we will analyze the situation of dynamic input data distinguishing between the

following two cases. On one hand, clustering can be performed at a certain point of time explicitly taking

into consideration the previous development of feature values. In this case dynamic clustering means

clustering of feature trajectories instead of real-valued feature vectors. On the other hand, we want to

understand how class structures may change over time and are interested in updating a classifier when new

data becomes available. In the following, both cases will be studied in more detail.

In situations where current feature values are not sufficient in order to explain the underlying

phenomenon it may be interesting to analyze the respective feature trajectories. This is the case, for

instance, in medicine, where patients’ conditions depend not only on the current values of, for example,

blood pressure but also on their development during the relevant past. Another example could be stock

price prediction, where a stock’s current value is not sufficient in order to predict future price develop-

ment. For such a prediction we would be interested in the chart exhibiting the respective stock prices of the

relevant past.

An approach where trajectories of feature values are clustered is Matryoshka (Li, Biswas, Dale, and

Dale, 2002), which is based on a hidden Markov model (HMM) for temporal data clustering. Given as

input objects described by temporal data (trajectories) it determines the optimal number of classes where

each class is characterized as an HMM and an assignment of objects to classes. The research area of data
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mining where objects are described by dynamic data (trajectories) is also called temporal data mining

(Antunes and Oliveira, 2001).

For the case of dynamically changing classes fuzzy clustering has been used, for example, as a

preprocessing tool for a rule-based fuzzy system. This approach iterates between fuzzy clustering and

tuning of the fuzzy rule base ‘‘until the number of the data belonging to a class that are misclassified into

another class does not exceed the prescribed number’’ (Abe, 1998).

A dynamic evolving neural-fuzzy inference system (DENFIS) has been used for dynamic time series

prediction (Kasabov and Song, 2002). Based on an evolving clustering method (ECM) a first-order

Takagi–Sugeno-type fuzzy rule set for prediction is created dynamically.

A prototype-based clustering algorithm called dynamic data assigning assessment (DDAA) has been

proposed in Klawonn and Georgieva (2006). It is based on the noise clustering technique and finds good

single clusters one by one and at the same time separates noisy data. A framework for dynamic fuzzy

clustering that explicitly integrates the process of monitoring the analyzed phenomenon is presented in

Angstenberger (2001).

Fuzzy logic has also proved its potential in clustering of data streams. Such a data stream can be defined

as a continuously increasing sequence of time-stamped data. The problem of clustering evolving data

streams is described, for example, in Chapter 16 of this book. The authors show that in such applications

fuzzy clustering offers particular advantages since changes of the respective classes are frequently

smooth rather than abrupt.

15.3 RECENT APPROACHES FOR DYNAMIC FUZZY CLUSTERING

Table 15.1 provides a taxonomy of various situations where we are faced with dynamic input data in the

case of clustering. In the case of static classes we apply clustering only at one point of time; no updating of

class structures will be considered. If additionally objects are static, i.e., described by real-valued feature

vectors containing just current values of the features used, we have the classical case of clustering. If we

want to consider explicitly the development of feature values previous to the clustering step we are

assigning dynamic objects to static classes. In this case the feature vectors consist of trajectories instead of

real values.

In the case of dynamic classes the class structure should be updated iteratively. Should the respective

feature vectors be composed of current feature values, we are updating with static objects. Assigning

dynamic objects to dynamic classes is the case of class updating with feature trajectories.

The following sections present fuzzy clustering approaches developed for the cases of ‘‘static classes’’/

‘‘dynamic objects’’ and ‘‘dynamic classes’’/‘‘static objects.’’ It will be shown that working with fuzzy

logic provides particular advantages in dynamic clustering since the respective membership values

represent a strong tool in order to capture changing environments. The following developments are

based on fuzzy C-means (FCM) that is described, for example, in (Bezdek, Keller, Krishnapuram, and

Pal, 1999). Here we use the following notation:

c: number of classes

n: number of objects

Table 15.1 Clustering approaches for dynamic data mining.

Static classes Dynamic classes

Static objects Classical case: clustering of Clustering of a set of

real-valued feature vectors changing feature vectors

Dynamic objects Clustering of feature trajectories Clustering of a set of

changing feature trajectories
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p: number of features describing each object

xi: feature vector of object i, i ¼ 1; . . . ; n
vj: center of class j, j ¼ 1; . . . ; c
�ij: degree of membership of object i to class j, i ¼ 1; . . . ; n; j ¼ 1; . . . ; c

15.3.1 Assigning Dynamic Objects to Static Classes

In many real-world applications current feature values are not sufficient in order to explain the underlying

phenomenon. As has been seen already in Section 15.2, in such situations we may be interested in the

development of these values over time so that features become trajectories.

15.3.1.1 Approaches for Handling Trajectories in Clustering

Incorporating trajectories into data mining systems can be done during the transformation step of the

KDD-process and then applying classical clustering methods or directly within accordingly modified

methods. Transforming original trajectories into real-valued feature vectors maintaining the dynamic

information contained in these trajectories can be done by determining, for example, mean values,

variance, derivatives, and others. We have to keep in mind, however, that reducing the original trajectory

to a set of real values in general means a loss of information. The functional fuzzy C-means (FFCM)

described next works with the entire trajectories using a modified distance measure.

15.3.1.2 Description of the Functional Fuzzy c-means (FFCM)

In order to be able to cluster dynamic objects, we need a distance measure between two vectors where

each component is a trajectory (function) instead of a real number. Functional fuzzy C-means is a fuzzy

clustering algorithm where the respective distance is based on the similarity between two trajectories that

is determined using membership functions. Alternative approaches to determine the similarity between

two functions are wavelets (see, for example, Angers (2002)) and time warping (see, for example, Keogh

(2002)).

The FFCM is a generalization of standard fuzzy C-means (FCM). In each iteration FCM uses the

following formula in order to calculate the membership value � i; j of object i to class j:

�i; j ¼
1

Pc

k¼1

dðXi;VjÞ
dðXi;VkÞ

� � 2
m�1

where xi is the feature vector of object i; vj and vk are the class centers of the classes j and k, respectively; c

is the number of classes; m 2 ð1;1Þ is a parameter determining the degree of fuzziness of the generated

clusters.

The expression d(x, y) used in the above formula determines the distance between two vectors x and y

in the feature space. In the case of feature vectors containing real numbers the Euclidean distance can be

applied for this calculation. The main idea of the FFCM is to generalize the calculation of the distance

between a pair of feature vectors containing real numbers to the calculation of the distance between a pair

of feature vectors containing their trajectories. The latter calculation can be performed using the concept

of a membership function. The idea presented below can be applied, however, to any data mining

technique where the distance between objects is required.

FFCM determines the distance between two objects applying the following five steps:

(1) A fuzzy set A ‘‘approximately zero’’ with membership function � is defined (Figure 15.1(a))

(2) The degree of membership �ðf ðxÞÞ of an arbitrary function f ðxÞ to the fuzzy set A is calculated for

every point x. These degrees of membership can be interpreted as (pointwise) similarities of the

function f to the zero function (Figure 15.1 (b)).
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(3) �ðf ðxÞÞ is transformed into a real number expressing the overall degree of being zero by using specific

transformations (e.g., g-operator, fuzzy integral (Zimmermann, 2001)).

(4) The similarity measure defined by steps (1) to (3) is invariant with respect to the addition of a

function, i.e., sðf ; gÞ ¼ sðf þ h; gþ hÞ holds for all functions f ; g, and h, (Joentgen, Mikenina,

Weber, and Zimmermann, 1999). This allows us to calculate the similarity between an arbitrary

pair of functions f and g by adding the function h :¼ �g and determining the similarity of f � g to

the zero-function.

(5) Finally, the similarity sðf ; gÞ is transformed to a distance dðf ; gÞ by: dðf ; gÞ :¼ 1=sðf ; gÞ � 1.

Applying this new distance measure between functions FFCM works as FCM determining classes of

dynamic objects. The respective class centers are composed of the most representative trajectories in each

class (see Figure 15.2).

Figure 15.1 (a) The fuzzy set ‘‘approximately zero’’(�(y)), the function f ðxÞ, and the resulting point wise similarity

�ðf ðxÞÞ, Projection of the point wise similarity into the plane ðx; �ðf ðxÞÞÞ.
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Figure 15.2 Functional fuzzy C-means (FFCM).
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15.3.2 Assigning Static Objects to Dynamic Classes

We present a methodology for dynamic data mining based on fuzzy clustering that assigns static

objects to ‘‘dynamic classes,’’ i.e., classes with changing structure over time. It starts with a given

classifier and a set of new objects, i.e., objects that appeared after the creation of the current classifier.

The period between the creation of a classifier and its update is called a cycle. The length of such a

cycle depends on the particular application, e.g., we may want to update buying behavior of customers

in a supermarket once a year whereas a system for dynamic machine monitoring should be updated

every 5 minutes. Next, we present a global view of our approach before we provide details of each of

its steps.

15.3.2.1 Global View of the Proposed Methodology

The methodology presented next does not assume identifiable objects, i.e., we do not need an identifier for

each object. This would be the case, for example, in segmentation of bank customers where we can

identify each customer and his/her activities (see, for example, Weber (1996)). A possible application

with non-identifiable objects would be segmentation of supermarket customers where we do not have

personalized information.

Possible changes of a classifier’s structure we may want to detect in each cycle are:

� creation of new classes;

� elimination of classes;

� movement of classes in the feature space.

The following five steps are applied in order to detect changes in the class structure and realize the

corresponding modifications.

Step I: Identify objects that represent changes. We first want to know if the new objects can be

explained well by the given classifier or not. In other words we want to identify objects that ask for

possible changes in the classifier structure because they are not well classified. If there are many

objects that represent such possible changes we proceed with Step II, otherwise we go immediately to

Step III.

Step II: Determine changes of class structure. Here we want to decide if we have to create new classes in

order to improve the classifier for the new objects or if it is sufficient to just move the existing classes. If

Step I identifies ‘‘many new objects’’ representing changes we have to create a new class, otherwise we

just move the existing classes in the feature space.

Step III: Change the class structure. We perform the changes according to the results of Steps I and II

((a) move or (b) create classes).

Step III(a): Move classes. We update the position of the existing class centers based on the information

provided by the new objects and knowing that they do not ask for new classes.

Step III(b): Create classes. If we know that classes have to be created, we first determine an

appropriate class number. Then we apply fuzzy C-means with the new class number to the available

data-set.

Step IV: Identify trajectories of classes. We identify trajectories of the classes from previous cycles in

order to decide if they received new objects. Classes that did not receive new objects during several

cycles should be eliminated.

Step V: Eliminate unchanged classes. According to the result of Step IV we eliminate classes that did

not receive new objects during an ‘‘acceptable period.’’

Figure 15.3 exhibits a general view of the proposed methodology; see (Gespo and Weber 2005).
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15.3.2.2 Detailed Description of a Cycle of the Proposed Methodology

During a cycle m new objects have appeared. Let k ¼ nþ 1; . . . ; nþ m be the index of the m new objects.

Step I: Identify objects that represent changes. The goal of this step is to identify those objects that are

not well classified by the given classifier. For this reason we need the distances between each pair of the

currently existing class centers. This pairwise distance is:

dðvi; vjÞ 8i 6¼ j; i; j 2 f1; . . . ; cg:

Additionally we need the distance between the new object k and the center vi from the current class

structure. This distance is:

d̂ik ¼ d̂ðxk; viÞ; i 2 f1; . . . ; cg k 2 fnþ 1; . . . ; nþ mg:

Finally we apply the given classifier to the m new objects and obtain

�̂ik ¼ membership of new object k to class i i 2 f1; . . . ; cg k 2 fnþ 1; . . . ; nþ mg:
Based on this preliminary work we identify objects that represent changes of the given classifier. In

this step we just want to know if it is adequate to create a new class or if class movement is sufficient.

Therefore, we want to identify objects that are ‘‘not classified well by the existing classifier’’ and ‘‘far

away from the current classes.’’ The following two conditions are applied in order to detect such

objects.

Condition 1: j�̂ik � 1=cj � a 8k 2 fnþ 1; . . . ; nþ mg 8i 2 f1; . . . ; cg:
Given a value a � 0, Condition 1 determines those objects that have a membership value close to the

inverse of the class number (1/c). A new object k that has all its membership values close to 1/c cannot be

classified satisfactorily.

Parameter a can be determined applying one of the following strategies:

� It can be fixed context-dependently if the respective knowledge exists.

� If we know the correct class of some objects in a given cycle, we can determine a dynamically

depending on the rate of correct classification of objects. For example, if the rate of correct classifica-

tion is high in one cycle, a should be closer to zero in the following cycle in order to generate less

changes of the classifier structure.

Step I:
Identifying 
objects that 
represent 
changes

Yes

No

Step II: 
Determining changes 

of class structure

Moving
class

Creating 
classes

Step III:
Changing class 

structure

Comparison
with previous

classes

Step IV:
Identifying

trajectories

Eliminating
classes

Step V:
Eliminating 
unchanged 

classes

Figure 15.3 General view of our methodology for dynamic fuzzy clustering considering changing class structures.
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Condition 2: d̂ik > minfdðvi; vjÞg 8k 2 fnþ 1; . . . ; nþ mg 8i 6¼ j 2 f1; . . . ; cg:
Condition 2 determines if a new object k is ‘‘far away from the current classes.’’ We assume this to

be the case, if its distance to each class i is larger than the minimal distance between two classes i

and j.

Based on these two conditions we define:

1ICðxkÞ ¼
1 xk fulfills Conditions 1 and 2;
0 else:

�

In other words: 1ICðxkÞ has value 1 if and only if object k cannot be classified well by the current classifier.

If
Pnþm

k¼nþ1

1ICðxkÞ ¼ 0 we proceed with Step III(a), otherwise we go to Step II.

Step II: Determine changes of class structure. Given that at least one object asks for a change of the

classifier structure we now want to check if we need a new class or if moving the existing classes is

sufficient. To do so, we apply the following criterion:

Pnþm

k¼nþ1

1ICðxkÞ

m
� b; with a parameter b 0 � b � 1:

If the relation between new objects that represent changes and the total number of new objects (m) is

above a predefined threshold bwe create new classes (III(b)). Otherwise we just move the existing classes

(III(a)).

Parameter b can be determined applying one of the following strategies:

� It can be fixed context-dependently if the respective knowledge exists.

� If the correct class of the objects in a given cycle is known, b can be determined as the rate of correct

classification of objects. This way we have an adaptive parameter setting for b in the following cycle,

i.e., if many objects are classified correctly in one cycle it needs more new objects that represent a

possible change in order to create a new class in the following cycle.

Step III: Change the class structure. Depending on the result of Step II we may want to create new

classes or just move the existing ones.

Step III(a) Move classes. There are basically two options for class movement:

� Applying the underlying clustering algorithm (in our case fuzzy C-means) with previous and new

objects (without changing the number of classes).

� Determining ‘‘class centers’’ representing only the new objects and combining them with the previous

class centers.

The second option of moving classes combines the centers of the existing classes with centers represent-

ing the new objects belonging to the same class, respectively. For this reason we define the indicator

function of a new object k for class i:

1Ci
ðxkÞ ¼

1 object k is assigned to class i;
0 else:

�

We assign an object to a class if it has its highest membership value in this class. For each class i we

determine the class centers representing only the new objects of this class by:

v�i ¼

Pnþm

k¼nþ1

ð1� 1ICðxkÞÞð�̂ikÞmxk

Pnþm

k¼nþ1

ð1� 1ICðxkÞÞð�̂ikÞm
1 � i � c:
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Combining these ‘‘centers of the new objects’’ with the previous centers we determine the new class

centers by:

v̂i ¼ ð1� liÞvi þ liv
�
i ;

where the weight li indicates the proportion of new objects assigned to class i:

li ¼

Pnþm

k¼nþ1

½1Ci
ðxkÞ � ð1� 1ICðxkÞÞ � �̂ik�

Pn

j¼1

ð1Ci
ðxjÞ � �ijÞ þ

Pnþm

k¼nþ1

½1Ci
ðxkÞ � ð1� 1ICðxkÞÞ � �̂ik�

:

Step III(b) Create classes. If Step II tells us that we have to create one or more new classes since many

new objects cannot be assigned properly to the existing classes, we first have to determine an adequate

new number of classes (e.g., cnew). For this purpose we apply the concept presented by Li and

Mukaidono (1995), which is called structure strength and is based on the idea that ‘‘the knowledge

of a part allows us to guess easily the rest of the whole.’’ A loss function LðcÞ is defined as within-group

sum-of-squared error (WGSS) for a given cluster solution:

LðcÞ ¼
XN

k¼1

Xc

i¼1

uik
�d2

ik;

where c ¼ number of classes, N ¼ number of objects, uik ¼ degree of membership of object k to class i,

and dik ¼ distance between object k and class center i.

Based on this loss function the number c of classes is determined as follows:

SðcÞ ¼ structure strength ¼
a�ðeffectiveness of classificationÞ þ ð1� aÞ� ðaccuracy of classificationÞ ¼
a� logðN=cÞ þ ð1� aÞ�logðLð1Þ=LðcÞÞ:

Li and Mukaidono (1995) suggest that measuring the effectiveness by logðN=cÞ, i.e., a classification with

less classes, is more effective. They propose measuring the accuracy by the term logðLð1Þ=LðcÞÞ, i.e. a

classification with more classes is more accurate. Lð1Þ is the variance of the entire data set and a is the

weight between effectiveness and accuracy. The authors suggest a ¼ 0:5 in the case of an unbiased

estimation, i.e., effectiveness and accuracy should have the same weight. The value c, which maximizes

SðcÞ, is supposed to be an adequate class number. Using an adequate new number of classes (e.g., cnew) for

all objects we continue with our basic clustering algorithm (here fuzzy C-means) in order to determine the

best cnew classes representing all objects.

Step IV: Identify trajectories. Having performed necessary movements and/or creations of classes we

now have to check if there are classes that should be eliminated. As preparation for the elimination step

(Step V), we identify the development of each class during previous cycles based on its trajectory and a

counter ct
i for class i in cycle t. Here we have the following two cases:

� class i has been created in cycle t � 1. In this case we set its counter ct
i ¼ 1.

� class i is the result of moving a certain class j in cycle t � 1. In this case we set: ct
i ¼ ct�1

j þ 1.

Step V:Eliminate unchanged classes. The idea of eliminating a class can be stated in the following way:

‘‘A class has to be eliminated if it did not receive new objects during a long period.’’ What ‘‘long

period’’ means has to be defined.

In Step IV we identified for each class i in cycle t its counter ðct
iÞ, i.e., the number of cycles it has

been active. We define a maximum number of cycles a class could stay active without receiving new

objects (here T cycles). If a class does not receive new objects for T cycles, it will be eliminated. In the
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proposed methodology we use for all classes the same threshold value T that has to be specified by the

user. In certain applications it could be interesting to use different threshold values for the existing

classes.

It should be mentioned that eliminating a class does not mean this class is forgotten completely. When

eliminating a class, the respective information will be kept in a separate memory. If in a later cycle in Step

III(b) (create classes) a new class will be generated that is very similar to a previously eliminated one, we

obtain additional information from the periodically entering data. This way we can detect ‘‘cycles’’ in our

data structure if, for example, a class is eliminated and newly created with certain periodicity (e.g.,

seasonal customer behavior in a supermarket).

15.4 APPLICATIONS

Below we present applications of the methods described in Section 15.3. First we will show the potential

of dynamic fuzzy clustering for strategic planning where functional fuzzy C-means (FFCM) will be used

to cluster scenarios as one step of scenario planning. Then we explain our methodology for class updating

using an illustrative example with simulated data. Finally, we show how dynamic fuzzy clustering can

improve traffic management by dynamic identification of traffic states.

15.4.1 Scenario Planning

One goal of scenario planning is to investigate possible future developments (Schoemaker, 1995). In order

to cover almost all possibilities it is desirable to analyze as many different scenarios as possible. On the

other hand the complexity of the analysis grows as the number of scenarios increases that often limits their

consideration. Here clustering of scenarios (trajectories) offers the advantage of complexity reduction

while maintaining explicitly the information contained in these trajectories.

The process of scenario planning can be subdivided into the three main steps of analysis, forecasting,

and synthesis. The analysis step consists of an adequate problem definition and studying the considered

phenomenon. During the forecasting step many base scenarios are constructed, which are then aggregated

to few final scenarios in the synthesis step. This aggregation step is where dynamic fuzzy clustering has

been used providing final scenarios as the respective class centers. This way dynamic fuzzy clustering

offers a powerful tool to support strategic planning based on scenario analyses.

The subsequent analysis of different scenarios regarding the price of crude oil until the end of 2020 will

show the potential of the algorithm FFCM as presented in Section 15.3. Scenario analysis has already

been used successfully for oil price prediction (see, for example, Austvik (1992)) but without applying

clustering for scenario aggregation.

First, based on expert knowledge and simulation 151 different base scenarios have been generated (see,

for example, Hofmeister et al. (2000) for more details). Each base scenario consists of trajectories of 16

features such as oil price, growth of economy, political stability, oil reserves, demand and supply, among

others, over a period of 104 quarters. FFCM clustered these 151 base scenarios into four classes

(aggregated scenarios) where each class center is represented by a set of 16 trajectories (features).

Figure 15.4 displays the four most important features for these aggregated scenarios. The aggregated

scenarios have been interpreted by an expert as will be shown next.

Scenario 1: Recession. In this scenario supply is higher than demand that leads first to lower oil prices

resulting on one hand in a slightly lower solidarity between OPEC-countries and on the other hand in

higher world-wide demand. Over-capacities on the supply side will lead to reduced production rates and

consequently to higher oil prices increasing income and solidarity among OPEC-countries.

Scenario 2: Innovation. Higher economic growth in industrialized nations leads to steadily increasing

oil prices providing even more incentives for rationalization investments in order to decrease oil-

dependence. Political stability among OPEC-countries increases first due to higher income but goes
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Figure 15.4 Development of the four most important features for the aggregated scenarios.



down at the end of the considered period due to stagnation on the demand side. Less cooperation finally

leads to higher supply that further reduces oil prices.

Scenario 3: OPEC crisis. If solidarity among OPEC-countries decreases drastically – this scenario will be

called OPEC-crisis – production will increase but demand stays basically unchanged, which results in

lower prices and consequently less income for the associated countries. This will reduce solidarity among

them even more.

Scenario 4: Status quo. In this scenario the oil price decreases slightly that offers incentives for

innovations but takes pressure from investments aimed at rationalization. As a consequence energy

dependence in general, and participation of oil in the energy mix in particular, remains almost constant.

Increasing demand for crude oil can be satisfied since the oil-producing countries will increase their

production in order to maintain their income. After some quarters the higher economic growth reduces oil

reserves leading to slightly higher prices.

By identifying the most representative aggregated scenarios from a large set of base scenarios dynamic

fuzzy clustering provides insight into the complex phenomena and supports this way strategic planning.

15.4.2 Application of Dynamic Fuzzy Clustering to Simulated Data

Here we apply our methodology for dynamic clustering to a simulated data set in order to illustrate each of

its steps (movement of class centers, eliminating classes, creating classes).

15.4.2.1 Description of Data Set Used and Initial Solution

An initial solution has been determined using 500 artificially generated objects. Each object is described

by two features whose values are normally distributed with the following mean values: (0, 15), (8, 35),

(15, 0), and (15, 20), respectively. Figure 15.5 shows the initial data set.

We applied fuzzy C-means with c ¼ 4 classes and m ¼ 2. Table 15.2 presents the respective cluster

solution.

Figure 15.5 Initial data set of simulated data.
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15.4.2.2 Applying Dynamic Clustering to Static Objects

We chose the following parameters:

� Step I: in order to identify objects that represent changes we used a ¼ 0:05.

� Step II: with b ¼ 0:2 we created a new class if the number of objects representing changes (result from

Step I) is larger than 20 % of the total number of new objects.

� In Step V we eliminated a class if it did not receive new objects for T ¼ 2 periods.

In the first cycle 600 new objects arrive as shown in Figure 15.6. Conditions 1 and 2 of Step I indicate that

no new object represents changes of the classifier structure. We go immediately to Step III and move the

centers of Classes 1, 3, and 4 that received 200 new objects each. Results are shown in Table 15.3. The last

three columns of this table contain binary variables indicating if the respective change has been

performed.

In the second cycle 500 new objects arrive. The entire set of objects is shown in Figure 15.7. Applying

our methodology in Cycle 2 we obtain Table 15.4. Since 200 out of 500 new objects (40 %) represent

Table 15.2 Initial cluster solution of simulated data set.

Variables

Class X1 X2 Number of objects

1 14.98 0.23 500

2 0.19 15.03 500

3 8.01 35.01 500

4 15.05 20.08 500

Total: 2000

Figure 15.6 Complete data-set including new objects from Cycle 1.
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changes, we created a new class (Class 5). Additionally, centers of classes 1, 3, and 4 have been moved. In

Step V we eliminated Class 2 in Cycle 2 because it did not receive new objects during T ¼ 2 cycles.

In the third cycle 600 new objects arrive leading to the data set as shown in Figure 15.8 (objects

belonging to the previously eliminated Class 2 are not shown). Applying our methodology in the third

cycle we get the result as shown in Table 15.5. Analyzing explicitly the performed changes, for example,

Figure 15.7 Complete data set including new objects from Cycle 2.

Table 15.4 Result after second cycle.

Variables

Class X1 X2 Number of objects Class moved Class created Class eliminated

1 15.83 2.03 800 1 0 0

2 — — 0 0 0 1

3 8.86 35.24 800 1 0 0

4 16.05 20.39 800 1 0 0

5 39.98 29.96 200 0 1 0

: Total: 2600

Table 15.3 Result after first cycle.

Variables

X1 X2

Number Class

Class of objects Class moved Class created eliminated

1 15.55 1.65 700 1 0 0

2 0.19 15.03 500 0 0 0

3 8.70 35.54 700 1 0 0

4 15.72 20.36 700 1 0 0

Total: 2600
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elimination of Class 2 and creation of Class 5, could provide further insights into the behavior of the

observed system.

15.4.3 Dynamic Traffic State Identification

Traffic data has been collected between June 21, 1999 and October 30, 2000 on a German highway

(Bastian, Kirschfink, and Weber, 2001). We analyzed the traffic behavior of the 66 Mondays in this period.

According to experts in traffic management, Mondays typically show a different pattern compared with

other days. Figure 15.10 shows the number of vehicles passing one particular sensor. The x-axis

represents time (0 – 24 hours) and the y-axis represents number of vehicles per hour.

The raw data is collected in intervals of 5 minutes. Applying the Fourier transform to the original time

series and representing it using the first 12 coefficients of the Fourier transform has led to the approxima-

tion shown as the smooth line in Figure 15.9.

In this application, we try to learn from the measured data how traffic behavior changed over time.

The objects of the respective analysis are the time series representing each day’s traffic flow described by a

12-dimensional feature vector containing the respective Fourier coefficients. From our data set we used

the first 33 Mondays in order to obtain the initial solution with three traffic states. Then we updated this

Figure 15.8 Data set including new objects from Cycle 3.

Table 15.5 Cluster solution in Cycle 3.

Variables

Class X1 X2 Number of objects Class moved Class created Class eliminated

1 16.16 2.44 900 1 0 0

2 — — 0 0 0 0

3 9.09 35.00 900 1 0 0

4 16.15 20.33 900 1 0 0

5 40.16 30.16 500 1 0 0

: Total: 3200
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solution each month, by adding four new objects (four new Mondays) in each iteration leading to eight

iterations.

Figure 15.10 shows (a) the approximations corresponding to the class centers of the initial structure and

(b) after eight iterations. During the first seven iterations the number of classes did not change, class

centers just moved slightly. As can be seen, one class has been eliminated in Iteration 8. Revising the
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Figure 15.9 Raw data and approximation (smooth line) for traffic flow.

Figure 15.10 (a) Initial representation of class centers and (b) representation of class centers after eight iterations.
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available objects and consulting the experts this change could be confirmed for the last period analyzed

(October, 2000).

15.5 FUTURE PERSPECTIVES AND CONCLUSIONS

In this chapter, different systems for dynamic fuzzy clustering have been presented. There is, however,

still a lot of work to be done in order to better understand the way ‘‘dynamic elements’’ could be modeled

adequately in complex real-world applications. Next, we will give some hints on future research

directions regarding dynamic fuzzy clustering.

The use of more sophisticated and context-dependent membership functions could improve the

distance function proposed in Section 15.3.1 and used within the functional fuzzy C-means (FFCM).

It would also be interesting to use the idea of alternative clustering algorithms instead of fuzzy C-means in

order to cluster trajectories.

The methodology for class updating presented in Section 15.3.2 does not require identifiable objects.

In applications where these objects can be identified (e.g., dynamic segmentation of bank customers),

we have additional information at hand, which could be used to develop more powerful updating

methodologies. Again, it would also be interesting to use alternative clustering algorithms instead

of fuzzy C-means as the basic technique within the proposed methodology. First experiments using

semi-supervised fuzzy C-means gave promising results since the combination of objects with known as

well as unknown class membership makes special sense in dynamic settings.

So far we dealt with dynamic objects and/or dynamic classes. Another interesting issue of dynamic

clustering that has not received proper attention yet is dynamic feature selection. The underlying idea is to

understand the changing importance of features used for clustering. A similar updating strategy for

dynamic feature selection for regression analysis has been presented, for example, in REG-UP (Guajardo,

Weber, and Miranda 2006).

As has been shown in this chapter dynamic clustering offers huge potential for future research as well as

improving existing data mining systems. Fuzzy logic provides special advantages when it comes to

incorporating dynamic elements into clustering solutions since the respective membership values provide

strong tools for treating time-dependent information, such as updating class structures. The methods

presented in Section 15.3 and some of their applications as presented in Section 15.4 underline this

potential. A lot of work still needs to be done in order to understand better how to develop the respective

methods for dynamic clustering and their possible applications in real-world problems.
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Hofmeister, P. et al. (2000) Komplexitätsreduktion in der Szenarioanalyse mit Hilfe dynamischer Fuzzy-Datenanalyse.

OR-Spektrum 22, 3, 403–420 (in German).

Jain, A.K., Murty, M.N., and Flynn, P.J. (1999) ‘Data clustering: a review’. ACM Computing Surveys, 31, 3, 264–323

Joentgen, A., Mikenina, L., Weber, R., and Zimmermann, H.-J. (1999) ‘Dynamic fuzzy data analysis based on similarity

between functions’. Fuzzy Sets and Systems 105, 1, 81–90.

Karypis, G., Han, E.-H., and Kumar, V. (1999) Chameleon: ‘A hierarchical Clustering Algorithm Using Dynamic

Modeling’. IEEE Computer, Special Issue on Data Analysis and Mining 32, 8, 68–75

Kasabov, N.K., and Song, Q. (2002) DENFIS: ‘Dynamic evolving neural-fuzzy inference system and its application

for time-series prediction’. IEEE Transactions on Fuzzy Systems 10, 2, 144–154

Keogh, E. (2002) ‘Exact indexing of dynamic timewarping’. Proc. of 28th International Conference on Very Large Data

Bases, Hong Kong, China, 406–417

Klawonn, F., and Georgieva, O. (2006) ‘Identifying single clusters in large data sets’. In (J. Wang, ed.) Encyclopedia of

Data Warehousing and Mining. Idea Group, Hershey, 582–585

Krishnapuram, R., and Kim, J. (1999) ‘A note on the Gustafson–Kessel and adaptive fuzzy clustering algorithms’.

IEEE Transactions on Fuzzy Systems 7, 4, 453–461

Lee, C.-Y., Ma, L., and Antonsson, E. K. (2001) ‘Evolutionary and adaptive synthesis methods’. In Formal

Engineering Design Synthesis (E. K. Antonsson and J. Cagan, eds), Cambridge University Press, Cambridge,

U.K., 270–320.

Li, C., Biswas, G., Dale, M., and Dale, P. (2002) ‘Matryoshka: a HMM based temporal data clustering methodology

for modeling system dynamics’. Intelligent Data Analysis, 6, 3, 281–308

Li, R.-P., and Mukaidono, M. (1995) ‘A maximun-entropy approach to fuzzy clustering’, in Proc. Int. Join Conf. 4th

IEEE Int. Conf. Fuzzy/2nd Int. Fuzzy Eng. Symp. (FUZZ/IEEE-IFES), Yokohama, Japan, March 1995, 2227–2232.

Raghavan V., and Hafez A. (2000) ‘Dynamic data mining’. In (R. Loganantharaj, G. Palm and M. Ali, eds), Intelligent

Problem Solving – Methodologies and Approaches: Proc. of Thirteenth International Conference on Industrial

Engineering Applications of AI & Expert Systems. New York: Springer, 220–229.

Schoemaker, P.J.H. (1995) ‘Scenario planning: a tool for strategic thinking’, Sloan Management Review, Winter, 25–40

Utgoff, P. E. (1997) ‘Decision tree induction based on efficient tree restructuring’. Machine Learning 29 (1) 5–44.

Weber, R. (1996) ‘Customer segmentation for banks and insurance groups with fuzzy clustering techniques’. In

(J. F. Baldwin, ed.) Fuzzy Logic, John Wiley and Sons, Ltd, Chichester, 187–196

Zimmermann, H.-J. (2001) Fuzzy Set Theory - and Its Applications. 4th ed. Kluwer Academic Publishers, Boston,

Dordrecht, London.

332 FUZZY CLUSTERING IN DYNAMIC DATA MINING – TECHNIQUES AND APPLICATIONS



16
Fuzzy Clustering of Parallel
Data Streams

Jürgen Beringer and Eyke Hüllermeier
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16.1 INTRODUCTION

In recent years, so-called data streams have attracted considerable attention in different fields of computer

science such as database systems, data mining, or distributed systems. As the notion suggests, a data

stream can roughly be thought of as an ordered sequence of data items, where the input arrives more or

less continuously as time progresses [16, 13, 6]. There are various applications in which streams of this

type are produced such as network monitoring, telecommunication systems, customer click streams,

stock markets, or any type of multi-sensor system.

A data stream system may constantly produce huge amounts of data. To illustrate, imagine a multi-

sensor system with 10 000 sensors each of which sends a measurement every second of time. Regarding

aspects of data storage, management, and processing, the continuous arrival of data items in multiple,

rapid, time-varying, and potentially unbounded streams raises new challenges and research problems.

Indeed, it is usually not feasible to simply store the arriving data in a traditional database management

system in order to perform operations on that data later on. Rather, stream data must generally be

processed in an online manner in order to guarantee that results are up-to-date and that queries can be

answered with only a small time delay. The development of corresponding stream processing systems is a

topic of active research [3].

In this chapter we consider the problem of clustering data streams. Clustering is one of the most

important and frequently used data analysis techniques. It refers to the grouping of objects into

homogeneous classes or groups and is commonly seen as a tool for discovering structure in data. In

our context, the goal is to maintain classes of data streams such that streams within one class are similar to

each other in a sense to be specified below. Roughly speaking, we assume a large number of evolving data

streams to be given, and we are looking for groups of data streams that evolve similarly over time. Our

focus is on time-series data streams, which means that individual data items are real numbers that can be

thought of as a kind of measurement. There are numerous applications for this type of data analysis such

as clustering of stock rates.
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Apart from its practical relevance, this problem is also interesting from a methodological point of view.

In particular, the aspect of efficiency plays an important role. First, data streams are complex, extremely

high-dimensional objects making the computation of similarity measures costly. Secondly, clustering

algorithms for data streams should be adaptive in the sense that up-to-date clusters are offered at any time,

taking new data items into consideration as soon as they arrive. In this chapter we develop techniques for

clustering data streams that meet these requirements. More specifically, we develop an efficient online

version of the fuzzy C-means clustering algorithm. The efficiency of our approach is mainly due to a

scalable online transformation of the original data which allows for a fast computation of approximate

distances between streams.

The remainder of this chapter is organized as follows. Section 16.2 provides some background

information, both on data streams and on clustering. The maintenance and adequate preprocessing of

data streams is addressed in Section 16.3. Section 16.4 covers the clustering of data streams and

introduces an online version of the fuzzy C-means algorithm. Section 16.5 discusses quality and distance

measures for (fuzzy) cluster models appropriate for the streaming setting. Finally, experimental results

are presented in Section 16.6.

16.2 BACKGROUND

16.2.1 The Data Stream Model

The data stream model assumes that input data are not available for random access from disk or memory,

such as relations in standard relational databases, but rather arrive in the form of one or more continuous

data streams. The stream model differs from the standard relational model in the following ways [1]:

� The elements of a stream arrive incrementally in an ‘‘online’’ manner. That is, the stream is ‘‘active’’ in

the sense that the incoming items trigger operations on the data rather than being sent on request.

� The order in which elements of a stream arrive are not under the control of the system.

� Data streams are potentially of unbounded size.

� Data stream elements that have been processed are either discarded or archived. They cannot be easily

retrieved unless they are stored in memory, which is typically small relative to the size of the stream.

(Stored/condensed information about past data is often referred to as a synopsis, see Figure 16.1.)

� Due to limited resources (memory) and strict time constraints, the computation of exact results will

usually not be possible. Therefore, the processing of stream data commonly produces approximate

results [4].

16.2.2 Clustering

Clustering refers to the process of grouping a collection of objects into classes or ‘‘clusters’’ such that

objects within the same class are similar in a certain sense, and objects from different classes are

Stream
processing
engine

Synopsis in memory

Approximate
answer

Data streams

Figure 16.1 Basic structure of a data stream model.
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dissimilar. Clustering algorithms proceed from given information about the similarity between objects,

for example in the form of a proximity matrix. Usually, objects are described in terms of a set of

measurements from which similarity degrees between pairs of objects are derived, using a kind of

similarity or distance measure.

One of the most popular clustering methods is the so-called K-means algorithm [19]. This algorithm

starts by guessing K cluster centers and then iterates the following steps until convergence is achieved:

� clusters are built by assigning each element to the closest cluster center;

� each cluster center is replaced by the mean of the elements belonging to that cluster.

K-means usually assumes that objects are described in terms of quantitative attributes, i.e., that an object

is a vector x 2 <n. Dissimilarity between objects is defined by the Euclidean distance, and the above

procedure actually implements an iterative descent method that seeks to minimize the variance measure

(‘‘within cluster’’ point scatter)

XK

k¼1

X

xi; xj2Ck

jjxi � xjjj2; ð16:1Þ

where Ck is the kth cluster. In each iteration, the criterion (16.1) is indeed improved, which means that

convergence is assured. Still, it is not guaranteed that the global minimum will be found, i.e., the final

result may represent a suboptimal local minimum of (16.1).

Fuzzy (C-means) clustering is a generalization of standard (K-means) clustering that has proved to be

useful in many practical applications.1 In standard clustering, each object is assigned to one cluster in an

unequivocal way. In contrast to this, in fuzzy clustering an object x may belong to different clusters at the

same time, and the degree to which it belongs to the ith cluster is expressed in terms of a membership

degree uiðxÞ. Consequently, the boundary of single clusters and the transition between different clusters

are usually ‘‘smooth’’ rather than abrupt.

The fuzzy variant of K-means clustering seeks to minimize the following objective function [2]:

Xn

i¼1

XK

j¼1

jjxi � cjjj2 ðuijÞm; ð16:2Þ

where uij ¼ ujðxiÞ is the membership of the ith object xi in the jth cluster, and ci is the jth center. In the

commonly employed probabilistic version of fuzzy C-means (FCM), it is assumed that

XK

j¼1

uij ¼
XK

j¼1

ujðxiÞ ¼ 1 ð16:3Þ

for all xi [20]. The constant m > 1 in (16.2) is called the fuzzifier and controls the overlap (‘‘smoothness’’)

of the clusters (a common choice is m ¼ 2).

Minimizing (16.2) subject to (16.3) defines a constrained optimization problem.2 The clustering

algorithm approximates an optimal (or at least locally optimal) solution by means of an iterative scheme

that alternates between recomputing the optimal centers according to

cj ¼
Pn

i¼1 xi ðuijÞmPn
i¼1ðuijÞm

and membership degrees according to

uij ¼
XK

‘¼1

jjxi � cjjj
jjxi � c‘jj

� �2=ðm�1Þ
 !�1

:

1We adhere to the common practice of using the term fuzzy C-means (FCM) instead of fuzzy K-means. However, for
reasons of coherence, we will go on denoting the number of clusters by K, also in the fuzzy case.
2As most clustering problems, the standard K-means problem is known to be NP-hard (see, for example, [11]).
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16.2.3 Related Work

Stream data mining [10] is a topic of active research, and several adaptations of standard statistical and

data analysis methods to data streams or related models have been developed recently (for example, [7,

28]). Likewise, several online data mining methods have been proposed (for example, [21, 8, 25, 5, 15,

12]). In particular, the problem of clustering in connection with data streams has been considered in [17, 9,

24]. In these works, however, the problem is to cluster the elements of one individual data stream, which is

clearly different from our problem, where the objects to be clustered are the streams themselves rather

than single data items in then. To the best of our knowledge, the problem in this form has not been

addressed in the literature before.

There is a bunch of work on time series data mining in general and on clustering time series in particular

[23]. Even though time series data mining is of course related to stream data mining, one should not

overlook important differences between these fields. Particularly, time series are still static objects that

can be analyzed offline, whereas the focus in the context of data streams is on dynamic adaptation and

online data mining.

16.3 PREPROCESSING AND MAINTAINING DATA STREAMS

The first question in connection with the clustering of (active) data streams concerns the concept of

distance or, alternatively, similarity between streams. What does similarity of two streams mean, and why

should they, therefore, fall into one cluster?

Here, we are first of all interested in the qualitative, time-dependent evolution of a data stream. That is

to say, two streams are considered similar if their evolution over time shows similar characteristics. As an

example consider two stock rates both of which continuously increased between 9:00 a.m. and 10:30 a.m.

but then started to decrease until 11:30 a.m.

To capture this type of similarity, we shall simply derive the Euclidean distance between the normal-

ization of two streams (a more precise definition follows below). This measure satisfies our demands since

it is closely related to the (statistical) correlation between these streams. In fact, there is a simple linear

relationship between the correlation of normalized time series (with mean 0 and variance 1) and their

(squared) Euclidean distance. There are of course other reasonable measures of similarity for data streams

or, more specifically, time series [18], but Euclidean distance has desirable properties and is commonly

used in applications.

16.3.1 Data Streams and Sliding Windows

The above example (clustering of stock rates) already suggests that one will usually not be interested in

the entire data streams, which are potentially of unbounded length. Instead, it is reasonable to assume that

recent observations are more important than past data. Therefore, one often concentrates on a time

window, that is a subsequence of a complete data stream. The most common type of window is a so-called

sliding window that is of fixed length and comprises the w most recent observations (Figure 16.2). A more

general approach to taking the relevancy of observations into account is that of weighing. Here, the idea is

to associate a weight in the form of a real number to each observation such that more recent observations

receive higher weights.

When considering data streams in a sliding window of length w, a stream (resp. the relevant part thereof)

can formally be written as a w-dimensional vector X ¼ ðx0; x1; . . . ; xw�1Þ, where a single observation xi is

simply a real number. As shown in Figure 16.3, we further partition a window into m blocks (basic

windows) of size v, which means that w ¼ m � v (Table 16.1 provides a summary of notation):3

X ¼ ðx0; x1; . . . ; xv�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
B1

j xv; xvþ1; . . . ; x2v�1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
B2

j . . . j xðm�1Þv; xðm�1Þvþ1; . . . ; xw�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bm

Þ:

3Typical values as used in our experiments later on are w ¼ 2048 and v ¼ 128.
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Sliding window 

Sliding window 

(a) 

(b) 

Figure 16.2 Data streams are compared within a sliding window of fixed size. In (a) the behavior of the two streams is

obviously quite different. In (b) the two streams are similar to some extent.

w = m × v

Figure 16.3 A window of length w is divided into m blocks of size v.

Table 16.1 Notation.

Symbol Meaning

X Data stream

Xn Normalized data stream

xi Single observation

xij ðjþ 1Þth element of block Bi

w Window length

v Length of a block

m Number of blocks in a window

c Weighing constant

V Weight vector

�x Mean value of a stream

s Standard deviation of a stream

PREPROCESSING AND MAINTAINING DATA STREAMS 337



Data streams will then be updated in a ‘‘block-wise’’ manner each time v new items have been observed.

This approach gains efficiency since the number of necessary updates is reduced by a factor of v. On the

other hand, we tolerate the fact that the clustering structure is not always up-to-date. However, since the

delay is at most one block size, this disadvantage is limited at least for small enough blocks. Apart from

that, one should note that a small number of observations can change a stream but only slightly, hence the

clustering structure in the ‘‘data stream space’’ will usually not change abruptly.

We assume data items to arrive synchronously, which means that all streams will be updated

simultaneously. An update of the stream X, in this connection also referred to as Xold, is then accomplished

by the following shift operation, in which Bmþ1 denotes the entering block:

Xold : B1 jB2jB3j . . . jBm�1jBm

Xnew : B2jB3j . . . jBm�1jBmjBmþ1

: ð16:4Þ

Finally, we allow for an exponential weighing of observations (within a window). The weight attached to

observation xi is defined by cw�i�1, where 0 < c � 1 is a constant. We denote by V the weight vector

ðcw�1; cw�2 . . . c0Þ and by V � X the coordinate-wise product of V and a stream X:

V � X¼dfðcw�1x0; c
w�2x1 . . . c0xw�1Þ:

16.3.2 Normalization

Since we are interested in the relative behavior of a data stream, the original streams have to

be normalized in a first step. By normalization one usually means a linear transformation of the original

data such that the transformed data has mean 0 and standard deviation 1. The corresponding transforma-

tion simply consists of subtracting the original mean and dividing the result by the standard deviation.

Thus, we replace each value xi of a stream X by its normalization

xn
i ¼

df xi � �x

s
: ð16:5Þ

Considering in addition the weighing of data streams, �x and s become the weighted average and standard

deviation, respectively:

�x ¼ 1� c

1� cw
�
Xw�1

i¼0

xi � cw�i�1;

s2 ¼ 1� c

1� cw
�
Xw�1

i¼0

ðxi � �xÞ2 � cw�i�1

¼ 1� c

1� cw
�
Xw�1

i¼0

ðxiÞ2 � cw�i�1 � ð�xÞ2:

As suggested above, �x and s2 are updated in a block-wise manner. Let X be a stream and denote by xij the

ðjþ 1Þth element of the ith block Bi. Particularly, the exiting block leaving the current window (‘‘to the

left’’) is given by the first block B1 ¼ ðx10; x11; . . . ; x1;v�1Þ. Moreover, the new block entering the window

(‘‘from the right’’) is Bmþ1 ¼ ðxmþ1;0; xmþ1;1; . . . ; xmþ1;v�1Þ. We maintain the following quantities for the

stream X:

Q1¼
df
Xw�1

i¼0

xi � cw�i�1; Q2¼
df
Xw�1

i¼0

ðxiÞ2 � cw�i�1:

Likewise, we maintain for each block Bk the variables

Qk
1¼

df
Xv�1

i¼0

xki � cv�i�1; Qk
2¼

df
Xv�1

i¼0

ðxkiÞ2 � cv�i�1:
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An update via shifting the current window by one block is then accomplished by setting

Q1  Q1 � cv � Q1
1 � cw þ Qmþ1

1 ;

Q2  Q2 � cv � Q2
1 � cw þ Qmþ1

2 :

16.3.3 Discrete Fourier Transform

Another preprocessing step replaces the original data by its discrete fourier transform (DFT). As will

be explained in more detail in Section 16.5, this provides a suitable basis for an efficient approximation of

the distance between data streams and, moreover, allows for the elimination of noise. The DFT of a

sequence X ¼ ðx0; . . . ; xw�1Þ is defined by the DFT coefficients

DFTf ðXÞ¼
df 1ffiffiffiffi

w
p

Xw�1

j¼0

xj � exp
�i2�fj

w

� �
; f ¼ 0; 1; . . . ;w� 1;

where i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit.

Denote by Xn the normalized stream X defined through values (16.5). Moreover, denote by V the weight

vector ðcw�1; . . . ; c0Þ and recall that V � Xn is the coordinate-wise product of V and Xn, i.e., the sequence

of values

cw�i�1 � xi � �x

s
:

Since the DFT is a linear transformation, which means that

DFTðaX þ bYÞ ¼ aDFTðXÞ þ bDFTðYÞ
for all a; b � 0 and sequences X; Y , the DFT of V � Xn is given by

DFTðV � XnÞ ¼ DFT V � X � �x

s

� �

¼ DFT
V � X � V � �x

s

� �

¼ DFTðV � XÞ � DFTðVÞ � �x

s
:

Since DFTðVÞ can be computed in a preprocessing step, an incremental derivation is only necessary for

DFTðV � XÞ.

16.3.4 Computation of DFT Coefficients

Recall that the exiting and entering blocks are B1 ¼ ðx10; x11; . . . ; x1;v�1Þ and Bmþ1 ¼ ðxmþ1;0; xmþ1;1; . . . ;
xmþ1;v�1Þ, respectively. Denote by Xold ¼ B1jB2j . . . jBm the current and by Xnew ¼ B2jB3j . . . jBmþ1 the

new data stream. Without taking weights into account, the DFT coefficients are updated as follows [28]:

DFTf  e
i2�fv

w � DFTf þ
1ffiffiffiffi
w
p

Xv�1

j¼0

e
i2�f ðv�jÞ

w xmþ1;j �
Xv�1

j¼0

e
i2�f ðv�jÞ

w x1;j

 !
:

In connection with our weighing scheme, the weight of each element of the stream must be adapted as

well. More specifically, the weight of each element xij of Xold is multiplied by cv, and the weights of

the new elements xmþ1;j, coming from block Bmþ1, are given by cv�j�1, 0 � j � v� 1. Noting that

DFTf ðcv� XoldÞ ¼ cvDFTf ðXoldÞ due to the linearity of the DFT, the DFT coefficients are now modified as

follows:

DFTf  e
i2�fv

w � cvDFTf þ
1ffiffiffiffi
w
p

Xv�1

j¼0

e
i2�f ðv�jÞ

w cv�j�1xmþ1;j �
Xv�1

j¼0

e
i2�f ðv�jÞ

w cwþv�j�1x1;j

 !
:
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Using the values

b f
k ¼

df
Xv�1

j¼0

e
i2�f ðv�jÞ

w cv�j�1xk;j; ð16:6Þ

the above update rule simply becomes

DFTf  e
i2�fv

w � cvDFTf þ
1ffiffiffiffi
w
p ðbf

mþ1 � cwbf
1Þ:

As can be seen, the processing of one block basically comes down to maintaining the Q- and b-

coefficients. The time complexity of the above update procedure is therefore OðnvuÞ. Moreover, the

procedure needs space Oðnmuþ nvÞ: for each stream, the b-coefficients have to be stored for each block

plus the complete last block (u is the number of DFT coefficients used for representing a stream, see

Section 16.3.5 below).

16.3.5 Distance Approximation and Smoothing

We now turn to the problem of computing the Euclidean distance

jjX � Yjj ¼
Xw�1

i¼0

ðxi � yiÞ2
 !1=2

between two streams X and Y (resp. the distance jjV � Xn � V � Ynjj between their normalized and

weighted versions) in an efficient way. A useful property of the DFT is the fact that it preserves Euclidean

distance, i.e.,

jjX � Yjj ¼ jjDFTðXÞ � DFTðYÞjj: ð16:7Þ
Furthermore, the most important information is contained in the first DFT coefficients. In fact, using only

these coefficients within the inverse transformation (which recovers the original signal X from its

transform DFTðXÞ) comes down to implementing a low-pass filter and, hence, to using DFT as a

smoothing technique (see Figure 16.4 for an illustration).

Therefore, a reasonable idea is to approximate the distance (16.7) by using only the first u� w rather

than all of the DFT coefficients and, hence, to store the values (16.7) only for f ¼ 0; . . . ; u� 1. More

specifically, since the middle DFT coefficients are usually close to 0, the value

2
Xu�1

f¼1

ðDFTf ðXÞ � DFTf ðYÞÞðDFTf ðXÞ � DFTf ðYÞÞ
 !1=2

is a good approximation to (16.7). Here, we have used that DFTw�fþ1 ¼ DFTf , where DFTf is the

complex conjugate of DFTf . Moreover, the first coefficient DFT0 can be dropped, as for real-valued

sequences the first DFT coefficient is given by the mean of that sequence, which vanishes in our case

(recall that we normalize streams in a first step).

The above approximation has two advantages. First, by filtering noise we capture only those properties

of a stream that are important for its characteristic time-dependent behavior. Second, the computation of

the distance between two streams becomes much more efficient due to the related dimensionality

reduction.

16.4 FUZZY CLUSTERING OF DATA STREAMS

The previous section has presented an efficient method for computing the (approximate) pairwise

Euclidean distances between data streams in an incremental way. On the basis of these distances, it is
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possible in principle, to apply any clustering method. In this section, we propose an incremental version of

the fuzzy C-means algorithm, subsequently referred to as FCM-DS (for fuzzy C-means on data streams).

For the following reasons, FCM appears to be especially suitable in our context. First, K-means is an

iterative procedure that can be extended to the online setting in a natural way. Secondly, the fuzzy variant

of this algorithm is strongly advised, since data streams are evolving objects. As a consequence, the

clustering structure will change over time, and typically doing so in a ‘‘smooth’’ rather than an abrupt

manner.

To illustrate the second point, suppose that the objects to be clustered are continuously moving points in

a two-dimensional space.4 Figure 16.5 shows snapshots of a dynamic clustering structure at different time

points. At the beginning, there is only one big cluster. However, this cluster begins to divide itself into

three small clusters, two of which are then again combined into a single cluster. Thus, there are time points

where the structure definitely consists of one (first picture), two (sixth picture), and three (fourth picture)

clusters. In-between, however, there are intermediate states, for which it is neither possible to determine

the number of clusters nor to assign an object to one cluster in an unequivocal way.

Our incremental FCM method works as shown in Figure 16.6. The standard FCM algorithm is run on

the current data streams. As soon as a new block is available for all streams, the current streams are

updated by the shift operation (16.4). FCM is then simply continued. In other words, the cluster model of

Figure 16.4 Original (noisy) signal and DFT-filtered curve.

4This example just serves as an illustration. Even though the objects might in principle be thought of as data streams
over an extremely short window ðw ¼ 2Þ, their movement is not typical of data streams.
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the current streams is taken as an initialization for the model of the new streams. This initialization will

usually be good or even optimal since the new streams will differ from the current ones but only slightly.

An important additional feature that distinguishes FCM-DS from standard FCM is an incremental

adaptation of the cluster number K. As already mentioned above, such an adaptation is very important in

the context of our application where the clustering structure can change over time. Choosing the right

number K is also a question of practical importance in standard K-means, and a number of (heuristic)

strategies have been proposed. A common approach is to look at the cluster dissimilarity (the sum of

distances between objects and their associated cluster centers) for a set of candidate values

K 2 f1; 2; . . . ;Kmaxg. The cluster dissimilarity is obviously a decreasing function of K, and one expects

that this function will show a kind of irregularity at K	, the optimal number of clusters: The benefit of

increasing the cluster number K will usually be large if K < K	 but will be comparatively small later on.

This intuition has been formalized, for example, by the recently proposed gap statistic [26].

Unfortunately, the above strategy is not practicable in our case as it requires the consideration of too

large a number of candidate values. Instead, we pursue a local adaptation process that works as follows. In

each iteration phase, one test is made in order to check whether the cluster model can be improved by

increasing or decreasing K	, the current (hopefully optimal) cluster number. By iteration phase we mean

the phase between the entry of new blocks, i.e., while the streams to be clustered remain unchanged.

Further, we restrict ourselves to adaptations of K	 by 
1, which is again justified by the fact that the

clustering structure will usually not change abruptly. In order to evaluate a cluster model, we make use of a

quality measure (validity function) Qð�Þ that will be introduced in Section 16.5 below. Let QðKÞ denote

this quality measure for the cluster number K, i.e., for the cluster model obtained for this number. The

optimal cluster number is then updated as follows:

K	  arg maxfQðK	 � 1Þ;QðK	Þ;QðK	 þ 1Þg:

Figure 16.5 Snapshots of a dynamic clustering structure at different time points (upper left to lower right).

1. Initialize K cluster centers at random
2. Repeat
3. Assign membership degrees of each stream to the cluster centers
4. Replace each center by the center of its associated fuzzy cluster
5. If a new block is complete:
6. Update the streams and pairwise distances
7. Update the optimal cluster number K

Figure 16.6 Incremental version of the K-means algorithm for clustering data streams.
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Intuitively, going from K	 to K	 � 1 means that one of the current clusters has disappeared, for example,

because the streams in this cluster have become very similar to the streams in a neighboring cluster.

Thus, QðK	 � 1Þ is derived as follows. One of the current candidate clusters is tentatively removed,

which means that each of its elements is re-assigned to the closest cluster (center) among the remaining

ones (note that different elements might be assigned to different clusters). The quality of the cluster model

thus obtained is then computed. This is repeated K times, i.e., each of the current clusters is removed by

way of trial. The best cluster model is then chosen, i.e., QðK	 � 1Þ is defined by the quality of the best

model.

Going from K	 to K	 þ 1 assumes that an additional cluster has emerged, for example, because a

homogeneous cluster of streams has separated into two groups. To create this cluster we complement the

existing K	 centers by one center that is defined by a randomly chosen object (stream). The probability of

a stream being selected is reasonably defined as an increasing function of the stream’s distance from its

cluster center. In order to compute QðK	 þ 1Þ, we try out a fixed number of randomly chosen objects and

select the one that gives the best cluster model.

16.5 QUALITY MEASURES

16.5.1 Fuzzy Validity Function

Regarding the evaluation of a cluster model in terms of a measure Qð�Þ, several proposals can be found in

literature. Unfortunately, most of these measures have been developed for the non-fuzzy case. Indeed,

validity functions of that kind might still be (and in fact often are) employed, namely, by mapping a fuzzy

cluster model onto a crisp one first (i.e., assigning each object to the cluster in which it has the highest

degree of membership) and deriving the measure for this latter structure afterwards. However, this

approach can of course be criticized as it comes with a considerable loss of information. On the other

hand, many of the non-fuzzy measures can be adapted to the fuzzy case in a natural way.

Validity functions typically suggest finding a trade off between intra-cluster and inter-cluster varia-

bility (see Tables 16.2 and 16.3, respectively, for some examples), which is of course a reasonable

principle. Besides, our application gives rise to a number of additional requirements:

(a) Since the number K of clusters is only changed locally by 
1, i.e., in the style of hill-climbing, our

adaptation procedure might get stuck in local optima. Consequently, the convexity (resp. concavity)

of the validity function is highly desirable. That is, QðKÞ should be maximal (resp. minimal) for the

Table 16.2 Measures of intra-cluster variability. Ck denotes the kth cluster and ck its center.

Standard variant Fuzzy variant Complexity

maxk maxx;y2Ck
jjx� yjj maxk maxi; j um

ikum
jkjjxi � xjjj2 OðKn2Þ

maxk maxx2Ck
jjx� ckjj maxk maxi um

ikjjxi � ckjj2 OðKnÞP
k maxx;y2Ck

jjx� yjj
P

k maxi; j um
ikum

jkjjxi � xjjj2 OðKn2Þ

Table 16.3 Measures of intra-cluster variability. Ck

denotes the kth cluster and ck its center.

Standard (¼ fuzzy) variant Complexity

mink;‘ minx2Ck ;y2C‘
jjx� yjj2 OðK2n2ÞP

k min‘ minx2Ck ;y2C‘
jjx� yjj2 OðK2n2ÞP

k min‘ jjck � c‘jj2 OðK2Þ
mink;‘ jjck � c‘jj2 OðK2Þ
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optimal number K	 of clusters and decrease (resp. increase) in a monotonic way for smaller and larger

values (at least within a certain range around K	). Unfortunately, most existing measures do not have

this property and instead show a rather irregular behavior.

(b) As already explained above, to adapt the cluster number K, we provisionally consider two alternative

structures that we obtain, respectively, by removing and adding a cluster. Both candidate structures,

however, are not fully optimized with regard to the objective function (16.2). In fact, this optimization

only starts after the apparently optimal structure has been selected. In order to avoid this optimization

to invalidate the previous selection, the validity measure Qð�Þ should harmonize well with the

objective function (16.2).

(c) Finally, since the validity function is frequently evaluated in our application, its computation should

be efficient. This disqualifies measures with a quadratic complexity such as, for example, the maximal

distance between two objects within a cluster.

A widely used validity function is the so-called Xie–Beni index or separation [27], which is defined as

1
n

Pn
i¼1

PK
k¼1 um

ikjjxi � ckjj2

mink;‘ jjck � c‘jj2
: ð16:8Þ

As most validity measures do, (16.8) puts the intra-cluster variability (numerator) in relation to the inter-

cluster variability (denominator). In this case, the latter is simply determined by the minimal distance

between two cluster centers. Obviously, the smaller the separation, the better the cluster model.

Since the nominator of (16.8) just corresponds to the objective function (16.2), the Xie–Beni index

looks quite appealing with regard to point (b) above. Moreover, it is also efficient from a computational

point of view. Still, point (a) remains problematic, mainly due to the minimum in the denominator.

To remedy this problem, we replace the minimum by a summation over all (pairwise) cluster

dissimilarities, with smaller dissimilarities having a higher weight than larger ones. Simply defining

the dissimilarity between two clusters by the distance between the corresponding centers is critical,

however, since it neglects the variability (size) of these clusters. Therefore, we define the variability of a

cluster in terms of the average (squared) distance from the center,

Vk ¼
df

P
i uikjjxi � ckjj2P

i uik

and the dissimilarity between two clusters as

DðCk;C‘Þ¼
df jjck � c‘jj2

Vk þ V‘
:

These dissimilarities are aggregated by means of

1

KðK � 1Þ
X

1�k<‘�K

1

DðCk;C‘Þ
; ð16:9Þ

thereby putting higher weight on smaller dissimilarities. Replacing the denominator in (16.8) by (16.9),

we thus obtain

X

1�k<‘�K

1

DðCk;C‘Þ
�
Xn

i¼1

XK

k¼1

jjxi � ckjj2 um
ik: ð16:10Þ

It is of course not possible to prove the concavity of (16.10) in a formal way. Still, our practical experience

so far has shown that it satisfies our requirements in this regard very well and compares favorably with

alternative measures. Corresponding experimental results are omitted here due to reasons of space.

The only remaining problem concerns clusters that are unreasonably small. To avoid such clusters, we

add a penalty of M=k for every cluster having less than three elements with membership of at least 1=2 (M

is a very high, implementation-dependent constant).
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16.5.2 Similarity Between Cluster Models

Avalidity function Qð�Þ as introduced above measures the quality of a single cluster model. What we still

need (in the experimental section below) is a measure of similarity (distance) for comparing two

alternative structures (fuzzy partitions), say, X ¼ fC1 . . . Ckg and Y ¼ fC01 . . . C0‘g. In literature, such

measures are known as relative evaluation measures.

Intuitively, a partition X ¼ fC1 . . . Ckg is similar to a partition Y ¼ fC01 . . . C0‘g if, for each cluster in

X , there is a similar cluster in Y and, vice versa, for each cluster in Y, there is a similar cluster in X .

Formalizing this idea, we can write

SðX ;YÞ ¼ sðX ;YÞ � sðY;XÞ; ð16:11Þ
where sðX ;YÞ denotes the similarity of X to Y (in the above sense) and vice versa sðY;XÞ the similarity

of Y to X :

sðX ;YÞ ¼
O

i¼1...k

M

j¼1...‘

sðCi;C
0
jÞ; ð16:12Þ

where� is a t-norm (modeling a logical conjunction),� a t-conorm (modeling a logical disjunction), and

sðCi;C
0
jÞ denotes the similarity between clusters Ci and C0j . Regarding the latter, note that Ci and C0j are

both fuzzy subsets of the same domain (namely, all data streams), so that we can refer to standard

measures for the similarity of fuzzy sets. One such standard measure is

sðCi;C
0
jÞ ¼
jCi \ C0jj
jCi [ C0jj

¼
P

q minðuq;i; u
0
q; jÞP

q maxðuq;i; u0q; jÞ
;

where uqi and u0qj denote, respectively, the membership of the qth data stream in the clusters Ci and C0j .
As one potential drawback of (16.12) let us mention that it gives the same influence to every cluster,

regardless of its size. That is, the degree

si ¼
M

j¼1...‘

sðCi;C
0
jÞ ð16:13Þ

to which there is a cluster in Y similar to Ci has the same influence for every i, regardless of the size of

cluster Ci. Thus, one might think of weighting (16.13) by the relative size wi ¼ jCij=n, where n is the

number of objects (data streams), that is, to replace (16.13) in (16.12) by mðwi; siÞ. This comes down to

using a weighted t-norm aggregation instead of a simple one [22]:

sðX ;YÞ ¼
O

i¼1...k

m wi;
M

j¼1...‘

sðCi;C
0
jÞ

 !
: ð16:14Þ

In the experimental section below, we shall employ two different versions of (16.14)}, with �, �, mð�Þ
defined as follows:

a� b ¼ minða; bÞ; a� b ¼ maxða; bÞ; mðw; sÞ ¼ maxð1� w; sÞ ð16:15Þ
a� b ¼ ab; a� b ¼ aþ b� ab; mðw; sÞ ¼ sw: ð16:16Þ

Again, we refrain from a more detailed discussion of the pros and cons of the above similarity measure. It

should be noted, however, that there are of course other options, and that alternative measures can indeed

be found in literature. Anyway, as a reasonable feature of (16.11), note that it is a normalized measure

between 0 and 1, where the latter value is assumed for perfectly identical structures. This property is often

violated for fuzzifications of standard (relative) evaluation measures such as, for example, those based on

the comparison of coincidence matrices.

16.6 EXPERIMENTAL VALIDATION

A convincing experimental validation of FCM-DS as introduced above is difficult for several reasons.

First, the evaluation of clustering methods is an intricate problem anyway, since an objectively ‘‘correct
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solution’’ in the sense of a real clustering structure does not usually exist, at least not in the case of

real-world data. Moreover, the performance of a clustering method strongly depends on the choice of the

data-set (selective superiority problem). In fact, most methods give good results for a particular type of

data but otherwise perform poorly. Secondly, since FCM-DS is the first method for clustering complete

data streams, there are no alternative methods to compare with. Thirdly, real-world streaming data is

currently not available in a form that is suitable for conducting systematic experiments. Therefore, we

decided to carry out experiments with synthetic data. As an important advantage of synthetic data let us

note that it allows for experiments to be conducted in a controlled way and, hence, to answer specific

questions concerning the performance of a method and its behavior under particular conditions.

Synthetic data was generated in the following way. First, a prototype pð�Þ is generated for each cluster.

This prototype is either predefined in terms of a specific (deterministic) function of time, or is generated as

a stochastic process defined by means of a second-order difference equation:

pðt þ�tÞ ¼ pðtÞ þ p0ðt þ�tÞ
p0ðt þ�tÞ ¼ p0ðtÞ þ uðtÞ;

ð16:17Þ

t ¼ 0;�t; 2�t . . .. The uðtÞ are independent random variables, uniformly distributed in an interval

½�a; a. Obviously, the smaller the constant a is, the smoother the stochastic process pð�Þ will be. The

elements that (should) belong to the cluster are then generated by ‘‘distorting’’ the prototype, both

horizontally (by stretching the time axis) and vertically (by adding noise). More precisely, a data stream

xð�Þ is defined by

xðtÞ ¼ pðt þ hðtÞÞ þ gðtÞ;

where hð�Þ and gð�Þ are stochastic processes that are generated in the same way as the prototype pð�Þ.5
Figure 16.7 shows a typical prototype together with a distortion xð�Þ.

Of course, the above data generating process seems to be quite convenient for the K-means method. It

should be stressed, therefore, that our experiments are not intended to investigate the performance of

K-means itself (by now a thoroughly investigated algorithm with known advantages and disadvantages).

Instead, our focus is more on the extensions that have been proposed in previous sections. More

specifically, we are interested in the performance of our adaptation scheme for the cluster number K,

the advantages of using a fuzzy instead of a crisp cluster method in dynamic environments, and the trade

off between efficiency and quality in connection with the data preprocessing in FCM-DS.

16.6.1 First Experiment

In a first experiment, we investigated the ability of FCM-DS to adapt to a changing number of clusters. To

this end, we varied the number of artificial clusters in the data generating process: starting with two

5However, the constant a that determines the smoothness of a process can be different for pð�Þ; hð�Þ; and gð�Þ.
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Figure 16.7 Example of a prototypical data stream (solid line) and a distorted version (dashed line).
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clusters, the number of clusters was repeatedly doubled to four (in a ‘‘smooth’’ way) and later again

reduced to two. Technically, this was accomplished as follows. The overall number of 100 data streams is

divided into four groups. The first and second group are represented by the prototype p1ðtÞ ¼ sinðtÞ and

p2ðtÞ ¼ 1� sinðtÞ, respectively. The third group is characterized by the prototype

p3ðtÞ ¼ ð1� lÞp1ðtÞ þ l sinðt þ �=2Þ, where l 2 ½0; 1 is a parameter. Likewise, the fourth group is

characterized by the prototype p4ðtÞ ¼ ð1� lÞp2ðtÞ þ lð1� sinðt þ �=2ÞÞ. As explained above, all

streams were generated as distortions of their corresponding prototypes, using the values 0.04 and 0.5,

respectively, as a smoothness parameter for the processes hð�Þ and gð�Þ. The original streams were

compressed using 100 DFT coefficients.

As can be seen, for l ¼ 0, the third (fourth) and the first (second) group form a single cluster, whereas

the former moves away from the latter for larger values of l, and finally constitutes a completely distinct

cluster for l ¼ 1. The parameter l is changed from 0 to 1 and back from 1 to 0 in a smooth way within a

range of eight blocks (the block size is 512 data points).

Figure 16.8 shows the value of l and the number of clusters generated by FCM-DS as a function of time,

that is, for each block number. As can be seen, our approach correctly adapts the number of clusters, but of

course with a small delay. We obtained qualitatively very similar results with other numbers of clusters

and other data generating processes.

16.6.2 Second Experiment

The second experiment is quite similar to the first one. This time, we simulated a scenario in which some

data streams move between two clusters. Again, these two clusters are represented, respectively, by the

prototypes p1ðtÞ ¼ sinðtÞ and p2ðtÞ ¼ 1� sinðtÞ. Additionally, there are two streams that are generated as

distortions of the convex combination ð1� lÞp1 þ lp2, where l 2 ½0; 1.
Figure 16.9 shows the value of l and the (average) membership degree of the two streams in the second

cluster. As can be seen, the membership degrees are again correctly adapted with a small delay of time.

We repeated the same experiment, this time using five instead of only two streams that move between

the two clusters. The results, shown in Figure 16.10, are fairly similar, with one notable exception: since

the number of moving streams is now higher (than three), FCM-DS creates an additional cluster in

between. This cluster suddenly emerges when the streams are relatively far away from the first cluster and

disappears when they come close enough to the second cluster. The degree of membership in the

intermediate cluster, again averaged over the moving elements, is shown by the additional solid line in

Figure 16.10.

0 20 40 60 80 100
0

0.5

1.0

W
ei

gh
t λ

 

Blocks
0 20 40 60 80 100

2

3

4

N
um

be
r 

of
 c

lu
st

er
s

Figure 16.8 Weight of the parameter l (solid line) and number of clusters (dashed line) in the first experiment.
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16.6.3 Third Experiment

The purpose of the third experiment was to study the scalability of FCM-DS, that is, the trade off between

efficiency and quality of data stream clustering. To this end, we have conducted experiments with 100

streams, generated as distortions of six prototypes (16.17). The parameter a was again set, respectively, to

0.04, 0.04, and 0.5 for the processes pð�Þ, hð�Þ, and gð�Þ. The window size and block size were set to 2048

and 128, respectively.

As an efficiency parameter we have measured the time needed in order to process one block, that is, to

preprocess the data and to update the cluster model. Figure 16.11 shows the mean processing time

together with the standard deviation for different numbers of DFT coefficients. Moreover, we have plotted

the average processing time and standard deviation for the original streams. As was to be expected, the

time complexity increases as an approximately linear function of the number of DFT coefficients. The

critical number of coefficients is around 600. That is, when using 600 or more DFT coefficients, the

preprocessing of the data will no longer pay off.

As can also be seen in Figure 16.11, the processing time for one block is< 1 second. Thus, the system

can process streams with an arrival rate of� 150 elements per second. When approximating the original

streams with 100 DFT coefficients, an arrival rate of� 1000 per second can be handled. As an aside, we
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Figure 16.9 Weight of the parameter l (solid line) and degree of membership of the moving streams in the second

cluster (dashed line).
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Figure 16.10 Weight of the parameter l and degree of membership of the moving streams in the second cluster

(dashed line) and the intermediate cluster (solid line).
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note that the memory requirements are not critical in this application, as the number of data streams is still

manageable.

Apart from efficiency aspects, we were interested in the quality of the results produced by FCM-DS.

More specifically, we aimed at comparing the cluster models obtained by our online method, which

preprocesses data streams first and clusters them in a low-dimensional space afterward, with the models

that would have been obtained by clustering the original data streams. In fact, recall that in FCM-DS,

distances between data streams are computed after having transformed the original streams from a

w-dimensional space to a u-dimensional space, where u� w. In other words, a fuzzy partition is derived,

not for the actual streams, but only for approximations thereof. On the one hand, this makes clustering in

an online scenario more efficient. On the other hand, clustering in a space of lower dimension might of

course come along with a quality loss, in the sense that the fuzzy partition in this space is different from the

partition in the original space.

To compare the cluster models obtained, respectively, for the uncompressed and compressed data

streams, we used the two versions (16.15) and (16.16) of the similarity measure (16.14). More speci-

fically, data streams were clustered over a time horizon of 200 blocks, with and without DFT, and the

mean similarity (16.14) was derived. This was repeated 10 times. Table 16.4 shows the averages over

these 10 runs and the corresponding standard deviations. As can be seen, the results are quite satisfying in
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Figure 16.11 Mean processing time per block (solid) 
 standard deviation (dashed) for different numbers of DFT

coefficients (increasing curve), average processing time
 standard deviation for the original streams (horizontal lines).

Table 16.4 Average similarity (and standard deviation) for cluster models

derived with and without transformation of data streams, for different numbers

of DFT coefficients.

# coeff. Similarity (16.15) Similarity (16.16)

2 0.72867 (0.00341) 0.95853 (0.00680)

5 0.73267 (0.00432) 0.96988 (0.00293)

10 0.74191 (0.00726) 0.97900 (0.00387)

25 0.86423 (0.00988) 0.98814 (0.00388)

50 0.93077 (0.01116) 0.99384 (0.00366)

100 0.93721 (0.01454) 0.99273 (0.00482)

250 0.95006 (0.00811) 0.99509 (0.00341)

500 0.95266 (0.01421) 0.99532 (0.00330)

750 0.93768 (0.01651) 0.99367 (0.00378)

1000 0.94329 (0.01002) 0.99525 (0.00303)
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the sense that the similarity degrees are reasonably high. Moreover, the more DFT coefficients are used,

the better the results become, even though good performance is already achieved for comparatively few

coefficients.

We repeated the same experiment, this time using the correct number of K ¼ 6 clusters for

the reference model. That is, to cluster the original, uncompressed streams, we did not try to estimate

(adapt) the best number of clusters and instead assumed this number to be known. The results, shown in

Table 16.5, are rather similar to those from the first experiment, with an important exception: the quality is

no longer a monotone increasing function of the number of DFT coefficients. Instead, the optimal number

of coefficients is around 25, and using more exact approximations of the original streams deteriorates

rather than improves the cluster models. This interesting phenomenon can be explained as follows. Using

a small number of DFT coefficients comes along with a strong smoothing effect of the original streams,

and this apparently helps to reveal the real structure in the cluster space. Stated differently, by filtering

noise, the data streams are moved closer to their prototypes and, hence, the complete structure closer to

the ‘‘ground truth.’’ Seen from this point of view, data preprocessing does not only increase efficiency but

also improves the quality of results.

16.7 CONCLUSIONS

In this chapter, we have addressed the problem of clustering data streams in an online manner. To this end,

we have developed FCM-DS, an adaptable, scalable online version of the fuzzy C-means algorithm. Data

streams can be perceived as moving objects in a very high-dimensional data space, the clustering structure

of which is subject to continuous evolution. Therefore, a fuzzy approach appears particularly reasonable.

Another key aspect is that FCM-DS is an efficient preprocessing step that includes an incremental

computation of the distance between data streams, using a DFTapproximation of the original data. In this

way, it becomes possible to cluster thousands of data streams in real time.

In order to investigate the performance and applicability of FCM-DS in a systematic way, we have

performed experiments with synthetic data. The results of these experiments have shown that FCM-DS

achieves an extreme gain in efficiency at the cost of an acceptable loss in quality. Depending on one’s

point of view and on the assumptions on the data generating process, it can even be argued that

preprocessing can improve the quality by removing noise in the original streams.

Going beyond the relatively simple K-means approach by trying out other clustering methods is a topic

of ongoing and future work. In this respect, one might think of extensions of K-means, such as Gath–Geva

clustering [14], as well as alternative methods such as, for example, self-organizing maps. Likewise, other

Table 16.5 Average similarity (and standard deviation) for cluster models derived

with and without transformation of data streams. In the latter case, the cluster number

was assumed to be known.

# coeff. Similarity (16.15) Similarity (16.16)

2 0.78258 (0.00639) 0.99192 (0.00206)

5 0.79732 (0.00031) 0.99743 (0.00002)

10 0.80665 (0.00113) 0.99893 (0.00013)

25 0.83063 (0.00420) 0.99242 (0.00098)

50 0.81600 (0.00543) 0.98403 (0.00251)

100 0.81269 (0.00557) 0.98110 (0.00208)

250 0.81171 (0.00730) 0.98267 (0.00336)

500 0.80855 (0.00369) 0.98207 (0.00204)

750 0.81145 (0.00669) 0.98236 (0.00184)

1000 0.80992 (0.01129) 0.98323 (0.00353)
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techniques might be tested in the preprocessing step of our framework, especially for the online

approximation of data streams.

We conclude the chapter by noting that FCM-DS does not necessarily produce the end product of a data

mining process. Actually, it can be considered as transforming a set of data streams into a new set of

streams the elements of which are cluster memberships. These ‘‘cluster streams’’ can be analyzed by

means of other data mining tools.

The Java implementation of FCM-DS is available for experimental purposes and can be downloaded,

along with documentation, from the following address: wwwiti.cs.uni-magdeburg.de/iti_dke.
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17.1 INTRODUCTION

‘‘We are drowning in information and starving for knowledge’’
R.D. Roger

Data clustering by unsupervised learning has been around for quite some time (Kohonen, 1988). It has

found important applications to:

� group unlabeled data;

� neural and fuzzy modeling and real-time modeling (Specht, 1991; Wang, 1994);

� novelty detection and fault isolation techniques (Neto and Nehmzow, 2004; Simani, Fantuzzi, and

Patton, 2002);

� learning of the structure and parameters of fuzzy and neuro-fuzzy models (Yager and Filev, 1993; Chiu,

1994);

� feature selection for a successive classification (Kecman, 2001), etc..

Due to the fact that providing a classification label, reinforcement, or an error feedback is not a

prerequisite for this technique, it is inherently very appropriate for online and real-time applications. This

advantage can be exploited to design powerful algorithms for fuzzy (and neuro-fuzzy) model structure

identification in real-time. When combining the computational simplicity of unsupervised clustering with

the recursive online learning of models consequents’ parameters very powerful schemes for real-time

generation of interpretable rules from data can be developed as discussed later.

In this chapter, we present two main approaches to computationally efficient real-time clustering

and generation of rules from data. The first one stems from the mountain/subtractive clustering approach
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(Yager and Filev, 1993) while the second one is based on the k-nearest neighbors (k-NN) (Duda and Hart,

1973) and self-organizing maps (SOM) (Kohonen, 1988). They both address a common challenge that the

advanced manufacturing, robotic, communication and defense systems face currently, namely the ability

to have a higher level of adaptation to the environment and to the changing data patterns. Thus, the

changes in the data pattern are reflected not just by the adaptation/adjustment of the parameters (as it is

according to the conventional adaptive systems theory (Astrom and Wittenmark, 1997) applicable mostly

for linear processes), but they are also reflected by a more substantial change of the model/system

structure in the data space. In this way, significant changes of the object inner state (appearance or

development of a fault, new physiological state in biological and living organisms (Konstantinov and

Yoshida, 1989), different regime of operation (Murray-Smith and Johansen, 1997)), or of the environment

(reaction to a sudden change or treat) can be appropriately reflected in a new model/system structure. At

the same time the adaptation of the system structure is gradual. Two of the basic methods for real-time

clustering the input/output data, which are presented in this chapter, play a crucial role in this process of

model structure evolution.

The two methods that address this problem have different origins but they both have commonality in

the procedure and the principal logic. The common features include:

� they are noniterative (no search is involved in the clustering) and thus they are one-pass (incremental);

� they have very low memory requirements, because recursive calculations are used thus they are

computationally nonexpensive and applicable to real-time problems;

� the number of clusters/groups is not predefined (as it is in the fuzzy C-means known as FCM (Bezdek,

1974) etc. and thus they both are truly unsupervised according to the definition given in Gath and Geva

(1989);

� they can start ‘‘from scratch’’ from the very first data sample assumed (temporarily) to be the first center

of a cluster;

� changes of the cluster number and parameters (position of the center, zone of influence or spread) are

gradual, not abrupt.

The main differences between these two methods are in the mechanism of the evolution (gradual

change) of the cluster structure (which is the basis of the model structure if we consider a fuzzy rule-based

or neuro-fuzzy model generated using these clusters). The first approach is based on the recursive

calculation of the value called potential. Potential calculated at a data point is a function of accumulated

proximity that represents the density of the data surrounding this data point. Therefore, this approach is

called density-based real-time clustering. The second difference between the two approaches is that the

first (density-based) one is also prototype-based. That means the data points/samples are used as

prototypes of cluster centers. The second approach is mean-based – the centers of clusters are located

at the mean, which does not coincide with any data point, in general.

Density-based clustering stems from the mountain clustering method (Yager and Filev, 1993) where the

so-called mountain function was calculated at vertices of a grid; in the version of this approach called

subtractive clustering (Chiu, 1994) the potential was calculated for each data sample. Both mountain and

subtractive clustering approaches are available in the Matlab1 toolbox Fuzzy Logic as subclust (Fuzzy

Logic Toolbox, 2001). Neither of them requires the number of clusters to be prespecified, but they both are

offline and multipass in the sense that the same data samples are processed many times. Density-based

real-time clustering considered later in this chapter is an online, one-pass, noniterative extension of

mountain/subtractive clustering and has been applied to classification, rule-base generation, prediction,

and novelty detection (Angelov and Filev, 2004).

In this chapter, an alternative approach called minimum-distance-based clustering is considered that is

also online, one-pass, noniterative, computationally efficient, starts ‘‘from scratch,’’ is fully unsupervised,

and is applying a gradual change to the cluster structure. There are a number of representatives of the

minimum-distance-based clustering, all of which revolve around the idea of incrementally adding of new

clusters whenever the new data does not fit into the existing cluster structure. The new cluster center is

assumed to be the new data sample and the level of adequacy of the existing cluster structure is usually
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measured by the minimum-distance of the new data sample to the centers of already existing clusters using

a threshold. Examples of this type of clustering are rule-based guided adaptation (Filev, Larsson, and Ma,

2000), evolving SOM (Kasabov, 2001), neural gas networks (Fritzke, 1995), recourse allocation networks

(Plat, 1991), adaptive resonance theory neural networks, ART (Carpenter, Grossberg, and Reynolds,

1991), etc.. Minimum-distance-based clustering does not use the potential as a measure based on which

new clusters are formed. Therefore, these approaches usually form a large number of clusters that one

needs to ‘prune’ later (Huang, Saratchandran, and Sundarajan, 2005). Density-based clustering methods

also use the minimum-distance between the new point and the cluster centers but this is just an auxiliary

condition that helps the decision to form a new cluster or to replace an existing cluster center (Angelov

and Filev, 2004).

Both approaches can be used as a first stage of a more thorough optimal clustering. In this case, they

will determine in a computationally efficient way the number of candidate cluster centers. More

interestingly, they can be used as a first stage generating interpretable linguistic fuzzy rules (or

equivalently neuro-fuzzy systems) from raw data in real-time (Angelov and Filev, 2004; Filev and

Tardiff, 2004). This has been done for the so-called Takagi–Sugeno (TS) type fuzzy rule-based models,

controllers, classifiers, and for simplified Mamdani-type fuzzy models that can also be seen as zero-order

TS models. Due to the proven similarity of TS models with radial-basis function (RBF) neural networks

the results are equally applicable to neuro-fuzzy systems. The identification of the TS model (and thus of

the neuro-fuzzy system) in real-time is, therefore, performed in two stages. Note that both stages take

place during one time step (the time instant between reading the present and the next data sample)

similarly to the adaptation and prediction in conventional adaptive systems (Astrom and Wittenmark,

1997). Usually consequents of the TS models are assumed to be linear, however, one can also use zero-

order consequents (singletons) and thus generate a model that is close to the Mamdani-type fuzzy model

(it is called in this work simplified Mamdani model, sM model). Such a model is more suitable for

classification and some control applications because it is fully linguistic (Filev and Tardiff, 2005).

In this chapter, a comparative analysis of the two ways to address the problem of real-time clustering is

made and the basic procedures for real-time rule generation from data using these two approaches are

given. Examples of application of these approaches to real problems are also presented.

17.2 DENSITY-BASED REAL-TIME CLUSTERING

17.2.1 Potential and Scatter Definitions

The aim of the clustering is to group the data into clusters in such a way that commonality/closeness (in a

generic sense) between members of the same cluster is higher than the dissimilarity/distance between

members of different clusters (Duda and Hart, 1973). Yager and Filev (1993) have introduced the

so-called mountain function as a measure of spatial density around vertices of a grid:

M1ðviÞ ¼
XN

j¼1

e�akvi�zjk ð17:1Þ

where a is a positive constant; M1 is the mountain function calculated at the ith vertex vi during the pass

one; N is the total number of data points/samples that is assumed to be available before the algorithm

starts; k�k denotes the (Euclidean) distance between the points used as arguments; zj is the current data

sample/point.

Obviously, a vertex surrounded by many data points/samples will have a high value for this function

and, conversely, a vertex with no neighboring data sample/point will have a low value for the mountain

function. It should be noted that this is the function used for the first pass through the data only. For the

subsequent passes through the data the function is defined by subtraction of the value proportional to the

peak value of the mountain function (Yager and Filev, 1993). The mountain function is monotonic, normal

(0<M�1), and is inversely proportional to the sum of the distances between the vertex and all other data
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points. In a very similar way the subtractive clustering approach uses so-called potential, which is defined

as:

P1ðziÞ ¼
XN

j¼1

e�akzi�zjk2 ð17:2Þ

where P1ðziÞ denotes the potential of the data point/sample (zi) calculated at the first pass through the data.

In a similar way, a data point/sample with many points/samples in its neighborhood will have a high

value of potential, while a remote data point/sample will have a low value of potential. By definition, the

potential is also a monotonic, normal function with value P ¼ 1 for the extreme case when all the data

points/samples coincide (zi ¼ zj; 8i; 8j), i.e., when the distances between all data points are

0 (ðk zi � zj k2¼ 0; 8i; 8jÞ). Both mountain and subtractive clustering, however, were designed for

offline (batch) data processing.

Real-time density-based clustering, called e-clustering (from evolvable), also uses the concept of

potential as a density measure; thus vetting the data points/samples that are candidates to be a cluster

center. However, because of the online nature of the data processing only the current data point/sample is

available at a particular time instant. This requires a recursive way to calculate the potential. One possible

such function is the approximation in Taylor series of the exponential function used in (17.1) and (17.2),

which, in fact, is the Cauchy function (Angelov and Filev, 2004):

PkðzkÞ ¼
1

1þ 1
pðk�1Þ

Pp

j¼1

Pk�1

i¼1

ðzi � zkÞ
2

ð17:3Þ

where PkðzkÞ denotes the potential of the data point (zk) calculated at time k starting from k ¼ 2 and p is the

dimensionality of the data space (z 2 Rp).

In the type of density-based clustering called simpl_eTS so-called scatter was used instead of potential.

Scatter was defined as a weighted accumulated proximity measure (Angelov and Filev, 2005):

SkðzkÞ ¼
1

pðk � 1Þ
Xp

j¼1

Xk�1

i¼1

ðzi � zkÞ
2: ð17:4Þ

In fact, the scatter is proportional (instead of reciprocal) to the sum of squared distance projections.

Therefore, the logic of generating clusters in Angelov and Filev (2005) was also inverted. The best

candidate to be a cluster center is the point with the lower scatter (instead of the point with the higher

potential). The range of possible values of the scatter measured at a certain point is obviously [0;1] with 0

meaning all of the data samples coincide (which is extremely improbable) and 1 meaning that all of the

data points are on the vertices of the hypercube formed as a result of the normalization of the data.

17.2.2 Data Normalization

It should be mentioned that the input/output data is assumed to be normalized. Normalization can be done

based on the range of the data or based on the mean and standard deviation (Hastie, Tibshirani, and

Friedman, 2001). The ranges of the variables (½xi; xi� for the inputs and ½y
i
; yi� for the outputs, where

xi ¼ min
n

i¼1
ðxiÞ; xi ¼ max

n

i¼1
ðxiÞ; y

i
¼ min

m

i¼1
ðyiÞ; yi ¼ max

m

i¼1
ðyiÞ) can be suggested for a process, but in real-time

they may change. Therefore, they need to be updated in real-time, which is straightforward. If normal-

ization based on the mean, zM
kj , and standard deviation, �2

kj, is used then mean and standard deviation will

also need to be updated recursively. This can be done using the following relations (Angelov and

Filev, 2005):

zM
kj ¼
ðk � 1ÞzM

ðk�1Þj þ zkj

k
; zM

1j ¼ 0 ð17:5Þ

�2
kj ¼

k � 1

k
�2
ðk�1Þj þ

ðzkj � zM
kj Þ

k � 1

2

;�2
1j ¼ 0: ð17:6Þ
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Then the normalized input/output value is:

jzjk ¼
zkj � zkj

�kj

: ð17:7Þ

In order to simplify the notations we assume in the next steps of the algorithm that the input/output vector

z has already been normalized.

17.2.3 Procedure of the Density-based Clustering

The process of forming new clusters in real-time density-based clustering can start either from a set of

predefined cluster centers based on available a priori knowledge or, which is more attractive, it can also

start ‘‘from scratch’’ adopting the first available data point/sample as a center of a cluster (z�1 ¼ z1). In

cases when it starts from an initial set of cluster centers they are being further refined. The potential of the

first cluster center when starting ‘‘from scratch’’ is set to the highest possible value, that is P1ðz1Þ ¼ 1

(respectively, the scatter if we use (17.4) is set to the lowest possible value, that is S1ðz1Þ ¼ 0). The

procedure continues further by a loop that ends only when there are no new data to be read. This loop

includes the following steps:

(1) calculate the potential, Pk(zk)) (or respectively the scatter, Sk(zk), of the current data point/sample;

(2) update the potential (or respectively the scatter) of the previously existing cluster centers affected by

adding the new data point/sample), Pk(z*) (or respectively, Sk(z*));

(3) compare Pk(zk) with Pk(z*)or respectively Sk(zk) with Sk(z*) and take one of the following actions and

form a new cluster center, z*R+1 around the new data point, zk; if certain condition (1) (to be specified

later) is satisfied;

(4) in the case when a new cluster is added, check if it includes any of the previously existing cluster

centers (the precise formulation of includes will be specified later); if this is the case, remove/delete

previously existing centers for which this is true.

In more detail, step (1) includes the recursive calculation of the potential (or respectively) the scatter of

the new data point/sample. If expression (17.3) is used the potential can be calculated recursively in a

similar way as it is detailed in Angelov and Filev (2004), which results in:

PkðzkÞ ¼
pðk � 1Þ

pðk � 1Þðak þ 1Þ � 2ck þ bk

; ð17:8Þ

where the following notations have been used:

bk ¼ bk�1 þ ak�1; b1 ¼ 0; ak ¼
Xp

j¼1

ðzj
kÞ

2; bk ¼
Xk�1

i¼1

Xp

j¼1

ðzj
iÞ

2 ð17:9Þ

ck ¼
Xp

j¼1

z
j
kf

j
k ; f

j
k ¼

Xk�1

i¼1

z
j
i ; f

j
k ¼ f

j
k�1 þ z

j
k�1; f

j
1 ¼ 0: ð17:10Þ

To summarize, during step (1), the potential of the newly read data sample/point is calculated using (17.8) where

quantities bk and f
j
k are recursively accumulated sums computed from (17.9)–(17.10) starting from 0 values.

If, alternatively, we use scatter, the (17.4) recursive expression can be derived (Angelov and Filev,

2005) in a similar way.

In step (2) we calculate recursively the adjustment to the potential (or respectively scatter) of the

existing cluster centers due to the distorted data density by adding a new data sample/point. The

expression for the update of the potential of the existing cluster centers can be derived in a similar

way as in Angelov and Filev (2004) for the expression (17.3). We then have

Pkðz�Þ ¼
ðk � 1ÞPk�1ðz�Þ

ðk � 2Þ þ Pk�1ðz�Þ þ 1
p Pk�1ðz�Þ

Pp

j¼1

ðz� � zk�1Þ
2
: ð17:11Þ
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One can find a similar expression for the case when scatter is used (17.4).

In step (3) one can compare the values calculated in (17.8) and (17.11). Let us denote the number of

clusters formed at the moment of time k by R. Each one of them will have different density (expressed by

its potential/scatter respectively). We are interested in the spatial difference that the new data point brings

(Angelov and Zhou, 2006). If the new data sample/point has a potential that is not represented by the

existing centers we assume that this new data sample brings valuable new information:

ð�Pi > 0Þ OR ð�Pi < 0Þ; 8i; i ¼ ½1;R� ð17:12Þ
where �Pi ¼ PkðzkÞ � Pkðzi�Þ:

In the first case we continue the procedure without changing the cluster structure, because we assume

that this data sample/point can be represented well by the existing cluster centers. If (17.12) is satisfied,

we assume that the current data point/sample brings valuable new information that is not represented so

far by the currently existing clusters. Therefore, we form a new cluster around this point/sample unless the

following condition holds:

min
R

i¼1
k xk � x�i k< T ð17:13Þ

where T denotes a threshold; Filev and Tseng (2006) suggest values for T in the range of [0.15; 0.3],

Angelov and Zhou (2006) suggest a value of 1/3; both assume that the data is normalized.

If the condition (17.13) holds then the current data point/sample brings valuable new information in

terms of data density (17.12) and the old center is inside the zone of influence of the newly formed rule.

Therefore, the old center has been removed (Angelov and Zhou, 2006). In a similar way, one can use the

scatter; in this case the logic is inverted, (see Angelov and Filev, 2005).

The procedure described above underlines the density-based on-line clustering approach that ensures a

gradually evolving cluster structure by upgrading and modifying it. This approach is noniterative,

incremental, and thus computationally very efficient (it has very low memory requirements and is a

noniterative, single-pass procedure). This approach can be used for real-time classification, prediction,

and control applications. An application to landmark recognition and novelty detection by autonomous

robotic systems is presented in Section 17.4.

17.3 FSPC: REAL-TIME LEARNING OF SIMPLIFIED MAMDANI
MODELS

Density-based clustering is a convenient tool for real-time identification of similar data patterns that are

characterized with strong input/output correlation and can be represented as combinations of multiple

(linear) input/output models. Systems with fast dynamics, multiple, and frequently changing operating

modes are the typical area of application of density-based clustering. The main objective of the system

model in this case is to cover the transitions between the operating modes adequately. The Takagi–Sugeno

model provides the formal structure for accomplishing this task by representing such nonlinear systems as

a continuously switching mixture of piecewise linear models.

For a different class of systems that are dominated by fewer operating modes and rarely changing

steady states, the steady state representation is more critical than the transitions between the operating

modes. This is the case of the typical industrial systems that are designed to operate predominantly in

certain operating modes where the transitions between the modes are rather exceptions. The so-called

simplified Mamdani (sM) model (Yager and Filev, 1994) – a collection of IF-THEN rules with fuzzy

predicates and deterministic consequents – is the mathematical framework for representing systems with

characteristics described above. By combining the rules and applying a fuzzy reasoning mechanism we

obtain a rule-based process model mapping the relationship between the input(s) and output(s). The

assumed fuzziness of the predicates provides the model with a capability to cover the transitions between

the steady states through interpolation. For this type of system we consider a special type of distance-

based clustering that is inspired by the statistical process control (SPC) – a well-established method for

process variability monitoring in industry.
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SPC is a methodology for identifying variations in monitored output variables that are due to actual

input changes rather than process noise. Although, it is sometimes presented as a control tool, classical

SPC is in reality a diagnostic means signaling a change in the distribution of the monitored variable that is

due to a special (assignable) cause, i.e., a change of the input variable(s). In general, the SPC methodology

is not based on the idea of an input–output model. However, the concept of SPC can be applied to identify

clusters in the output domain that are associated with certain steady states; it can also be used to induce the

corresponding clusters in the input domain. We use these input/output data clusters to learn online the rule

antecedent and consequent parameters of the sM system model.

When the output (monitored process variable) is in statistical control, i.e., the output y is within the

process control limits (usually set at�3�yi, where �yi is the standard deviation of the output) we associate

its current mean yM
i with the current vector of the inputs (special causes) xM

i . This situation is covered by

the rule:

IF ðx is close to xM
i Þ THEN ðy is yM

i Þ; ð17:14Þ

where xM
i and yM

i are the means of the input and output variables and are obtained directly from the data;

close is a linguistic quantifier that is not explicitly defined (we assume a Gaussian type fuzzy set for its

definition)

close ¼ e
�
ðx�xM

i
Þ2

2�2
xi ð17:15Þ

and �xi is the standard deviation of the inputs that correspond to the output values within the ith set of

process control limits

The fuzzy rule (17.14) clusters all input/output pairs that are associated with output values y satisfying

the SPC process control condition:

jy� yM
i j < 3�yi: ð17:16Þ

If the output takes values that are out of the process control limits this is an indication of a substantial

change of the input. Additional out of control indicators include a trend over time, or multiple points

below or above the mean. In the cases when the process is out of statistical control the process control

limits are recalculated resulting in a new mean value yM
j . Denoting the corresponding input parameters xM

j

and �xj we obtain a new rule:

IF ðx is close to xM
j Þ THEN ðy is yM

j Þ

that summarizes the new set of input values (assignable causes) resulting in a set of output values within

the jth process control range, etc.. By combining the rules we identify a rule-based process model

mapping the relationship between the special causes and the monitored process variables. The simplified

reasoning method provides an analytical input–output model:

ŷ ¼
XR

i¼1

�iy
M
i

�XR

i¼1

�i ð17:17Þ

where

�i ¼ e
�
ðx�xM

i
Þ2

2�2
xi

is the degree of firing (firing level) of the ith rule predicate by the current input x and R is the number of

segments of the SPC characteristic with different process control limits.

The SPC provides a formal mechanism for clustering the output data into regions that are characterized

with similar system behavior. These regions are used to guide the determination of corresponding clusters

in the input domain. We call the method of learning sM fuzzy models that is inspired by the SPC

methodology the fSPC learning. The fSPC learning is driven by a distance measure with a threshold that

corresponds to the þ=� 3� process control limit (17.16) that is used in the SPC technique.

The concept of SPC based fuzzy modeling is illustrated on the system represented by the input/output

data-sets shown in Figure 17.1. The SPC chart of the output (assuming a subgroup size of four) along with
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the corresponding partitioning of the input and output data is presented in Figure 17.2. We can see that the

SPC chart identifies three output clusters characterized with different values of the mean and control

limits. These regions determine three related clusters in the input and output domain.

From the perspective of system modeling we can consider the areas where the process is under

statistical control as steady states related to a certain operating mode. In these states the system output can

be approximated with a high probability with its mean yM
i . Each of those states will correspond to an

individual rule of the fuzzy model.

For MIMO systems x and y are n and m dimensional vectors, respectively. In this case the statistical control

condition is defined through the T2 Hotelling statistics of the m dimensional output vector (Ryan, 1989):

T2
i ¼ y� yM

i

� �T
S�1

yi y� yM
i

� �
ð17:18Þ
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Figure 17.1 Input and output data-sets.
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Figure 17.2 SPC chart of the output data and corresponding partitioning of the input and output data-sets.
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where yi
M is the mean, Syj is the output covariance (single sample group size is assumed since exponential

moving average SPC is considered). The output vector is considered to be in statistical control when the

T2 is upper bounded by the chi-squared distribution

T2
i < �2

m;b; ð17:19Þ

where �2
m,b is the (1� b)th value of the chi-squared distribution with p degrees of freedom and b is the

probability of a false alarm, e.g.,�2
2;0:0027 ¼ 11:8290,�2

3;0:0027 ¼ 14:1563, while�2
1;0:0027 ¼ 9 corresponds

to the well-known�3� limit rule for the case of a single output. Condition (17.19) covers the single output

case (for m ¼ 1).

For multiple inputs the antecedent fuzzy set changes as follows:

close ¼ e�
x�xM

ið ÞT S�1
xi

x�xM
ið Þ

2 ð17:20Þ

where xM
i is the vector of input means and Sxi is the input covariance matrix corresponding to yi

M.

We apply the exponentially weighted moving average (EWMA) SPC technique to derive a recursive

algorithm for learning fuzzy models that is suitable for online modeling. We assume that the sample

groups contain a single output value, therefore replacing the expression for the process mean by its

EWMA counterpart:

yM
i ðkÞ ¼ ayM

i ðk � 1Þ þ ð1� aÞyðkÞ; ð17:21Þ

where a; a 2 ð0; 1Þ is the exponentially forgetting parameter that controls the weight of the new

observations and yM
i ðkÞ is the mean associated with the ith local output cluster.

Alternatively, we derive an EWMA version of the expression for output covariance. In order to

calculate the Hotteling statistics T2 and verify statistical control condition (17.19) we need the inverse

of the covariance S�1
yi ðkÞ rather than the actual covariance matrix SiyðkÞ:

SyiðkÞ ¼ Syiðk � 1Þ þ ðyðkÞ � yM
i ðkÞÞðyðkÞ � yM

i ðkÞÞ
T ¼ Syiðk � 1Þ þ�yiðkÞ�yT

i ðkÞ

where �yiðkÞ ¼ yðkÞ � yM
i ðkÞ. Including the effect of exponential forgetting we can rewrite the above

expression for updating the covariance matrix as a weighted sum of the current covariance matrix and the

current update:

SyiðkÞ ¼ a Syiðk � 1Þ þ ð1� aÞ�yiðkÞ�yT
i ðkÞ:

By applying the matrix inversion lemma (Astrom and Wittenmark, 1997)

ðAþ BCDÞ�1 ¼ A�1 � A�1BðC�1 þ DA�1BÞ�1
DA�1

(assuming nonsingular square matrices A, C, and C�1 þ DA�1BÞ on the inverse covariance matrix

QyiðkÞ ¼ S�1
yi ðkÞ:

QyiðkÞ ¼ ðaSyiðk � 1Þ þ ð1� aÞ�yiðkÞ�yT
i ðkÞÞ

�1

QyiðkÞ ¼ a�1Qyiðk � 1Þ � a�1ð1� aÞQyiðk � 1Þ�yðkÞ

ð1þ a�1ð1� aÞ�yT
i ðkÞQyiðk � 1Þ�yiðkÞÞ

�1a�1�yT
i Qyiðk � 1ÞÞ

we obtain a recursive expression for updating the inverse process covariance matrix QyiðkÞ ¼ S�1
yi ðkÞ:

QyiðkÞ ¼ ðI � ð1� aÞQyiðk � 1Þ�yðkÞð1þ ð1� aÞ�yT
i ðkÞQyiðk � 1Þ�yiðkÞ=aÞ

�1Þ�yT
i Qyiðk � 1ÞÞ=a

ð17:22Þ
where Qyið0Þ is a diagonal matrix with sufficiently large elements.
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Expressions (17.21) and (17.22) recursively estimate the ith output cluster center yM
i ðkÞ and covariance

matrix S�1
yi ðkÞ (and inverse variance ��2

yi in the single output case).

Formally same expressions as (17.21) and (17.22) are applied to calculate the parameters xM
i and

QxiðkÞ ¼ S�1
xi ðkÞ of the rule antecedents:

xM
i ðkÞ ¼ axM

i ðk � 1Þ þ ð1� aÞxðkÞ ð17:23Þ
QxiðkÞ ¼ Qxiðk � 1Þð1� ð1� aÞ�xiðkÞð1þ ð1� aÞ�xT

i ðkÞQxiðk � 1Þ�xiðkÞÞ
�1�xT

i Qxiðk � 1ÞÞ=a
ð17:24Þ

where

�xiðkÞ ¼ xðkÞ � xM
i ðkÞ:

Condition (17.19) identifies whether the current output vector belongs to the same output cluster. If

condition (17.19) is satisfied, the output vector yðkÞ continues to belong to the current output cluster

center yM
i . The center and the covariance matrix of this particular cluster are updated according to

expressions (17.21) and (17.22). Similarly the center and the covariance matrix of the corresponding ith

cluster in the input – expressions (17.23) and (17.24) are updated. Failure of condition (17.19) indicates

that the output vector no longer belongs to the current ith output cluster – the output vector is assigned to

an existing cluster or a new cluster is initiated. If a previously identified output cluster center yM
j ,

j 2 ½1; i� 1� satisfies (17.19), i.e., there exist an i* such that

i� ¼ arg min½ðy� y�j Þ
T
S�1

yj ðy� y�j Þ� ; j ¼ ½1; i� 1� ð17:25Þ

then the output vector y(k) is assigned to the particular output cluster center yM
i� . Consequently, the center

and the covariance matrix of the i*th output cluster are updated by applying (17.21) and (17.22). If none of

the existing output cluster centers satisfies (17.19), i.e., i� ¼ �, then new output and input clusters are

initiated.

The main steps of the recursive fSPC learning algorithm are summarized below:

(1) Check statistical process control condition (17.19).
� If (17.19) is not satisfied:

– Check for closeness to a pre-existing output cluster (17.25)

– If i� ¼ �
& Increment i and start a new output cluster and input cluster, and a new rule.
& Initialize new rule parameters yi

M, Qyi, xi
M, and Qxi, and set the sample counter at k ¼ 1.

– Otherwise, update the parameters of the i*th rule
& Set i ¼ i�.
& Go to (2).

� Otherwise set the sample counter at k ¼ k þ 1. Go to (2).

(2) Update ith rule parameters yM
i , Qyi, QM

i , and Qxi:

� Rule consequent mean yM
i (17.21).

� Inverse output inverse covariance matrix Qyi (17.22).

� Rule antecedent mean by yM
i (17.23)

� Rule antecedent inverse covariance matrix by Qxi (17.24).

� Go to (1).

17.4 APPLICATIONS

In this section practical applications of the proposed methods to landmark recognition and novelty

detection in mobile robotics and to manufacturing automation are presented.
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17.4.1 Application of Density-based Clustering to Landmark
Recognition and Novelty Detection in Robotics

This experiment exemplifies the density-based real-time clustering approach presented in Section 17.2.

The experiment has been motivated by the need to develop self-localization techniques to improve the

navigation of mobile robots (due to wheel slippage so-called dead reckoning hampers the use of odometer

readings for navigation (Neto and Nehmzow, 2004). Another motivation is the need to localize if maps or

global positioning such as GPS are unavailable or unreliable, especially in a hostile environment

(Durrant-White, 2001). As a first stage of our experiment, we have simulated the same experimental

environment as in Nehmzow, Smithers, and Hallam (1991) using the computer-based robot simulator

ARIA (ARCOS, 2005). The performance of the density-based clustering approach described in Section

17.2 was compared to that of the self-organizing maps (SOM) used by Nehmzow, Smithers, and Hallam

(1991) and reported in (Zhou and Angelov, 2006). As a next step we consider a realistic indoor

environment in a real office. Important differences comparing to the original experiment (Nehmzow,

Smithers, and Hallam (1991) are the absence of pretraining, the recursive, and fully unsupervised nature

of the approach (including the number of clusters). Due to the limited computational resources available

to an autonomous mobile robot an effective algorithm must process in real-time large amounts of sensory

data; therefore, a recursive real-time algorithm is highly desirable to cope with the memory and time

limitations.

17.4.1.1 The Experiment

For our experiment we used an autonomous mobile robot, Pioneer-3DX (Figure 17.3) equipped with an

on-board computer (Pentium III CPU, 256 MB RAM), camera, digital compass, sonar and bumper

sensors, wireless connection for transmission of data to a desktop or laptop in real-time controlled from

the on-board computer in a client-server mode using embedded microprocessor ARCOS (ARCOS, 2005).

Odometer and sonar transducers data were processed in real-time by the on-board computer that also

runs the density-based evolvable clustering algorithm. The task is to identify the ‘landmarks’ while

performing a routine ‘wall following’ behavior in a real office environment (office B-69 in InfoLab21

building on campus at Lancaster University, Lancaster, UK, Figure 17.4). Neither the number of the

corners, their type (concave or convex), the distance between different corners, etc., is predefined. The

robot has to identify all of the real corners correctly without any pretraining and any prior knowledge in

that respect. The results are compared to the results of application of fixed structure, pretrained SOM by a

mobile robot performing the same task reported in Nehmzow, Smithers, and Hallam (1991). The proposed

approach demonstrated superiority in several aspects (Zhou and Angelov, 2006): higher recognition rate;

Figure 17.3 Pioneer DX autonomous mobile robot.
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higher degree of autonomy (density-based eClustering used is fully unsupervised); higher flexibility (its

structure is not fixed and can accommodate more neurons/rules/clusters if the environment has changed).

In addition, an important feature of the proposed approach is that the information stored in the rule-base is

fully linguistically transparent and interpretable.

The inputs include instructions to the robot motor to rotate right (90 degrees) or left (�90 degrees).

These turning commands are taken along with the time duration or the distance between turnings. The

generated clusters are, therefore, closely related to the corners. For example, if we have 16 corners in the

office, ideally, there should be precisely 16 clusters corresponding to each corner. The data are not evenly

distributed; some of the clusters formed in real-time are quite similar in terms of adjacent corner types and

distances, for example corners ‘A’ and ‘D’ or ‘M’ or ‘C’ (Figure 17.4).

The clustering algorithm can be presented as a neuro-fuzzy system (Figure 17.5 and Equation (17.26).

R1: IFðT0 is RightÞ AND ðt0 is close to 0:08Þ AND ðT1 is LeftÞ AND ðt1 is close to 0:25Þ
AND ðT1is LeftÞ

THEN ðCorner is AÞ ð17:26Þ

. . . .

RR: . . .. . .

The input vector (Figure 17.6) comprises the time duration and heading/direction change in several

consecutive turnings (Right or Left;þ 90� or�90�;); x ¼ ½T0(current turning);t0 (time duration preced-

ing the current turning); T�1(previous turning);t�1 (time duration preceding the previous turning);

BA

CNM

L

K

GH

FIJ

D

E

Figure 17.4 Experimental enclosure (office, B-69, InfoLab21, Lancaster).

Input #1
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Input #n–1
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A

B

C

N–1

N

Figure 17.5 Density-based evolving clustering used for novelty (corner) detection.
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T�2(past turning) )]. Tk; k ¼ 0;�1;�2 is a binary variable with value 0 corresponding to a Right turning

and 1 corresponding to a Left turning.

Each cluster can be labeled to represent a distinctive landmark (corner) using, for example, alphabetic

letters (Figure 17.7).

Note that new clusters were formed around most of the corners automatically (the detailed results are

presented in Table 17.1), overwhelmingly using the second condition in (17.12):

�Pi < 0: ð17:27Þ
The rationale is that the data points that correspond to the routine operation of the robot (‘wall following’

behavior) may have high potential because they are similar in terms of heading/direction due to absence of

turning while each corner when it first appears is a ‘strange’, new point and its potential is very low.

After the robot makes one full run in an anticlockwise direction it was able to recognize successfully

10 out of the 16 real corners with the remaining corners incorrectly classified due to the close similarity

between description of corners (as mentioned above). When comparing the results (Table 17.1) it should

be noted the proposed method works without any prior knowledge and pretraining, while the method

described in Nehmzow, Smithers, and Hallam (1991) is offline, needs pretraining, and a fixed number of

50 neurons (clusters) were used. It should be mentioned that the features that are selected for the input

vector are critical to the result. Experiments were conducted with between two and five features (Zhou and

Angelov, 2006). Uncertainties are related to the fact that two clusters can describe the same corner.

T0 ∆D0–1 T1 ∆D1-2 T2Input vector 1

Input vector 2 T0 ∆D0–1 T1 ∆D1-2

Input vector 3 T0 ∆D0-1

T0: Current turning in degree.
∆D0-1: Distance between two adjacent turnings, T0 and T1

Figure 17.6 Input vector.

Evolving Clustering

T

T

D

D

C
A

B

Conner D

Figure 17.7 Density-based clustering of robot odometer and sonar data to identify corners/landmarks.

Table 17.1 Result comparison (T: turning, D: distance).

No. of

Experiment Input vector corners Correct Uncertain Missed Clusters Description

1 TDTDT 8 5 0 3 50 (Nehmzow, Smithers

and Hallam (1991)

2 TDTDT 8 7 0 1 7 (Zhou and Angelov, 2006)

3 TDTDTD 16 10 5 1 15 Lab Environment, 16 corners
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17.4.2 Application of Minimum-distance-based Clustering
to Modeling of Automotive Paint Process

The minimum-distance-based clustering fSPC method for learning simplified Mamdani fuzzy models

(sM) was applied to approximate the average film thickness on the vehicle body for a given combination

of factors governing the process in automotive paint booths (Filev and Tardiff, 2004). These variables

include: (i) fluid flow rates of the applicators (robotized bells and guns) – the main parameter directly

affecting the film thickness; (ii) air down draft velocity, temperature, and humidity (air is continuously

supplied to the booth to remove the paint overspray and to virtually separate individual sections of the

booth). Since the effect of the air downdraft on the horizontal and vertical surfaces is different, alternative

models are used to describe the relationships between the process variables and paint film thickness on the

left and right vertical, and horizontal surfaces (Filev and Tardiff, 2004). We demonstrate the fSPC

learning algorithm on a set of paint process input/output data representing the left vertical surfaces of 250

painted vehicles (the input /output data is presented in Figure 17.8; the actual scale and measurement units

are omitted).

The fuzzy model maps the vector of process inputs x ¼ [FF_L (average fluid flow rate, left side); DDb

(down draft, bell zone); Down Draft (down draft, reciprocator zone); T (air temperature); H (air

humidity)] to process output y ¼ FT_L (average film thickness, left side). We denote the input vectors

x and the output y. Similarly we denote the parameters of each of those models x�; y�; and S�. This

formally results in an evolving family of If . . . Then rules of the type:

If x is close to x� Then y is y�:

Initially the model includes a single rule:

If FF L � 75 and DDb � 65 and DDr � 80 and T � 90 and H � 34 Then FB L � 0:67:

After the 38 data sample a new rule reflecting a well-defined cluster in the output domain is identified by

the algorithm and added to the fuzzy model:

If FF L � 88 and DDb � 60 and DDr � 63 and T � 80 and H � 17 Then FB L � 0:73:

Figure 17.8 Inputs - FF_L (average fluid flow rate, left side); DDb (down draft, bell zone); Down Draft (down draft,

reciprocator zone); T (air temperature); H (air humidity) and output - FT_L (average film thickness, left side).
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After reading 150 data samples the model evolves to a set of three rules:

If FF L � 82 and DDb � 61 and DDr � 69 and T � 82 and H � 28 Then FB L � 0:70

If FF L � 86 and DDb � 61 and DDr � 62 and T � 80 and H � 19 Then FB L � 0:75

If FF L � 87 and DDb � 62 and DDr � 63 and T � 80 and H � 31 Then FB L � 0:79:

At the end of the learning process rule parameters are further refined:

If FF L � 80 and DDb � 64 and DDr � 68 and T � 82 and H � 30Then FB L � 0:70

If FF L � 84 and DDb � 63 and DDr � 64 and T � 81 and H � 25 Then FB L � 0:75

If FF L � 85 and DDb � 62and DDr � 63 and T � 80 and H � 26 Then FB L � 0:78:

The prediction of the fuzzy model is shown in Figure 17.9. The main advantage of the fSPC model is

that it provides the means for a real time approximation of the input/output mapping and a straightforward

interpretation of model parameters as a collection of rules that are extracted from the data and that

describe the main operating modes of the process.

17.5 CONCLUSION

This chapter presents two approaches to real-time data clustering that can be used effectively for

knowledge generation in the form of fuzzy rules. The first approach, density-based eClustering stems

from mountain/subtractive clustering and is suitable for nonstationary processes with relatively fast

dynamics. It can be used for generation of fuzzy models in real-time from data, which was illustrated in

the example of novelty detection and landmark recognition by a mobile robot in an unknown (office)

environment.

The second approach stems from statistical control and is distance-based. It is suitable for generating

fuzzy rules of simplified Mamdani (sM) type, which one can also treat as zero-order Takagi–Sugeno

models. An example from real process control in the automotive industry was used to illustrate this

approach.

Both approaches offer an online, an one-pass, a noniterative solution that is based on fuzzy recursive

calculations and thus suitable for real-time applications. They both ‘‘learn from experience,’’ do not need

pretraining, and thus can start ‘‘from scratch.’’

Figure 17.9 Measured film thickness vs. an fSPC based fuzzy model and an RBF neural network approximation.
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The density-based eClustering is a prototype-based approach, i.e., the cluster centers are some of the

existing data points in the input/output data space. It also takes into account the whole accumulated

history of the data and its spatial distribution. Thus it avoids creating a large number of cluster centers that

would later need pruning. It is an effective basis for fuzzy rules antecedents generation from data in real-

time. When combined with recursive least squares it is a very powerful tool for data space partitioning

needed for fuzzy rule-based models antecedent part identification in real-time. New characteristics of

cluster quality such as age and population have been introduced and discussed. The experimental results

concern novelty detection and landmark recognition in mobile robotics where eClustering is used for

unsupervised learning in an unknown environment.

The fSPC learning establishes a link between the SPC methodology – a well-known engineering tool

for quality monitoring that is widely accepted in industry – and one of the main soft computing techniques

– the concept of fuzzy rule base models. A simplified Mamdani (sM) fuzzy model is derived based on the

information that is obtained through SPC monitoring. An output value that is out of the process control

limits indicates that the system output is to be assigned to a different region in the output domain. The

mean of the output region identifies the parameter of rule consequent. The output regions guide the

creation of corresponding regions in the input domain. The traditional SPC technique is augmented with a

procedure for calculation of the mean and the standard deviations / covariance matrices of the input

regions – those parameters determine the rule antecedents. The fSPC learning algorithm can be

implemented recursively and does not require multiple iterations compared to the traditional back-

propagation-based algorithms for learning rule-based models. One of the main advantages of the fSPC

approach is in the straightforward interpretability of the model. The model essentially consists of logical

statements describing prototypical operating conditions that are associated with different modes of

operation. The role of the fuzziness of the rule antecedents is to interpolate between these basic operating

conditions through the normalized firing levels of the rules in. Model parameters have statistical meaning,

are related to the SPC parameters, and can be easily calculated from the data without using specialized

software packages. The fuzzy reasoning mechanism transforms the family of rules into an analytical

model.
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18.1 INTRODUCTION

Exploratory data analysis (EDA) [1] differs from model based analysis in that aggressive limits are

imposed on mathematical models of the data. Since models can mask data characteristics, this limitation

is seen as a method to reveal the intrinsic properties of the data. When models are used in EDA, they are

typically data-driven; model parameters are determined solely by data-set statistics. The main benefit of

using EDA techniques is the possibility of detecting ‘‘important,’’ yet unanticipated, features as is the case

with functional magnetic resonance imaging (fMRI), where spatial images of brains are acquired over a

time interval. Data-driven algorithms are ostensibly objective means to discover data structure since a

priori structures are deprecated. The elicitation of intrinsic data organization is the purpose of unsuper-

vised learning algorithms such as FCM [2].

With EDA, the imposition of a mathematical model on the data should be done only with strong

justification. While it is not surprising that EDA methods often do not facilitate an augmented analysis using

auxiliary mathematical models, justification for such models do, at times, exist. As an example, consider a

data-set in which relationships between features are known. Most EDA techniques find it difficult to use this

information to elicit overall structure. This is simply due to the lack of a mechanism to describe and integrate

these relations. There are good reasons to group features. Since the collection of more sample features is

usually not difficult, it is common for data-sets to have features acquired through different modalities, at

different times and under different conditions. These features may exhibit different statistical properties,

contain different levels of observational error and noise, and often have a de facto measurement or comparison
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method associated with them. This is the driving force behind feature reduction techniques. Sometimes as

little as less than 1% of features are used to discriminate biomedical data with high dimensionality [3,4].

It is apparent that a formalism is necessary to describe relationships between feature subsets and their

combination with respect to a particular problem. This formalism may be expressed using FCM with

feature partitions (FCMP), a novel variant of the FCM algorithm that exploits relations between features,

which enables feature-specific processing and a ranking of feature subsets in terms of relative importance.

For example, fMRI analysis often involves clustering along the temporal dimension (temporal partition)

in order to group similar neural activations occurring over a period of time followed by a subsequent

analysis of the spatial proximity (spatial partition) of the activations to one another. The first step strictly

emphasizes temporal similarity to the exclusion of spatial proximity, while the second step conversely

ranks their relative importance. However, if FCMP is used for fMRI analysis, these partitions may be

treated jointly, that is, temporal similarity and spatial proximity are of similar importance and are

evaluated simultaneously. This is illustrated in Figure 18.1, which is a sequence of FCMP-analyzed

brain images with increasing (from top left to bottom right) relative importance of spatial proximity. Note

the increasing number of similar neural activations (dark points) within the spatial area referred to as the

visual cortex (right of centre region).

The next section describes the formalism that we have developed as well as our novel FCMP algorithm

followed by a discussion of fMRI data-sets used to demonstrate the efficacy of this algorithm. Additional

background theory for this chapter may be obtained from literature on time series [5,6,7], space–time

analysis [8], and fuzzy concepts relating to spatio-temporal models [9,10,11,12,13,14].

18.2 FCM WITH FEATURE PARTITIONS

FCMP [15] is a generalization of FCM that provides a means of describing feature relationships and

integrating feature subsets. Due to its general nature, many well-known clustering algorithms may be

expressed as specializations of FCMP. The FCMP model also expresses several recent developments in

cluster analysis [16,17]. Like FCM, FCMP is an iterative clustering algorithm based on an objective function.

Its novelty lies in the definition of feature partitions and their advantageous integration. A feature partition is a

formal mechanism to express relations between a single set of features and between sets of features.

A feature partition is a triple consisting of a metric, a weight and a set of feature indices. This triple

describes how the features are grouped (the feature indices denote a distinct sub-group), how they relate

Figure 18.1 A sequence of FCMP-analyzed brain images with increasing spatial proximity relevance.
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(what metric is used to compare features), and how feature partitions relate to each (how are different sets

of features integrated using weights). One benefit of making feature relations explicit in this manner is the

continuous integration of information from a single feature partition into an existing clustering process.

18.2.1 Generalizing FCM

The formalized notation for data analysis follows that of Höppner, Klawonn, Kruse and Runkler [17] and

is used to derive update equations for the FCM algorithm and has been extended to include feature

partitions. Some definitions are repeated here for completeness. For data space S; S 6¼ f, and results space

P; jPj � 2;AðS;PÞ is the analysis space defined as the collection of mappings U from a specific data-set X

to a possible solution Y. That is,

AðS;PÞ :¼ ff jU : X ! Y;X � S;X 6¼ f; Y 2 Pg: ð18:1Þ
Analysis spaces are evaluated by an objective function J; J : AðS;PÞ ! R. Partial derivatives are taken on

J to determine maxima or minima and define update equations. Let Jx be the FCMP objective function

with respect to a single sample, x. Membership update equations are determined by setting the partial

derivative of the objective function to zero (where l is a Lagrange multiplier).

qJx

qfx
¼ 0;

qJx

ql
¼ 0: ð18:2Þ

We now extend the notation for the general FCMP clustering framework. Let the mapping

U : X ! Y 2 AðS;PÞ denote a cluster partition (membership matrix) characterized by

8x 2 X
X

v2V

uxv ¼ 1; 8v 2 V
X

x2X

uxv > 0 ð18:3Þ

for sample x 2 X and centroid v 2 V . For X and clusters V, the fuzzy objective function is

JðUÞ ¼
X

x2X

X

v2V

um
xvd2ðx; vÞ ð18:4Þ

where d is a distance metric and m is the fuzzy exponent (coefficient of fuzzification).

Let G be the total number of sample features and n the number of samples. Let nv denote the number of

samples associated with cluster v. The number of partitions is P ¼ jPj � G. (We use the terms sample and

feature vector interchangeably.) Let an index I denote the columns (features) of the data-set. The

decomposition of the feature vector into distinct feature partitions is now discussed. Consider a sample

x ¼ ½x1x2 . . . xG� with G features. Define a partition of the G features as the P distinct feature subsets P,

P ¼ fpjp 6¼ f;[ p ¼ f1; 2; . . . ;Gg; 8p; q 2 P; p \ q ¼ fg: ð18:5Þ
One method of expressing the features in a partition is through a projection operator p. A projection

operator transforms a vector (sample) onto a reference plane. The resulting projection may be a subset of

the vector dimensions (sample features). (For instance, projections onto bases are common. In the case of

three dimensions and unit basic vectors, e1 ¼ ½1 0 0�; e2 ¼ ½0 1 0�; e3 ¼ ½0 0 1�, any vector in three

dimensions may be viewed as additive components along the projection axes e1; e2; e3. Using a transform

such as principal component analysis, one can also define planes that are orthogonal but maximize sample

variance on the projected plane.) The projection operator is beneficial for FCMP since it is used to index

specific feature partitions. Let piðxÞ denote the projection of vector x onto the standard basis ei and extend

this notation to allow for the union of projections, piðxÞ ¼ [i2IpiðxÞ. Now, the features for a sample x,

associated with a particular feature partition p 2 P, is represented as ppðxÞ. Using the projection operator,

the domain objective function is

JðUÞ ¼
X

x2X

X

v2V

X

p2P

vpf mðppðxÞ; ppðvÞÞd2ðppðxÞ; ppðvÞÞ; ð18:6Þ
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where v ¼ ½v1; v2; . . . ; vp� is a weighting factor denoting the relative importance between the feature

partitions p 2 P, X

p2P

vp ¼ 1; 8p; vp > 0: ð18:7Þ

A shorthand device of denoting the projections of x onto the features in the subset p is

x0 ¼ ppðxÞðv0 ¼ ppðvÞÞ. Here p is implicit in x0ðv0Þ and is determined in equations by vp. This results in

the simplified equation

JðUÞ ¼
X

x2X

X

v2V

X

p2P

vpum
xkd2ðx0; k0Þ: ð18:8Þ

In order to express algebraically the many types and combinations of metrics that may be used in a general

cluster algorithm, the concept of distance is generalized. A metric over all features is replaced with a

weighted sum of metrics over features partitions. Each partition p 2 P uses a, possibly unique, distance

function dp. They are combined in the cluster algorithm using the weighting parameter

v ¼ ½v1 . . . vj . . . vp�; 8 vj; 0 < vj < 1. This results in a generalized distance

Dðx; kÞ ¼
X

p2P

vpd2
pðx0; v0Þ: ð18:9Þ

The membership update equation exchanges its distance metric with a weighted sum of distances on

feature partitions

uxc ¼
X

v2V

P
p2P

vpd2
pðx0; c0Þ

P
p2P

vpd2
pðx0; v0Þ

0
B@

1
CA

ðm�1Þ

¼
X

v2V

Dðx; cÞ
Dðx; vÞ

 !ðm�1Þ

: ð18:10Þ

The centroid update equation remains unchanged

v ¼

P
x2X

um
xvx

P
x2X

um
xkx

: ð18:11Þ

Convergence criteria for FCMP are the same as for FCM and a proof of convergence for the algorithm is

provided in [18].

18.2.2 FCMP Parameters

In addition to the FCM parameters, FCMP includes a non-empty set of feature partitions. FCMP uses the

feature partitions to adapt to specific problems. When a feature partition collection contains only one

feature partition it is proper to describe the algorithm as FCM. A feature partition is composed of a triple: a

metric m:RG�RG!RG, a weight v 2R, and a set of feature indices P ¼ fpg. We denote a single feature

partition asc ¼ fm; v; pgwith � ¼ fcg denoting the set of feature partitions. The metric used in FCMP is

a composite of weighted distance metrics on the respective partition. Parameter initialization concerns the

number of feature partitions to be used, the assignment of weights to rank partitions, and the assignment of

metrics for each partition. Many methods may be used to select feature partitions including:

(1) Entropy based grouping – appropriate for partially supervised learning. Choose n best discriminating

features. Partitions may be formed using the increasing, discriminatory ability of collections of features.

(2) Statistical heuristics – best for unsupervised learning. Rank the features by variance or other

statistical properties.

(3) Local domain – useful for unsupervised or partially supervised learning. An example application is

fMRI analysis. If there are time instances (temporal values), form a partition by selecting activated

and unactivated epochs. Allow lag times for the activated epochs and form another subset.
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Metrics may be chosen to ameliorate noise detected in the data or by external associations between

features and metrics. For example, it is customary to use the Pearson correlation coefficient for fMRI time

series analysis.

18.2.3 FCMP Specialization

Moving from an abstract (general) formulation to a concrete (specific) adaptation is known as specializa-

tion and eliminates algorithmic degrees of freedom from the abstract formulation. Specialization

constrains the formula in a particular application of the algorithm. Expectations about the generalized

performance of specializations should be tempered by the fact that specialization is essentially a data-set

specific process. The casting of the abstract (or meta-) formulation to a particular data-set aims at local

optima. For example, feature partitions determined to be optimal for one data-set have no necessary

relation to optimal partitions in a different one. The selection of feature partitions tunes the algorithm to

the current objective function. Algorithms are often multipurpose (general) and are applied to many types

of data. An algorithm designed to meet a data-set specific objective function is often not available or

feasible to implement. FCMP allows a general purpose algorithm, FCM, to exploit feature relations in the

data and heuristics from external sources (say, an MRI technologist) by modifying the role of each feature

and feature partition in the data-set.

An optimal feature partition integrates the distinct contributions that collections of features (partitions)

encapsulate in order to maximize (optimize) an external sample-class label pairing. A partition aggre-

gates features that have a bearing on, say, one heuristic that applies to one class of samples. This partition

is minimal in that it contains only features related to this rule, and is generalizable in that it applies to all

samples in the class. An optimal partition allows diverse and adumbrated structures in the data to be made

manifest. For example, in fMRI, an optimal partition for a neural activation study of the visual cortex does

the following: (a) defines a spatial region identifiable as the visual cortex where time courses have

temporal similarity to the paradigm (a time course (TC), a time series of intensities for an image voxel, is

more fully described in Section 18.3.3); (b) highlights other spatial regions where the TCs are correlated

to the paradigm; (c) enables the analyst to dismiss quickly and correctly large portions of the data-set as

irrelevant (in FCMP, noise TCs are also grouped spatially and may be rejected from further analysis upon

an initial scan of the spatial partition image); (d) reduces the percentages of type I and type II errors

(FCMP rejects outliers and includes proximal TCs that are also temporally similar); (e) facilitates the

discovery of novelty (see (b) above); (f) allows general statements to be made about relationships in

different domains and between domains (for instance, with fMRI, statements should be made about

spatial, temporal and spatio-temporal properties as well as data-set properties on activated/unactivated

epochs, and so on). Overall, the use of feature partitions should never degrade the analysis of a data-set.

The cost of using FCMP is the lack of a priori knowledge as to the appropriate levels of integration

between the partitions. A range of metrics and weights should be expected to be evaluated.

Several examples of optimal parameters are examined for specialization instances. The utility of the

algebraic expression of FCMP compared to FCM will now be shown in the following areas: robust

clustering, preprocessing, and partial supervision.

18.2.3.1 Robust Clustering

Robust clustering is designed to reduce the effects of outliers or noise on the centroids. This is done

through preprocessing operations such as outlier detection tests. Outliers can then be eliminated from the

data-set. Norms and metrics can also be used to reduce the impact of outliers. One such metric is the

e-tolerant metric, which considers as equal all sample pairs that are within an error tolerance, e. Leski [19]

presents the following approach to robust clustering. Define an e-insensitive metric or norm where

jtje ¼
0 if jtj � e
jtj � e if jtj > e

� �
: ð18:12Þ
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Then the cluster objective function is

Je ¼
Xc

i¼1

XN

k¼1

ðuikÞmjxk � vije: ð18:13Þ

This applies to the robust clustering algorithms e-FCM, a-FCM,b-FCM [19] and can also be used with the

fuzzy c-median. The general form of FCMP entails a simple specialization: one partition containing all

features, the selected robust metric, and a feature partition weight of 1.

18.2.3.2 Preprocessing

Several preprocessing operations can be incorporated into the FCMP formalism such as principal component

analysis (PCA), independent component analysis (ICA), feature selection, and small signal detection.

Designing an EDA system often requires manipulating the raw data before the clustering process

begins. PCA is one common transformation and projects the samples onto axes of maximal variance.

Preprocessing with PCA is incorporated by FCMP through using the eigenvalues l of the data-set

eigenvectors L as partition weights. In the notation of feature partitions, v ¼ l. The number of partitions

corresponds to the number of principal components used. The number of components used is often

determined by (a) a goal of accounting for at least a certain percentage of the total variance, or (b) isolating

projection axes that discriminate between the samples. Each feature partition contains all the feature

indices and requires that the samples be projected onto the principal components. Of the triple �, only the

metrics m are left to define as parameters.

ICA defines independent components and a mixing matrix that describes how the original signals may

have been combined. A whitening matrix, which makes the distribution Gaussian, is often used. The

mixing matrix can be used to define a partition similar to that in the previous example using PCA. Each

feature partition � includes all feature indices ðpi ¼ f1; . . . ;Gg; 8 iÞ and the ICA mixing matrix is used to

transform the data from the original feature space to the independent component space. Typically, the

number of independent components is much less than the number of features.

Determining which features to use in a partition can be determined using an exhaustive search,

heuristics or randomized selection. Each method results in a binary value for a feature (0¼ not selected,

1¼ selected). A binary vector defines the selection of features. This vector defines feature indices in the

feature partition. Some methods, such as GMDH [20], generate new features by including feature

products in combination. This new feature is the product of two or more existing features. The partition

in both these cases is the feature index vector multiplied element-wise by the feature selection mask.

18.2.3.3 Partial Supervision

How can knowledge of class labels be exploited by FCMP? Samples with labels have an increased weight

or cause the algorithm to switch from a robust metric to a regular metric. Changing metrics for samples

with trusted labels increases the contribution of these samples to the centroid. Other methods can be used

such that samples with labels will receive a higher weighting in the feature partition. Clusters that have

samples with a variety of trusted labels can be split into clusters with samples having the same trusted label.

This is similar to the partially supervised FCM of Pedrycz and Waletzky [21]. Let � ¼ fo1;o2; . . . ;ocg
denote the set of C class labels. Let o0 denote the class assigned to outliers, classification rejections, and

unknown and ambiguous samples. Let �� ¼ � [ o0 be the set of all possible class labels. LetoðxÞ denote

the class label associated with sample x. Define a data-set of unlabeled samples X ¼ fxjoðxÞ ¼ o0g and a

data-set of labeled samples Y ¼ fxjoðxÞ 2 �g. Consider the following metric mXY

mXYða; bÞ ¼
m1ða; bÞ if a 2 X; b 2 Y

m2ða; bÞ if a; b 2 X

m3ða; bÞ if a; b 2 Y

8
<

:

9
=

; ð18:14Þ

Label information is integrated by switching between different metrics. Alternately, consider feature

subsets that are discriminatory with respect to the labeled samples. Let � 2 fg1; g2; . . . ; gDg be the set of
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discriminating features. Let p1 be the feature indices in feature partition �1 that are all discriminatory,

p1 ¼ fpjp � �g. Let feature partition �2 contain only indices of non-discriminatory features,

p2 ¼ fpjp ¼ fg. Let weights v1; v2 be associated with �1;�2 and assign more weight to the discriminat-

ing features. When this occurs, v1 > v2 and knowledge of class labels is effectively exploited.1

18.2.3.4 Small Signal Detection

The solution to small signal detection is similar to that of exploiting class labels. It is a question of

selecting the appropriate metric. We define a probe as a finely-tuned function which determines the

presence or absence of a localized signal. Probe localization may be spatial, temporal, in the frequency

domain, a combination of domains (space–time, time–frequency, etc.), or may be defined by heuristics.

Let us consider features acquired over a time interval: for example, a time series of n instances from an

fMRI study. Denote activated epochs as EA and the unactivated epochs as EU. Define feature partitions

�1;�2, with feature indices

p1 ¼ fpjp 2 EAg
p2 ¼ fpjp =2 EAg:

ð18:15Þ

Assign weights such that jp1jv1 > jp2jv2 to augment the activated epochs. This method can also be used

to discount features whose values have been contaminated. For labels that exhibit uncertainty, this method

may also be applied.

Finally, consider a probe to be a thresholded metric or similarity function such that the output is binary

signifying presence (1) or absence (0) of a phenomenon. One difficult problem in fMRI analysis is

searching for small signals that are not linearly related to the paradigm. These small signals presumably

reside in only a few percent of the TCs and will not form their own cluster with a general cluster algorithm.

Detecting a cluster with a centroid highly correlated to the paradigm is insufficient to also identify TCs

containing this small signal. However, a series of probes may be assembled to detect a variety of nonlinear

small signals. When the signal is detected in the clustering process (say, after a cluster has defined a

centroid sufficiently similar to the paradigm), the probes, being based on the centroid, will be able to

detect the small signal. Heuristics can be devised to change metrics when the probe indicates that the

small signal is present. In this manner, the clustering process of the entire data-set is combined with a

search for small related signals.

18.3 MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) [22,23] is a noninvasive imaging modality. The ability of MRI to

contrast various soft tissues has led to new imaging applications of the brain, abdominal organs, the

musculo-skeletal system, breast, heart, and blood vessels. It is the de facto standard for biomedical imaging.

Different echo sequences, magnetic strengths, goal-specific techniques (for example, contrast agents), and

coils provide high resolution spatial images. FMRI examine blood flow intensity changes produced by a

structured stimulus. A stimulus may be any physical change produced near, on or in the subject. Common

stimuli include cognitive, visual, tactile, or auditory effects. The stimulus is applied over an interval of time

(the activated epoch) and then the subject is allowed to rest (the unactivated epoch). Intensity values are

scanned continuously over the alternating epoch pairs. That is, each epoch contains multiple scans. MRI

studies generate voluminous amounts of data for each acquisition (in the scores of megabytes). Analysis

tests for order and relation in the presence of multiple noise sources with the cognizance that novel

information underlies the mass of measurements and may not yet be incorporated into mathematical

models in common use. Since its commercial deployment, MRI/fMRI has been the methodology of choice

for investigating the structure of the human body and its functional behavior. In particular, brain activation

studies present challenges for standard pattern recognition and analysis techniques.

1Note that, depending on the relative number of features in and p1 and p2, even the case v1 < v2 may show
improvement in terms of discrimination. This can occur when there are few discriminating features. In general, the
formula is jp1jv1 > jp2jv2 for two classes.
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18.3.1 Nuclear Magnetic Resonance

The phenomenon of nuclear magnetic resonance involves the interaction of static and oscillating magnetic

fields. For a volume of tissue outside of a magnetic field, the spins of constituent protons are randomly

distributed and yield a (near) null net field. Within a static magnetic field B0, the protons precess around B0.

Perpendicular to the field, the spin orientations are still randomly distributed. Parallel to B0, the coupling of

the static field and the spin orientations produces the so-called Zeeman interaction, which exhibits an energy

difference between parallel and anti-parallel spins. The lower energy orientation (parallel) has the larger

proton population and is characterized as a Boltzmann distribution. The equilibrium between the parallel

and anti-parallel spins is known as the induced magnetization M0. Irradiation of an object in a static

magnetic field by an oscillating magnetic field (where the frequency is matched to the precession frequency)

rotates the magnetization of the sample into the transverse field. Magnetic resonance occurs between an

external magnetic field and a nucleus with a nonzero magnetic moment (spin). Hydrogen (H) has spin 1/2.

Hydrogen has a high gyro-magnetic ratio g and is thus sensitive to magnetic fields. The presence of

hydrogen in both blood and fat makes viable imaging of in vivo tissues.

18.3.2 Image Acquisition and Noise

MRI data acquisition occurs while the subject lies in a static magnetic field generated. Current, common

magnetic field strengths range from 1 to 5 tesla. The application of short radio-frequency (r.f.) pulses to the

magnetized tissue causes the tissue to absorb, and subsequently re-emit, the energy. Note that the frequency

of the r.f. pulse must be matched to the energy difference between the spin up and spin down orientations

(parallel and anti-parallel). Energy absorption at the resonant frequency is resonance absorption. The time

between energy absorption and re-emission is known as the relaxation time. Two main relaxation times are

used to define imaging intensities: T1 and T2. The T1 (spin–lattice relaxation) time is the time necessary for

the z component of M to return to 63 % of its original value following an r.f. pulse. It measures the rate at

which spins return to their original configuration. The T2 (spin–spin relaxation) time is the time required for

the transverse component of M to decay to 37 % of its initial value via irreversible processes. The TCs

activation levels acquired relate the intensities of the deoxygenated blood to the activity.

There are many compromising factors in MR imaging:

� Various echo sequences have associated noise concerns and known interactions with other noise

sources.

� Motion artifacts – aperiodic motion leads to blurring of the moving tissue. Peristaltic motion is seen as

noise over the stationary tissue. Periodic motion is manifested in ghost images. Flow artifacts effects

depend on flow velocity.

� Misregistration (pixels misalignment) may occur due to machine drift.

� Coil noise; inhomogeneity in magnetic field.

18.3.3 Functional Magnetic Resonance Imaging

FMRI consists of a series of images that infer organ, typically brain, function through de-oxygenated

blood flow intensities [24]. A pattern of activations is generated by having the subject repeat a task or

receive stimuli. At each acquisition instance, the subject is considered either passive (resting or 0) or

active (receiving stimulus or 1). The paradigm is the series of off–on activity states and is used as a

reference for the intensity acquisitions. A TC is a time series of intensities for an image voxel. The neural

regions stimulated in a study will include regions known to relate to the activity, novel (unanticipated)

areas, and noisy voxels. It is common practice to employ EDA techniques in fMRI studies as mathema-

tical models continue to develop. When developing strategies to reduce noise in the acquired signals, it is

critical that the processing should not remove novel patterns and relations.
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18.4 FMRI ANALYSIS WITH FCMP

The following applications of FCMP to problems using fMRI data demonstrate the versatility of a

generalized clustering algorithm and the practicality of various specializations.

18.4.1 Adding Spatial Context to FCMP

Consider a partition of the sample features into spatial ðS ¼ fx; y; zgÞ and temporal features

ðT ¼ ft1; t2; . . . ; tngÞ for n time instances. Using the previous notation, the feature partition P is

P ¼ fS; Tg ¼ ffx; y; zg; ft1; t2; . . . ; tngg ð18:16Þ
and the respective partition weights are v ¼ fvS; vTg. Denote distances (metrics) for the partitions as dS

and dT . Substituting these specific values into the expanded formula, the FCMP objective function

adapted for fMRI is

J ¼ vS

X

x2X

X

v2V

um
xkd2

Sðx; kÞ þ vT

X

x2X

X

v2V

um
xkd2

Tðx; kÞ � l
X

x2X

X

v2V

uxk � 1

 !
: ð18:17Þ

For a particular sample x, the objective function is

J ¼ vS

X

v2V

um
xkd2

Sðx; kÞ þ vT

X

v2V

um
xkd2

Tðx; kÞ � l
X

v2V

uxk � 1

 !
: ð18:18Þ

The membership update equation is

f ðx; cÞ ¼
X

v2V

vSd2
Sðx; cÞ þ vT d2

Tðx; cÞ
vSd2

Sðx; vÞ þ vT d2
Tðx; vÞ

" #ðm�1Þ

: ð18:19Þ

The interpretation of the objective function is this. Minimize the temporal distance of the sample to the

time centroid and minimize the spatial distance to the spatial centroid based on the weights vS and vT .

Spatial proximity and temporal similarity are considered at each iteration of the cluster process at

specified levels of integration.

18.4.2 Parameters and Typical Use

Consider the remaining FCMP parameters with spatial context. The Euclidean metric is normally used

with spatial features. A variety of metrics may be applicable to temporal features. In practice, a distance

metric based on the Pearson correlation coefficient is often used for temporal features. Variations on the

theme of temporal distance include considering only activated epochs (stimulus is applied), including

anticipation and relaxation responses of the subject (this would consider portions of the unactivated epochs

proceeding and following the stimulation epochs), or allocating increased weight to activated epochs.

A fuzzification exponent, m, close to but greater than 1 (typically, 1.1–1.3) tends to reduce the effects of

noise. This is significant since common signal-noise (SNR) values for fMRI studies are 2–5 [25].

Algorithms that use cluster merging (for instance, EvIdent1 [26]) often initialize the algorithm with

more clusters than the analyst expects in the data-set (typically, 10–40).

18.4.3 Extending Spatial Context in FCMP

Additional information may be implicitly included in the FCMP functional by considering the spatial

neighbors of a sample TC, xi. Consider the effect of replacing xi by a representative TC that shares both

spatial proximity and signal similarity. Let g denote a mapping from a given sample index i to the index of
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a neighbor j that best represents the neighborhood around xi. For each xi, form its set of neighbors,

where the neighborhood is defined in terms of spatial and temporal similarity. The functional now has the

form

JgðU;V ; XÞ ¼
X

v2V

X

x2X

um
gðxÞvD2

gðxÞv ð18:20Þ

where gðxÞ is the neighborhood (spatial) representative for xi. There are two additional degrees of freedom

in this modification: (a) the definition of a neighborhood for a sample TC and (b) the selection of a

representative TC from the neighborhood. This alternate formulation appends a term to the FCMP

objective function

Jm;a;FðU;V ; XÞ ¼
XK

k¼1

XN

n¼1

um
nkD2

nk þ a
XN

n¼1

Fðxn;NeðnÞÞ ð18:21Þ

where Fðxn;NeðnÞÞ is a function of sample xn and its neighborhood NeðnÞ.
One possible implementation of F is a weighted sum of the neighborhood scatter matrix:

F ¼ bi

XjNeðiÞj

j¼1

ðxi � xjÞTðxi � xjÞ ¼ ScðNeðiÞÞ: ð18:22Þ

Such an objective function is said to contain spatial and temporal terms.

18.5 DATA-SETS

Both synthetic and authentic data-sets will be used. The synthetic data-sets that were generated are

discussed first, followed by a discussion on the authentic data-sets.

Neural activation studies examine the spatial regions (volume elements or voxels) associated with

paradigm-correlated TCs. Regions of interest are defined in space for time sequences of importance. Such

a designation increases the importance of other spatially proximal TCs. While clustering algorithms

define centroids, they can also define spatial partitions on the fMRI images, using the cluster membership

values as voxel memberships in various partitions.

18.5.1 Spatially Separated Clusters with Noise

This synthetic fMRI data-set (synth1), based on a stimulus paradigm with various levels of noise added,

demonstrates how feature partitions interact when noise degrades the feature partitions independently and

when the partitions are correlated. Synth1 contains two feature partitions with specific noise distributions

and comprises 100 degraded and 100 noisy samples (Figure 18.2). The first feature partition contains

spatial coordinates ðx; yÞ; the second temporal intensities (TCs). The spatial data is composed of uniform

sampling (radii and angle) in two circular areas ðm1 ¼ ð0:1; 0:1Þ; m2 ¼ ð0:9; 0:9ÞÞ with the same radii

ðr1 ¼ r2 ¼ 0:1Þ. Temporal data is composed of degraded TCs and noise TCs. A stimulus defines the

activation by the sequence [0 1 0 1 0 1 0 1 0 0]. A paradigm TC maps the stimulus to the number of

sampling instants. Thus, successive time instances may belong to the same stimulus epoch. The degraded

TCs are generated by adding noise to the paradigm TC at a specific SNR level. The noise TCs are uniform

random values in [0,1]. The data-set is the concatenation of the spatial data to the temporal data

(the degraded TCs are associated with m1; the noise TCs are associated with m2).

18.5.2 Visual Cortex Study

This ‘‘real-world’’ data-set (auth1) was acquired from a visual cortex study using a visual stimulus with a

paradigm of [0 1 0 1 1 0]. The stimulus was presented to an individual and the neuron activations of a

single slice were recorded. Figure 18.3 shows the mean intensity coronal image (regions of high average

intensity appear lighter in the image). The data-set is composed of TCs with dimension
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Figure 18.2 (a) Spatial distribution of synth1. Time courses: (b) paradigm, (c) degraded TCs, (d) noisy TCs.
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128� 256� 1� 42ðX; Y; Z; TÞ. Figure 18.4 shows some typical TCs with above average intensity and

above average correlation to the paradigm.

An examination of the histogram values in auth1 (Figure 18.5) shows that regions with TCs highly

correlated to the paradigm will be small. (Any region growing operations in the region of interest will

suffer loss of continuity unless they accept marginally correlated TCs that are nonetheless spatially

proximal.) Examining the spatial distribution of correlated voxels, a correspondence is seen between the

high average intensity voxels. Note that (a) the visual cortex has a significant number of highly correlated

voxels, (b) some noise TCs (outside of the subject’s body) have a significant correlation, and (c) a second

separate region of correlated voxels exists, again, near the bottom of the image. Figure 18.6 shows the

spatial distribution of TCs with Pearson correlation >0.5.

Figure 18.7 shows the stimulus paradigm mapped to the 42 sampling instants, TCs in the visual cortex,

and noise TCs.

18.6 RESULTS AND DISCUSSION

18.6.1 Proof of Concept

The proof of concept experiment uses auth1, FCM as a benchmark, and the minimum mean square error

(MSE) of the centroid to the paradigm as the validation criterion. We compare FCMP to FCM over a range

of SNR values for the degraded TCs (2, 5, 10, 20, 30 and 40). The spatial distance between the spatial

cluster centres is 1 and Euclidean and Pearson distances are the metrics applied to each partition. The

weights applied to each partition are 0.0, 0.1, 0.9, and 1.0.

For high SNR values, the feature partition weight contributed little additional enhancement in terms of

MSE and correlation. As the SNR decreased, there is an optimal weighting pair for the spatial and

temporal feature partitions. Several expected trends were confirmed by the experiments. As the number of

clusters increases, the overall MSE decreases, regardless of SNR for the correlated TCs and the weight bS.

However, for an increase in the number of clusters, both FCM and FCMP were more likely to generate

additional noise clusters. As the noise in the data-set increases, the minimum MSE of the resulting

centroids increases. The following relation is noted between SNR, MSE and bS: as bS ! 0, the MSE

depends increasingly on the SNR. That is, TCs with higher temporal SNR have lower values of bS for the

same MSE. As reliance on the low noise feature domain increased ðbS ! 1Þ, the MSE decreases. This

occurred for almost all cases; for the synthetic data-set at low SNR, several outlying points were

Figure 18.3 Mean intensity coronal image from visual cortex study. An example of single slice fMRI acquisition.
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Figure 18.4 Typical auth1 TCs (a) with above average intensity and (b) above average correlation to paradigm.

RESULTS AND DISCUSSION 385



discovered. This corresponds to a locally optimal value of data coordination, where the incorporation of

degraded signals is beneficial. These inflection points in the general trends of decreasing MSE for

increasing bS were noted for mainly low SNR data-sets and occurred at bS ¼ 0:9 as shown in Figure

18.8. A range of SNR values reproduce this inflection; bS ¼ 0:9 seems optimal for these particular feature

domains. The slope of the trends in Figure 18.8 suggest a critical SNR value at which bS has a significant

ameliorative effect (2–5 SNR).

Figure 18.5 Histogram of correlation values.

Figure 18.6 Spatial distribution of time courses with Pearson correlation >0.5.
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Figure 18.7 (a) Auth1 paradigm, (b) visual cortex TCs, (c) noisy TCs.

Figure 18.8 Inflection points for the spatial weighting term and MSE.
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18.6.2 Visual Stimulus

Previously, auth1 was examined at a general level using basic preprocessing operations. It was seen that

spatial continuity of the region of interest could be achieved using spatial topology without any

consideration for temporal similarity. FCMP will address this by defining spatial and temporal feature

partitions. One concern is that it is not obvious how to relate the spatial and temporal domains. This is

solved by executing a series of cluster experiments, each with a different weight between the partitions.

Figure 18.9 shows a set of spatial maps for auth1 using FCMP with C ¼ 15 clusters and varying values

Figure 18.9 Spatial maps generated using FCMP ðC ¼ 15Þ with varying bS.
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for bS. Note that when one feature partition weight is 0 and there are only two weights, the results are

exactly that of FCM with the same metric function. When bS ¼ 0 one expects to have spatially

disconnected regions; when bS ¼ 1 one expects to have spatially convex regions. This can be seen in

Figure 18.9(a) and (b), respectively. When 0 < bS < 1 interesting effects can be observed in the resulting

Figure 18.10 False negative time courses that were not selected but near the region of interest.

Figure 18.11 False positive time courses that were selected but not near the region of interest.
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voxel assignment maps. Temporal similarity and spatial proximity combine to produce spatial regions that

exhibit degrees of spatial continuity. The centroids of these regions show corresponding increasing

correlation (for regions correlated to the visual cortex) or decreasing correlation (for noise regions). Based

on MSE of the centroids to the paradigm, 0:6 < bS < 0:9 values gave the best results. Examining just the

visual cortex region, one can detect the increase in spatial continuity as the spatial feature partition weight

increases.

The results of FCMP are now compared to an industry standard system, EvIdent1[26], which uses a

version of FCM highly specialized for fMRI analysis. Default parameters were used with Evident1.

Figure 18.10 shows four TCs that were spatially proximal to the region of interest (visual cortex) but were

not selected as significant by this system. Figure 18.11 shows four TCs that were not spatially proximal to

the region of interest but were selected as significant. In both the former case of proximal rejections

(false negatives) and the latter case of outlier inclusions (false positives), FCMP correctly clustered

the TCs.

18.7 CONCLUSION

The challenges to fMRI data analysis are incorporating spatial information into the temporal fuzzy

clustering process (adding spatial context) and discovering novel time courses for further analysis

(related to minimizing the mathematical model used in describing the data and exploratory data analysis).

With these challenges in mind, a novel fuzzy clustering algorithm was developed, namely FCMP. An

FCM extension, FCMP addressed the above issues as follows. FCMP incorporates spatial information by

defining multiple feature partitions. Specifically, for fMRI, one is used for temporal features

(traditional approach) and one used for spatial features (new contribution). Continuity with advantages

and experience accumulated with previous algorithms (FCM variants) can be extended to FCMP. FCMP

discovers novel time courses for further analysis by changing the weight given to the different feature

partitions. Extreme weight values correspond to considering only a single feature partition. Thus the

original FCM analysis was preserved as an option in FCMP analysis. Novelty was defined in terms of

results with current industry standard cluster analysis algorithms. The novel time courses discovered by

FCMP had significant temporal correlation as well as spatial proximity to regions of interest. FCMP

makes robust statements about fMRI data. Examples include: FCMP had a lower false positive rate than

an industry standard for the determination of correlated voxel regions (spatial outliers were rejected);

FCMP returned more stable spatial regions of interest than the vanilla FCM for fMRI data. This was true

with respect to both changes in SNR values for temporal features and distance for spatial features.
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19.1 INTRODUCTION

A human encountering a new concept often derives its meaning via an accumulation of the contexts in

which the concept appears. Based on this characteristic, various lexical semantic space models have been

investigated. The meaning of a word is captured by examining its co-occurrence patterns with other words

in the language use (e.g., a corpus of text). There have been two major classes of semantic space models:

document spaces and word spaces. The former represents words as vector spaces of text fragments (e.g.,

documents, paragraphs, etc.) in which they occur. A notable example is the latent semantic analysis (LSA)

(Landauer and Dumais, 1997). The latter represents words as vector spaces of other words, which co-

occur with the target words within a certain distance (e.g., a window size). The strength of the association

can be inversely proportional to the distance between the context and target words. The hyperspace

analog to language (HAL) model employs this scheme (Lund and Burgess, 1996). The dimensionality

of semantic spaces is often very high, for example, Lund and Burgess (1996) constructed a
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70 000� 70 000 HAL vector space from a 300 million word textual corpus gathered from Usenet. The

concepts occurring in the similar contexts tend to be similar to each other in meaning. For example,

‘‘nurse’’ and ‘‘doctor’’ are semantically similar to each other, as they often experience the same contexts,

i.e., hospital, patients, etc. The similarity can be measured by the angle (cosine) or Euclidean distance

between two word vectors in the semantic space.

Semantic space models can be considered as computational approximations of the conceptual spaces

advocated by Gärdenfors (2000), which are built upon geometric structures representing concepts and

their properties. At the conceptual level, information is represented geometrically in terms of a dimen-

sional space. In this chapter, we propose to use HAL vectors to prime the geometric representation of

concepts. HAL vectors are also interesting because semantic associations computed using these vectors

correlate with semantic associations drawn from human subjects (Burgess, Livesay, and Lund, 1998). It

has been shown that HAL vectors can be used to simulate semantic, grammatical, and abstract

categorizations (Burgess, Livesay, and Lund, 1998). Another advantage of the HAL approach is that it

is automatic and computationally tractable.

In a conceptual space, a domain is defined as a set of integral dimensions in the sense that a value in one

dimension(s) determines or affects the value in another dimension(s). For example, pitch and volume are

integral dimensions representing a domain of ‘‘sound.’’ Gärdenfors and Williams (2001) state ‘‘the ability

to bundle up integral dimensions as a domain is an important part of the conceptual spaces framework.’’

The thrust of Gärdenfors’ proposal is that concepts are dimensional objects comprising domains. A

domain, in turn, is a vector space with as basis a set of integral dimensions. Properties are represented as

regions within a given domain.

By their very nature, conceptual spaces do not offer a hierarchy of concepts as is often the case in

ontologies, taxonomies, and suchlike. However, similar objects can be grouped due to their semantic

similarity. By way of illustration, a set of feathered objects with wings leads to the grouping ‘‘bird.’’ This

facet of conceptual space is referred to as concept induction in this chapter. One way of gaining

operational command of concept induction is by means of clustering of objects in a semantic space.

Clustering techniques divide a collection of data into groups or a hierarchy of groups based on similarity

of objects (Chuang and Chien, 2005). A well-known clustering algorithm is the K-means method

(Steinbach, Karypis, and Kumar, 2000; Cimiano, Hotho, and Staab, 2005), which takes a desirable

number of clusters, K, as input parameter, and outputs a partitioning of K clusters on the set of objects. The

objective is to minimize the overall intra-cluster dissimilarity, which is measured by the summation of

distances between each object and the centroid of the cluster it is assigned to. A cluster centroid represents

the mean value of the objects in the cluster. A number of different distance functions, e.g., Euclidean

distance, can be used as the dissimilarity measure.

Conventional clustering algorithms normally produce crisp clusters, i.e., one object can only be

assigned to one cluster. However, in real applications, there is often no sharp boundary between clusters.

For example, depending on the context it occurs, President ‘‘Reagan’’ could belong to a number of

different clusters, e.g., one cluster about the US government administration and another about the Iran-

contra scandal. The latter reflects the fact that he was involved in the illegal arms sales to Iran during the

Iran–Iraq war. Therefore, a membership function can be naturally applied to clustering, in order to model

the degree to which an object belongs to a given cluster. Among various existing algorithms for fuzzy

cluster analysis (Höppner, Klawonn, Kruse, and Runkler, 1999), a widely used one is the fuzzy C-means

(Hathaway, Bezdek, and Hu, 2000; Krishnapuram, Joshi, Nasraoui, and Yi, 2001; Höppner and Klawonn,

2003; Kolen and Hutcheson, 2002, etc.), a fuzzification of the traditional K-means clustering.

The practical implication of the use of fuzzy clustering for conceptual induction is rooted in

its ability to exploit the context sensitive semantics of a concept as represented in semantic space.

There is a connection here with the field of text mining. Generally speaking, text mining aims

at extracting new and previously unknown patterns from unstructured free text (Hearst, 2003;

Perrin and Petry, 2003; Srinivasan, 2004). Conceptual space theory and its implementation by

means of semantic space models introduced in this chapter provides a cognitively validated dimen-

sional representation of information based on the premise that associations between concepts can be

mined (Song and Bruza, 2003).
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The goal of this chapter is to introduce the construction of a high-dimensional semantic space via

the HAL model (Section 19.2) and address how a fuzzy C-means clustering algorithm, presented in

Section 19.3, can be applied to conceptual induction within a HAL space. Its effectiveness is illustrated by

a case study included in Section 19.4. Finally, in Section 19.5 we conclude the chapter and highlight some

future directions.

19.2 CONSTRUCTING A HIGH-DIMENSIONAL SEMANTIC SPACE
VIA HYPERSPACE ANALOG TO LANGUAGE

In this section, we give a brief introduction to the hyperspace analog to language (HAL) model. Given an n-

word vocabulary, the HAL space is a word-by-word matrix constructed by moving a window of length l

over the corpus by one word increment ignoring punctuation, sentence, and paragraph boundaries. All

words within the window are considered as co-occurring with each other with strengths inversely propor-

tional to the distance between them. Given two words, whose distance within the window is d, the weight of

association between them is computed by ðl� d þ 1Þ. After traversing the whole corpus, an accumulated

co-occurrence matrix for all the words in a target vocabulary is produced. HAL is direction sensitive: the co-

occurrence information for words preceding every word and co-occurrence information for words follow-

ing it are recorded separately by its row and column vectors. By way of illustration, the HAL space for the

example text ‘‘the effects of spreading pollution on the population of Atlantic salmon’’ is depicted below

(Table 19.1) using a five word moving window ðl ¼ 5Þ. Note that, for ease of illustration, in this example we

do not remove the stop words such as ‘‘the,’’ ‘‘of,’’ ‘‘on,’’ etc. The stop words are dropped in the experiments

reported later. As an illustration, the term ‘‘effects’’ appears ahead of ‘‘spreading’’ in the window and their

distance is two-word. The value of cell (spreading, effect) can then be computed as: 5� 2þ 1 ¼ 4.

This table shows how the row vectors encode preceding word order and the column vectors encode

posterior word order. For the purposes of this chapter, it is unnecessary to preserve order information, so

the HAL vector of a word is represented by the addition of its row and column vectors.

The quality of HAL vectors is influenced by the window size; the longer the window, the higher the

chance of representing spurious associations between terms. Awindow size of eight or ten has been used in

various studies (Burgess, Livesay, and Lund, 1998; Bruza and Song, 2002; Song and Bruza, 2001; Bai et al.,

2005). Accordingly, a window size of eight will also be used in the experiments reported in this chapter.

More formally, a concept1 c is a vector representation: c ¼< wcp1
;wcp2

; . . . ;wcpn
> where

p1; p2; . . . ; pn are called dimensions of c, n is the dimensionality of the HAL space and wcpi
denotes

the weight of pi in the vector representation of c. In addition, it is useful to identify the so-called quality

properties of a HAL vector. Intuitively, the quality properties of a concept or term c are those terms which

often appear in the same context as c. Quality properties are identified as those dimensions in the HAL

Table 19.1 Example of a HAL space.

the effects of spreading pollution on population Atlantic salmon

the 1 2 3 4 5

effects 5

of 8 5 1 2 3 5

spreading 3 4 5

pollution 2 3 4 5

on 1 2 3 4 5

population 5 1 2 3 4

Atlantic 3 5 1 2 4

salmon 2 4 1 3 5

1The term ‘‘concept’’ is used somewhat loosely to emphasize that a HAL space is a primitive realization of a
conceptual space.
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vector for c which are above a certain threshold (e.g., above the average weight within that vector).

A dimension is termed a property if its weight is greater than zero. A property pi of a concept c is termed a

quality property iff wcpi
> @, where @ is a nonzero threshold value. From a large corpus, the vector derived

may contain much noise. In order to reduce the noise, in many cases only certain quality properties are

kept. Let QP@ðcÞ denote the set of quality properties of concept c. QP�ðcÞwill be used to denote the set of

quality properties above mean value, and QPðcÞ is short for QP@ðcÞ.
HAL vectors can be normalized to unit length as follows:

wcipj
¼

wcipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

wcipk
2

r :

For example, the following is the normalized HAL vector for ‘‘spreading’’ in the above example

(Table 19.1):

spreading ¼< the: 0.52, effects: 0.35, of: 0.52, pollution: 0.43, on: 0.35, population: 0.17 >
In language, word compounds often refer to a single underlying concept. As HAL represents words, it

is necessary to address the question of how to represent a concept underpinned by more than a single word.

A simple method is to add the vectors of the respective terms in a compound. In this chapter, however, we

employ a more sophisticated concept combination heuristic (Bruza and Song, 2002). It can be envisaged

as a weighted addition of underlying vectors paralleling the intuition that, in a given concept combination,

some terms are more dominant than others. For example, the combination ‘‘GATT2 Talks’’ is more

‘‘GATT-ish’’ than ‘‘talk-ish.’’ Dominance is determined by the specificity of the term.

In order to deploy the concept combination in an experimental setting, the dominance of a term is

determined by its inverse document frequency (idf ) value. The following equation shows a basic way of

computing the idf of a term t:

idf ðtÞ ¼ logðN=nÞ
where N is the total number of documents in a collection and n is the number of documents which contain

the term t.

More specifically, the terms within a compound can be ranked according to its idf. Assume such a

ranking of terms: t1; . . . ; tm:ðm > 1Þ. Terms t1 and t2 can be combined using the concept combination

heuristic resulting in the combined concept, denoted as t1 � t2, whereby t1 dominates t2 (as it is higher in

the ranking). For this combined concept, its degree of dominance is the average of the respective idf scores

of t1 and t2. The process recurs down the ranking resulting in the composed ‘‘concept’’

ðð::ðt1 � t2Þ � t3Þ � . . .Þ � tmÞ. If there is only a single term ðm ¼ 1Þ, its corresponding normalized

HAL vector is used as the combination vector.

We will not give a more detailed description of the concept combination heuristic, which can be found

in (Bruza and Song, 2002). Its intuition is summarized as follows:

� Quality properties shared by both concepts are emphasized.

� The weights of the properties in the dominant concept are re-scaled higher.

� The resulting vector from the combination heuristic is normalized to smooth out variations due to the

differing number of contexts the respective concepts appear in.

By way of illustration we have the following vector for the concept combination ‘‘GATT talks’’:

gatt � talks ¼< agreement: 0.282, agricultural: 0.106, body: 0.117, china: 0.121, council: 0.109,

farm: 0.261, gatt: 0.279, member: 0.108, negotiations: 0.108, round: 0.312, rules: 0.134, talks: 0.360,

tariffs: 0.114, trade: 0.432, world: 0.114>
In summary, by constructing a HAL space from text corpus, concepts are represented as weighted

vectors in the high-dimensional space, whereby each word in the vocabulary of the corpus gives rise to

an axis in the corresponding semantic space. The rest of this chapter will demonstrate how the fuzzy

C-means clustering can be applied to conceptual induction and how different contexts are reflected.

2General Agreement on Tariffs and Trade is a forum for global trade talks.
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19.3 FUZZY C-MEANS CLUSTERING

As the focus of this chapter is not the development of a new clustering algorithm, the fuzzy C-means

algorithm we use in our experiment is adapted from some existing studies in the literature (Hathaway,

Bezdek, and Hu, 2000; Krishnapuram, Joshi, Nasraoui, and Yi, 2001).

Let X ¼ fx1; x2; . . . xng be a set of n objects in an S-dimensional space. Let dðxj; xiÞ be the distance or

dissimilarity between objects xi and xj. Let V ¼ fv1; v2; . . . ; vKg, each vc be the prototype or mean of the

cth cluster. Let dðvc; xiÞ be the distance or dissimilarity between the object xi and the mean of the cluster

that it belongs to.

The fuzzy clustering partitions these objects into K overlapped clusters based on a computed minimizer

of the fuzzy within-group least squares functional:

JmðU;VÞ ¼
XK

c¼1

XN

i¼1

Umðvc; xiÞdðvc; xiÞ ð19:1Þ

where the minimization is performed over all vc 2 V , and Uðvc; xiÞ is the membership function for the

object xi belonging to the cluster vc.

To optimize (19.1), we alternate between optimization of �JJmðUjV�Þ over U with V� fixed and �JJmðV jU�Þ
over V with U� fixed, producing a sequence fUð pÞ;V ð pÞg. Specifically, the pþ 1st value of

V ¼ fv1; v2; . . . ; vKg is computed using the pth value of U in the right-hand side of:

vðpþ1Þ
c ¼

PN

i¼1

xi
�½Uð pÞðvð pÞc ; xiÞ�m

PN

i¼1

½Uð pÞðvð pÞc ; xiÞ�m
: ð19:2Þ

Then the updated pþ 1st value of V is used to calculate the pþ 1st value of U via:

Uð pþ1Þðvð pþ1Þ
k ; xiÞ ¼

dðxi; v
ð pþ1Þ
k Þ�1=ðm�1Þ

PK

c¼1

dðxi; v
ð pþ1Þ
c Þ�1=ðm�1Þ

ð19:3Þ

where m 2 ð1;þ1Þ is the fuzzifier. The greater m is, the fuzzier the clustering is. Krishnapuram, Joshi,

Nasraoui, and Yi (2001) recommend a value between 1 and 1.5 for m. In addition, the following constraint

holds:

8i i ¼ 1; 2; . . . ;N
XK

c¼1

Uðvc; xiÞ ¼ 1: ð19:4Þ

For the sake of efficiency in large data-sets, an alternative method is to use the top LðL < NÞ objects in

the cluster, and the objects are sorted based on descending membership value:

vð pþ1Þ
c ¼

PL

i¼1

xi � ½Uð pÞðvð pÞc ; xiÞ�m

PN

i¼1

½Uð pÞðvð pÞc ; xiÞ�m
: ð19:5Þ

If the dissimilarity is inner product induced, i.e., square Euclidean measure defined later in Section 19.3.1,

it can be proved mathematically that computing V and U iteratively according to Equations (19.2) and

(19.3) satisfies the necessary conditions for optima of JmðUjVÞ (Bezdek, 1981).

The traditional K-means clustering algorithm, namely, the hard C-means clustering, is a special case of

fuzzy C-means clustering by simply replacing Equation (19.3) with:

q ¼ arg min
c

dðvc; xiÞ Uð pþ1Þðvc; xiÞ ¼
1 if c ¼ q

0 if c 6¼ q

�
:
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The fuzzy C-means clustering algorithm is detailed as follows.

Fuzzy C-means Algorithm:

Fix the number of clusters K and Max_iter; Set iter¼ 0;

Pick initial means V ¼ fv1; v2; . . . ; vKg from X;

Repeat

Compute memberships Uðvc; xiÞ for c ¼ 1; 2; . . . ;K and

i ¼ 1; 2; . . . ;N by using Equation (19.3) (A)

Store the current means, Vold ¼ V;

Re-compute the new means vc for c ¼ 1; 2; . . . ;K by using Equation (19.2)

Iter ¼ Iterþ 1; (B)

Until

Iter¼Max_iter or

The absolute value of increment of the objective function j�JðU;VÞj < ", where " is some prescribed

tolerance.

19.3.1 Dissimilarity Measures

Several measures can be employed to compute the dissimilarity between two objects ðxj; xiÞ, as well as

between an object and the mean ðvc; xiÞ. The most frequently used approach is the Lp norm (i.e.,

Minkowski) distance, which is defined as follows (Hathaway, Bezdek, and Hu, 2000):

dðvc; xiÞ ¼
XS

j¼1

jxi; j � vc; jjp
 !1=p

where p 2 ½1;þ1Þ. This is a generalized dissimilarity measure. By way of illustration, Euclidean

distance corresponds to the case when p ¼ 2:

dðvc; xiÞ ¼ jjxi � vcjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XS

j¼1

ðxi; j � vc; jÞ2
vuut ;

If p ¼ 1, Manhattan distance results:

dðvc; xiÞ ¼
XS

j¼1

jxi; j�vc; jj:

Moreover, if p ¼ 1:

dðvc; xiÞ ¼ Max
S

j¼1
jxi; j � vc; jj:

Hathaway, Bezdek, and Hu (2000) have shown that p ¼ 1 offers the greatest robustness for outlier

handling. In addition, other widely used dissimilar measures are:

� Cosine-based dissimilarity:

dðvc; xiÞ ¼ e�Simðvc; xiÞ;
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where Simðvc; xiÞ is defined as:

Simðvc; xiÞ ¼

PS

j¼1

xi; j
�vc; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS

j¼1

x2
i; j

PS

j¼1

v2
c; j

s :

19.3.2 Initialization

Initialization is vital to the performance of the fuzzy C-means algorithm. Though we stated in the beginning

of Section 19.3 that the algorithm satisfies the necessary conditions for optima of the objective function

JmðUjVÞ, the fuzzy C-means algorithm is not guaranteed to find the global minimum. Different

initialization procedures will produce slightly different clustering results. Nevertheless, appropriate

initialization will make the algorithm converge fast. If the K-means are initialized randomly, it is

desirable to run the algorithm several times to increase the reliability of the final results. We have

experimented with two different ways of initializing the K-means. The first way is to pick all the

means candidates randomly. This method is referred to as Initialization 1. The second way is to pick

the first candidate as the mean over all the items in the space X, and then each successive one will be

the most dissimilar (remote) item to all the items that have already been picked. This makes the

initial centroids evenly distributed. We refer to this procedure as Initialization 2.

Initialization 2 for fuzzy C-means clustering

Fix the number of means K > 1;

Compute the first mean v1:

v1 ¼

PN

i¼1

xi

N

Set V ¼ fv1g; iter ¼ 1;

Repeat

iter ¼ iterþ 1;

viter ¼ max
1�j�N

xj=2V

ð min
1�k�jV j

dðxj; vkÞÞ then V ¼ V [ fviterg

Until

iter ¼ K;

For a given data-set, the initial produced by Initialization 2 is fixed. In our experiments, Initialization 2

outperforms Initialization 1 consistently.

19.4 WORD CLUSTERING ON A HAL SPACE – A CASE STUDY

This experiment aims to illustrate the effectiveness of the fuzzy C-means approach for clustering concepts

(words) represented as HAL vectors.
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19.4.1 HAL Space Construction

We applied the HAL method to the Reuters-21578 collection, which consists of new articles in the late

1980s. The vocabulary is constructed by removing a list of stop words and also dropping some infrequent

words which appear less than five times in the collection. The size of final vocabulary is 15 415 words. The

window size is set to be eight. A window which is too small leads to loss of potentially relevant

correlations between words, whereas a window which is too large may compute irrelevant correlations.

We think a window size of eight is reasonable since precision is our major concern. Previous studies in

HAL (Lund and Burgess, 1996; Song and Bruza, 2003) have also employed a window size of eight in their

experiments.

HAL vectors are normalized to unit length. As an example, Table 19.2 is part of the cosine-normalized

HAL vector for ‘‘Iran’’ computed from applying the HAL method to the Reuters-21578 collection. This

example demonstrates how a word is represented as a weighted vector whose dimensions comprise other

words. The weights represent the strengths of association between ‘‘Iran’’ and other words seen in the

context of the sliding window: the higher the weight of a word, the more it has lexically co-occurred with

‘‘Iran’’ in the same context(s). The dimensions reflect aspects that were relevant to the respective concepts

during the mid to late 1980s. For example, Iran was involved in a war with Iraq, and President Reagan was

involved in an arms scandal involving Iran.

19.4.2 Data

The following 20 words were selected from the vocabulary to prime the clustering process: airbus,

boeing, plane, Chernobyl, nuclear, disaster, computer, nec, japan, ibm, contra, industry, iran, iraq,

scandal, war, president, reagan, white, house.

Table 19.3 summarizes a manual clustering of the above words. These words involve approximately the

following contexts in the Reuters collection:

(1) aircraft manufacturers;

(2) Chernobyl nuclear leaking disaster in the Soviet Union;

(3) computer companies;

(4) the roles of the White House (i.e., Reagan government) in the middle 1980s (dealing with Iran–Iraq

war and trade war against Japan);

(5) the Iran-contra scandal (President Reagan was involved in the illegal arms sales to Iran during the

Iran–Iraq war).

Table 19.2 The Iran vector.

Iran

Dimension Value

arms 0.64

iraq 0.28

scandal 0.22

gulf 0.18

war 0.18

sales 0.18

attack 0.17

oil 0.16

offensive 0.12

missiles 0.10

reagan 0.09

. . . . . .
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Note there is some overlap between clusters. For example, Cluster 4 shares ‘‘industry’’ with Clusters 1

and 3; it also shares ‘‘reagan’’ and ‘‘iran’’ with Cluster 5, etc. .

19.4.3 Fuzzy Clustering of HAL Vectors

In order to find the best performing parameter settings for the fuzzy C-means clustering, we have

developed a test bed on which a series of prior studies have been conducted. Cosine combined with

fuzzifier 2.0 and Initialization 2 was finally chosen after some initial pilot studies. When the membership

value of a word belonging to a cluster is greater than a prior probability (0.2 for this experiment), it is

output as a member in the cluster. Table 19.4 lists the result of fuzzy C-means clustering (the number

following each word is the membership value of the word belonging to the corresponding cluster).

We also conducted experiments with the K-means algorithm on the same data and the best performing

result (via cosine-based dissimilarity function) is depicted in Table 19.5.

19.4.4 Discussions

Table 19.4 shows that the fuzzy clustering results basically reflect the underlying contexts described in

Table 19.3, particularly the overlap between Reagan government, Iran–Iraq war, and Iran-contra scandal.

However, the K-means clustering result presented in Table 19.5 is less ideal: Cluster 1 contains the words

related to industry, either plane-manufacturing or IT; ‘‘nuclear’’ is separated from the ‘‘Chernobyl

disaster’’; ‘‘computer’’ forms a singular cluster; Cluster 4 contains terms related to politics. In short,

Table 19.3 Handcrafted result.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Airbus Chernobyl Computer White Iran

Boeing Disaster Nec House Scandal

Plane Nuclear Ibm President Contra

Industry Industry Reagan Reagan

Iraq War

War Reagan

Iran Iraq

Japan

Industry

Table 19.4 Clustering result of fuzzy C-means algorithm.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Airbus: 0.914 Chernobyl: 0.966 Computer: 0.921 White: 0.861 Iraq: 0.869

Boeing: 0.851 Disaster: 0.302 Nec: 0.906 House: 0.793 Scandal: 0.814

Plane: 0.852 Nuclear: 0.895 Ibm: 0.897 President: 0.653 Contra: 0.776

Reagan: 0.708 Iran: 0.725

Japan: 0.558 War: 0.584

Industry: 0.494 Reagan: 0.213

Disaster: 0.488

War: 0.331

Iran: 0.221

Contra: 0.203
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the results from the case study suggest that fuzzy K-means clustering of word ‘‘meanings’’ in a HAL space

is promising.

19.5 CONCLUSIONS AND FUTURE WORK

In this chapter, we have introduced a cognitively motivated model, namely, hyperspace analog to

language (HAL), to construct a high-dimensional semantic space. The HAL space can be used to realize

aspects of Gärdenfors’ conceptual space theory dealing with the geometrical representation of informa-

tion. Within the conceptual space, concepts can be categorized into regions reflecting different contexts.

Fuzzy clustering has been investigated in detail as a means for concept induction. We presented a case

study on word clustering in the HAL space, which is constructed from the Reuters-21578 corpus. This

study, though preliminary, is encouraging and shows that the fuzzy C-means algorithm can produce

interesting results.

The work presented in this chapter can potentially be extended to other areas, such as query expansion

of information retrieval, web page clustering, etc. Furthermore, we will conduct formal evaluation of the

algorithm based on larger collections in the future.
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20.1 INTRODUCTION

As a major human health concern, cancer has become a focus for worldwide research. In UK, more than

one in three people will be diagnosed with cancer during their lifetime and one in four will die from the

disease. The provision of more accurate diagnostic techniques might allow various cancers to be identified

at an earlier stage and, hence, allow for earlier application of treatment. Histological evaluation of human

tissue is the conventional way for clinicians to diagnose disease. It is relatively unchanged and remains the

‘‘gold standard’’ since its introduction over 140 years ago. This process requires a clinician to remove and

examine tissue from suspicious lesions within the patient’s body and subsequently, through chemical

preparation, to allow thin sections of the tissue to be cut. The addition of contrast inducing dyes allows a

trained observer to identify morphological staining patterns within tissue and cells that are characteristic

of the onset of disease. Nevertheless, some significant problems remain in traditional histology due to the

subjective processes involved. These include missed lesions, perforation of samples, and unsatisfactory

levels of inter- and intra-observer discrepancy. This lack of a reliable tool for disease diagnosis has lead to

a considerable amount of interest investigating the application of a spectroscopic approach [1,2].

In recent years, Fourier transform infrared (FTIR) spectroscopy has been increasingly applied to the

study of biomedical conditions, as it can permit the chemical characterization of microscopic areas in a
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tissue sample [3–6]. There are two types of FTIR detection: FTIR mapping and FTIR imaging. In

mapping, the infrared (IR) spectrum of the samples is collected a point at a time and many separate

collections must be made to examine different areas of the tissue sample. However, in the latest imaging,

the IR spectrum of the samples is acquired over a wide area in a single collection. Moreover, the imaging

technique allows the collection of images in a faster time with higher resolution. In comparison with

conventional histology, FTIR spectroscopy has several advantages [7]:

(1) It has the potential for fully automatic measurement and analysis.

(2) It is very sensitive; very small samples are adequate.

(3) It is potentially much quicker and cheaper for large-scale screening procedures.

(4) It has the potential to detect changes in cellular composition prior to such changes being detectable by

other means.

In order to analyze the FTIR spectroscopic data from tissue samples, various techniques have been used

previously: point spectroscopy, greyscale functional group mapping and digital staining [8], and multi-

variate analysis methods, for instance principal component analysis [9]. Apart from these, multivariate

clustering techniques have often been used to separate sets of unlabeled infrared spectral data into different

clusters based on their characteristics (this is an unsupervised process). By examining the underlying

structure of a set of spectra data, clustering (also called unsupervised classification) can be performed such

that spectra within the same cluster are as similar as possible, and spectra in different clusters are as

dissimilar as possible. In this way, different types of cells may be separated within biological tissue. There

are many clustering techniques that have been applied in FTIR spectroscopic analysis. These include

hierarchical clustering [10–13], k-means (KM) clustering [10,14], and fuzzy C-means (FCM) clustering

[9,10,13,14]. Studies have shown that, of the various clustering techniques, fuzzy clustering such as FCM

can show clear advantages over crisp and probabilistic clustering methods [15]. In this chapter, we review

our new techniques in fuzzy clustering, including a simulated annealing based technique [7,16] to classify

cancerous cells using FTIR spectroscopy. The aim of this ongoing work is to investigate whether IR

spectroscopy can be used as a diagnostic probe to identify early stages of cancer.

The rest of this chapter will have the following structure. In Section 20.2, three clustering algorithms

(hierarchical, KM, and FCM) often used in FTIR spectroscopic analysis are described. In Section 20.3, we

describe the concept of cluster validity indices as a measure to evaluate the quality of clustering, and

introduce the Xie–Beni cluster validity index. In the standard FCM clustering algorithm, the number of

clusters has to be specified in advance. Obviously, this is not suitable if the technique is to be transferred

into clinical practice. The clustering algorithm developed in Section 20.4 combines the simulated

annealing and fuzzy C-means algorithms to achieve the automatic detection of the number of clusters

(different types of tissue). Due to the complexity of the tissue sample, clustering results can occasionally

obtain an excessive number of clusters. To counteract this problem, we propose an automatic cluster

merging method in Section 20.5. Finally, we draw conclusions about the suitability of FTIR analysis for

clustering in biological systems.

20.2 CLUSTERING TECHNIQUES

Three unsupervised clustering algorithms that are frequently used in FTIR spectroscopy analysis are

hierarchical clustering, k-means, and fuzzy C-means. In this section, these three clustering techniques are

described in detail. Corresponding experiments were conducted in order to compare their performance.

20.2.1 Hierarchical Clustering

Hierarchical clustering is a way to group the data in a nested series of partitions [17]. It is a ‘‘hard’’

clustering method where each datum can only belong to one cluster. Once a datum is set to a certain
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cluster, it is unchangeable in the future. The output of hierarchical clustering is a cluster tree,

known as a dendrogram. It represents the similarity level between all the patterns. Figure 20.1

shows an example of a dendrogram in which the numbers at the bottom symbolize different data in the

data-set.

Based on the algorithm structure and operation, hierarchical clustering can be further categorized into

agglomerative and divisive algorithms [17,18]. Agglomerative methods initially consider each datum as

an individual cluster and then repeatedly merge the two closest clusters (which are measured based on the

corresponding linkage method) to form a new cluster, until all the clusters are merged into one. Therefore,

in an agglomerative approach, the dendrogram is generated in a bottom-up procedure. Divisive methods

start by considering that all data exist in one cluster and, based on the similarity within the data, the cluster

is split into two groups, such that data in the same group have the highest similarity and data in the

different groups have the most dissimilarity. This process continues until each cluster only contains single

datum. Hence, the divisive approach follows a top-down procedure. These two approaches are illustrated

in Figure 20.1.

As part of an agglomerative algorithm there are many different linkage methods that provide a measure

of the similarity of clusters based on the data within a cluster [19]. The main linkage methods include

single link, complete link and minimum-variant algorithms (Ward’s algorithm) [17,18]. Other linkages

are derivatives of these three main methods. In the single link algorithm, the distance between two clusters

is measured by the two closest data within the different clusters. By contrast, in the complete link

algorithm, the distance between two clusters is measured by the two furthest data within the different

clusters. The minimum-variant algorithm is distinct from the other two methods because it uses a variance

analysis approach to measure the distance between two clusters. In general, this method attempts to

minimize the sum of squares of any two hypothetical clusters that can be generated at each step. This is

based on the Euclidean distance between all centroids [20]. Ward’s algorithm was adopted in most of the

previous applications of FTIR analysis with hierarchical clustering. In some studies (such as [10]), it

produced better clustering results.

20.2.2 K-means

K-means (KM) clustering is a nonhierarchical clustering algorithm. It is also a ‘‘hard’’ clustering method

because the membership value of each datum to its cluster center is either zero or one, corresponding to

whether it belongs to that cluster or not. The procedure for the KM clustering algorithm can be described

as follows.

First let X ¼ fx1; x2; . . . xng represent a vector of real numbers, where n is the number of data.

V ¼ fv1; v2; . . . vcg is the corresponding set of centers, where c is the number of clusters. The aim of

the K-means algorithm is to minimize the squared-error objective function J (V):

JðVÞ ¼
Xc

i¼1

Xci

j¼1

jjxij�vjjj2 ð20:1Þ
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Figure 20.1 Hierarchical clustering dendrogram.

CLUSTERING TECHNIQUES 407



where jjxij � vjjj is the Euclidean distance between xij and vj. ci is the number of data in cluster i . The ith

center vi can be calculated as:

vi ¼
1

ci

Xci

j¼1

xij; i ¼ 1 . . . c: ð20:2Þ

The algorithm then proceeds as follows:

(1) Randomly select c cluster centers.

(2) Calculate the distance between all of the data and each center.

(3) Assign each datum to a cluster based on the minimum distance.

(4) Recalculate the center positions using Equation (20.2).

(5) Recalculate the distance between each datum and each center.

(6) If no data were reassigned then stop, otherwise repeat from step (3).

Further details of KM clustering can be found, for example, in [21].

20.2.3 Fuzzy C-means

FCM clustering is a fuzzy version of KM (hence, it is sometimes also called fuzzy k-means). It was

proposed by Bezdek in 1981 [22]. One of the differences between FCM and KM is that FCM contains an

additional parameter – the ‘‘fuzzifier’’ mð1 < m <1Þ. However, as with the KM algorithm, FCM needs

the number of clusters to be specified as an input parameter to the algorithm. In addition, both may suffer

premature convergence to local optima [17].

The objective of the FCM algorithm is also to minimize the squared error objective function J (U, V):

JðU;VÞ ¼
Xn

i¼1

Xc

j¼1

ð�ijÞmjjxi�vjjj2 ð20:3Þ

where most of the variables are as above, U ¼ ð�ijÞn�c is a fuzzy partition matrix and �ij is the

membership degree of datum xi to the cluster center vj. Parameter m is called the ‘‘fuzziness index’’ or

‘‘fuzzifier’’; it is used to control the fuzziness of each datum membership, m 2 ð1;1Þ. There is no

theoretical basis for the optimal selection of m, and a value of m ¼ 2:0 is often chosen [22]. We carried out

a brief investigation to examine the effect of varying m in this domain. It was found that as m increased

around a value of 2.0, the clustering centers moved slightly, but the cluster assignments were not changed.

However, as m!1, both the fuzzy objective function J and the Xie–Beni validity index VXB (see

Section 20.3) continuously decreased (! 0), and the cluster assignments became unstable and further

from the results of clinical analysis. Consequently, we fixed the value of m as 2.0 for all further

experiments reported here.

The FCM algorithm is an iterative process to minimize Equation (20.3) while updating the cluster

centers vj and the memberships �ij by:

vj ¼

PN

i¼1

ð�ijÞmxi

PN

i¼1

ð�ijÞm
; 8j ¼ 1; . . . ; c ð20:4Þ

�ij ¼
1

Pc

k¼1

dij

dik

� � 2
m�1

ð20:5Þ

where dij ¼ jjxi � vjjj, i ¼ 1 . . . n and j ¼ 1 . . . c.

A suitable termination criterion can be that the difference between the updated and the previous U is

less than a predefined minimum threshold or that the objective function is below a certain tolerance value.
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Furthermore, the maximum number of iteration cycles can also be a termination criterion. In our

experiments we used a minimum threshold of 10�7 and a maximum number of iterations of 100.

20.2.4 Application to FTIR Spectroscopy Clustering

Initially, we applied these three clustering techniques to FTIR spectral data sets obtained from previous

clinical work provided by Chalmers and colleagues [23] in order to compare their performance. Seven

sets of FTIR data, containing tumor (abnormal), stroma (connective tissue), early keratinization, and

necrotic specimens, were taken from three oral cancer patients. Parallel sections were cut and stained

conventionally to help identify particular regions of interest. After acquisition of the FTIR spectra, the

tissue sections were also stained and examined through cytology. Some of the material in the following

section has previously appeared in [13,14].

Figure 20.2 (a) shows a 4�magnification visual image from one of Hematoxylin and Eosin stained oral

tissue sections. There are two types of cells (stroma and tumor) in this section, clearly identifiable by their

light and dark colored stains respectively. Figure 2 (b) shows a 32�magnified visual image from a portion

of a parallel, unstained section; the superimposed dashed white lines separate the visually different

morphologies. Five single point spectra were recorded from each of the three distinct regions. The

locations of these are marked by ‘‘þ’’ on Figure 20.2 (b) and numbered as 1–5 for the upper tumor region,

6–10 for the central stroma layer, and 11–15 for the lower tumor region. The 15 FTIR transmission spectra

from these positions are recorded as Data-set 1, and the corresponding FTIR spectra are shown in

Figure 20.3.

A Nicolet 730 FTIR spectrometer (Nicolet Instrument, Inc., Madison, USA) was used to collect the

spectral data. In previous work multivariate analyzes, hierarchical clustering, and principal component

analysis (PCA) had been applied in order to facilitate discrimination between different spectral char-

acteristics. First some basic preprocessing such as water vapour removal, baseline correction, and

normalization had been applied. Then further preprocessing treatments were also performed empirically

on the FTIR spectral data, for instance mean-centering, variance scaling, and use of first-derivative

spectra. Both the multivariate data analysis and preprocessing of the spectra were undertaken using

Infometrix Pirouette1 (Infometrix, Inc., Woodinville, WA, USA) software. The spectral range in this

study was limited to a 900–1800 cm�1 interval. The results from multivariate analysis and cytology

showed that accurate clustering could only be achieved by manually applying preprocessing techniques

that varied according to the particular sample characteristics and clustering algorithms.

In our experiments, we applied the three previously mentioned clustering techniques to these seven

spectral data-sets obtained through conventional cytology [23], but without any extra preprocessing (i.e.,

only basic preprocessing). For hierarchical clustering, the three different types of linkage methods

mentioned previously, namely ‘‘single,’’ ‘‘complete’’ and ‘‘Ward’’ were utilized. Due to the KM and

Figure 20.2 Tissue sample from Data-set 1 (a) 4� stained picture; (b) 32� unstained picture.

CLUSTERING TECHNIQUES 409



FCM algorithms being sensitive to the initial (random) state, we ran each method 10 times. Table 20.1

shows the numbers of different types of tissue identified clinically (column ‘‘Clinical study’’) and as

obtained by the three clustering techniques. As mentioned previously, clustering is an unsupervised

process and the results of the clustering simply group the data into two or more unlabeled categories. In

the results presented below, the clusters were mapped to the actual known classifications in such a way as

to minimise the number of disagreements from the clinical labeling in each case.

Figure 20.3 FITR spectra from Data-set 1.

Table 20.1 Number of the different tissue types identified clinically and as obtained by the clustering techniques.

Hierarchical clustering

Data-set names Tissue types Clinical study Single Complete Ward KM FCM

Data-set 1 Tumor 10 10 10 10 10 10

Stroma 5 5 5 5 5 5

Data-set 2 Tumor 10 17 9 9 9 9

Stroma 8 1 9 9 9 9

Data-set 3 Tumor 8 4 8 7 3 6 4 4

Stroma 3 7 3 4 8 5 7 7

Data-set 4 Tumor 12 19 12 12 11 19 13 19 11

Stroma 7 5 7 7 8 5 6 5 8

Early keratinization 12 7 12 12 12 7 12 7 12

Data-set 5 Tumor 18 29 18 18 14 17 14

Stroma 12 1 12 12 16 13 16

Data-set 6 Tumor 10 10 10 10 10 10

Stroma 5 5 5 5 5 5

Data-set 7 Tumor 21 28 17 15 17 18

Stroma 14 13 18 20 18 16

Necrotic 7 1 7 7 7 8
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In Table 20.1 it can be seen that, in most of the data-sets, the number of data belonging to the various

categories do not exactly match the results from clinical analysis. This is because some of the data that

should be classified in the tumor cluster has been misclassified into the stroma cluster and vice versa. For

example, in Data-set 2, using the hierarchical clustering single linkage method, the number of data

considered as tumor is 17, while one is considered as stroma. We regard the extra data from these

clustering techniques as the number of disagreements of classification in comparison with clinical

analysis. The results of such comparison are shown in Table 20.2.

After running each clustering technique 10 times, it can be seen that the KM and FCM algorithms

obtained more than one clustering result in some data-sets. This is because different initialization may

lead to different partitions for both of these algorithms. It can be seen from Tables 20.1 and 20.2 that KM

exhibits more variation (in three out of seven data-sets) than FCM (in one out of seven data-sets).

The corresponding frequency of the differing clustering partitions obtained (out of 10 runs) is shown in

Table 20.3.

In order to further investigate the performance of the different clustering methods, the average number

of disagreements for all data-sets was calculated, as shown in Table 20.4. It can be seen that the

hierarchical clustering single linkage method has the worst performance, while the complete linkage

and Ward methods perform best overall. However, hierarchical clustering techniques are computationally

expensive (proportional to n2, where n is the number of spectral data) and so are not suitable for very large

data-sets. KM and FCM have fairly good performance and, for both, the computational effort is

approximately linear with n. Hence, compared with hierarchical clustering, these techniques will be

far less time-consuming on large data-sets [10]. Moreover, although KM has a slightly better performance

than FCM (slightly fewer disagreements, on average), it can be seen from Table 20.3 that KM exhibits far

Table 20.2 Comparison results based on the number of disagreements between clinical study and clustering

results.

Hierarchical clustering

Data-set names Tissue types Single Complete Ward KM FCM

Data-set 1 Tumor 0 0 0 0 0

Stroma 0 0 0 0 0

Data-set 2 Tumor 7 0 0 0 0

Stroma 0 1 1 1 1

Data-set 3 Tumor 0 0 0 0 0 0 0

Stroma 4 5 3 5 2 4 4

Data-set 4 Tumor 7 3 3 3 7 3 3 7

Stroma 5 3 3 4 5 2 4 5

Early keratinization 0 0 0 0 0 0 0 0

Data-set 5 Tumor 12 0 0 0 0 0

Stroma 1 0 0 4 1 4

Data-set 6 Tumor 0 0 0 0 0

Stroma 0 0 0 0 0

Data-set 7 Tumor 7 0 0 0 0

Stroma 0 4 6 4 2

Necrotic 1 0 0 0 1

Table 20.3 Clustering variations for KM and FCM within three data-sets.

Data-set names KM FCM

Data-set 3 2/10 3/10 5/10 -

Data-set 4 3/10 3/10 4/10 9/10 1/10

Data-set 5 5/10 5/10 -
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more variation in its results than FCM. Hence, the overall conclusion was that FCM is the most suitable

clustering method in this context.

20.3 CLUSTER VALIDITY

Clustering validity is a concept to evaluate how good clustering results are. There are many cluster

validity indices that have been proposed in the literature for evaluating fuzzy and other clustering

techniques. Indices which only use the membership values such as the partition coefficient and partition

entropy [24] have the advantage of being easy to compute, but are only useful for a small number of well-

separated clusters. Furthermore, they also lack direct connection to the geometrical properties of the data.

In order to overcome these problems, Xie and Beni defined a validity index that measures both

compactness and separation of clusters [25]. In our study, we selected the Xie–Beni (VXB) cluster validity

index to measure the clustering quality as it has been frequently used in recent research [26] and has also

been shown to be able to detect the correct number of clusters in several experiments [27]. Some of the

material in the following section has previously appeared in [7,16].

20.3.1 Xie–Beni Validity Index

The Xie–Beni validity index, VXB, can be considered as a combination of two parts. The first part is to

estimate the compactness of data in the same cluster and the second part is to evaluate the separation of

data in different clusters. Let � represent the compactness and s be the separation of the clusters. The

Xie–Beni validity index can be expressed as:

VXB ¼
�

s
ð20:6Þ

where

� ¼

Pc

j¼1

Pn

i¼1

�2
ijjjxi � vjjj2

n
ð20:7Þ

and s ¼ ðdminÞ2. dmin is the minimum distance between cluster centers, given by dmin ¼ minij jjvi � vjjj.
From these expressions, it can be seen that smaller values of � indicate that the clusters are more compact,

while larger values of s indicate that the clusters are well separated. As a result, a smaller value of VXB

means that the clusters have greater separation from each other and the data are more compact within each

cluster.

20.3.2 Application in FTIR Spectral Clustering Analysis

As mentioned in Section 20.2.3, for the FCM algorithm the number of clusters has to be specified a priori,

which is obviously not suitable for real-world applications. However, with the use of cluster validity

Table 20.4 Average number of disagreements obtained in the three

classification methods.

Hierarchical clustering

Single Complete Ward KM FCM

Average number of 44 16 16 18.8 19.5

disagreements
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indices, it is possible to discover the ‘‘optimal’’ number of clusters within a given data-set [28]. This can

be achieved by evaluating all of the possible clusters with the validity index; the optimal number of

clusters can be determined by selecting the minimum value (or maximum, depending on the validity index

used) of the index. This procedure can be described by an FCM based selection algorithm (FBSA)

[15,28,29].

This algorithm is based on the standard FCM clustering method whereby cmin and cmax represent

the minimal and maximal number of clusters that the data-set may contain. The best data structure (C)

is returned, based on the optimal cluster validity index value. It can be described in the following

steps:

(1) Set cmin and cmax.

(2) For c ¼ cmin to cmax

(2.1) Initialize the cluster centers.

(2.2) Apply the standard FCM algorithm and obtain the new center and new fuzzy partition matrix.

(2.3) After the FCM reaches its stop criteria, calculate the cluster validity (e.g., VXB).

(3) Return the best data structure (C), which corresponds to the optimal cluster validity value

(e.g., minimal VXB).

20.4 SIMULATED ANNEALING FUZZY CLUSTERING ALGORITHM

There have been many clustering methods that have been developed in an attempt to determine

automatically the optimal number of clusters. Recently, Bandyopadhyay proposed a variable string

length fuzzy clustering using simulated annealing (VFC-SA) algorithm [30]. The proposed model was

based on a simulated annealing algorithm whereby the cluster validity index measure was used as the

energy function. This has the advantage that, by using simulated annealing, the algorithm can escape local

optima and, therefore, may be able to find globally optimal solutions. The Xie–Beni index (VXB) was used

as the cluster validity index to evaluate the quality of the solutions. Hence this VFC-SA algorithm can

generally avoid the limitations that exist in the standard FCM algorithm. However, when we implemented

this proposed algorithm, it was found that sub-optimal solutions could be obtained in certain circum-

stances. In order to overcome this limitation, we extended the original VFC-SA algorithm to produce the

simulated annealing fuzzy clustering (SAFC) algorithm. In this section, we will describe the original

VFC-SA and the extended SAFC algorithm in detail. Most of the material in this section has appeared

previously in [7,16].

20.4.1 VFC-SA Algorithm

In this algorithm, all of the cluster centers were encoded using a variable length string to which simulated

annealing was applied. At a given temperature, the new state (string encoding) was accepted with a

probability: 1=f1þ exp½�ðEn � EcÞ=T�g, where En and Ec represent the new energy and current energy

respectively. T is the current temperature.

The VXB index was used to evaluate the solution quality. The initial state of the VFC-SAwas generated

by randomly choosing c points from the data-sets where c is an integer within the range ½cmin; cmax�. The

values cmin ¼ 2 and cmax ¼
ffiffiffi
n
p

(where n is the number of data points) were used, following the suggestion

proposed by Bezkek in [24]. The initial temperature T was set to a high temperatureTmax. A neighbor of

the solution was produced by making a random alteration to the string describing the cluster centers (as

described below) and then the energy of the new solution was calculated. The new solution was kept if it

satisfied the simulated annealing acceptance requirement. This process was repeated for a certain number

of iterations, k, at the given temperature. A cooling rate, r, where 0 < r < 1, decreased the current

temperature by T ¼ rT. This was repeated until T reached the termination criteria temperature Tmin, at
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which point the current solution was returned. The whole VFC-SA algorithm process is summarized in

the following steps:

(1) Set parameters Tmax; Tmin; c; k; r.

(2) Initialize the string by randomly choosing c data points from the data-set to be cluster centers.

(3) Compute the corresponding membership values using Equation (20.5).

(4) Calculate the initial energy Ec using VXB index from Equation (20.6).

(5) Set the current temperature T ¼ Tmax.

(6) While T � Tmin

(6.1) for i ¼ 1 to k

(6.1.1) Alter a current center in the string.

(6.1.2) Compute the corresponding membership values using Equation (20.5).

(6.1.3) Compute the corresponding centers with the Equation (20.4).

(6.1.4) Calculate the new energy En from the new string.

(6.1.5) If En < Ec or En > Ec with accept probability> a random number between [0, 1], accept

the new string and set it as current string.

(6.1.6) Else, reject it.

(6.2) End for.

(6.3) T ¼ rT .

(7) End while.

(8) Return the current string as the final solution.

The process of altering a current cluster center (step (6.1.1)) comprised three functions. They are:

perturbing an existing center (perturb center), splitting an existing center (split center) and deleting an

existing center (delete center). At each iteration, one of the three functions was randomly chosen. When

splitting or deleting a center, the sizes of clusters were used to select which cluster to affect. The size, Cj,

of a cluster, j, can be expressed by:

jCjj ¼
Xn

i¼1

�ij; 8j ¼ 1; . . . c ð20:8Þ

where c is the number of clusters.

The three functions are described below.

Perturb Center. A random center in the string is selected. This center position is then modified through

addition of the change rate cr½d� ¼ r � pr � v½d�, where v is the current chosen center and d ¼ 1; . . . ;N,

where N is the number of dimensions. r is a random number between [�1, 1] and pr is the perturbation rate

that was set through initial experimentation as 0.007 as this gave the best trade off between the quality of the

solutions produced and the time taken to achieve them. Perturb center can then be expressed as

vnew½d� ¼ vcurrent½d� þ cr½d�, where vcurrent½d� and vnew½d� represent the current and new centers respectively.

Split Center. The center of the biggest cluster is chosen by using Equation (20.8). This center is then

replaced by two new centers that are created by the following procedure. The point with the highest

membership value less than 0.5 to the selected center is identified as the reference point w. Then the distance

between this reference point and the current chosen center is calculated using: dist½d� ¼ jvcurrent½d� � w½d�j.
Finally, the two new centers are then obtained by vnew½d� ¼ vcurrent½d� � dist½d�.

Delete Center. The smallest cluster is identified and its center deleted from the string encoding.

20.4.2 SAFC Algorithm

When we implemented the original VFC-SA algorithm on a wider set of test cases than originally used by

Bandyopadhyay [30], it was found to suffer from several difficulties. In order to overcome these
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difficulties, four extensions to the algorithm were developed. In this section, the focus is placed on the

extensions to VFC-SA in order to describe the proposed SAFC algorithm.

The first extension is in the initialization of the string. Instead of the original initialization in which

random data points were chosen as initial cluster centers, the FCM clustering algorithm was applied using

the random integer c 2 ½cmin; cmax� as the number of clusters. The cluster centers obtained from the FCM

clustering are then utilized as the initial cluster centers for SAFC.

The second extension is in perturb center. The method of choosing a center in the VFC-SA algorithm is

to randomly select a center from the current string. However, this means that even a ‘‘good’’ center can be

altered. In contrast, if the weakest (smallest) center is chosen, the situation in which an already good

(large) center is destabilized is avoided. Ultimately, this can lead to a quicker and more productive search

as improvements to the poorer regions of a solution can be concentrated upon.

The third extension is in split center. If the boundary between the biggest cluster and the other clusters is not

obvious (not very marked), then a suitable approach is to choose a reference point with a membership degree

that is less than, but close to, 0.5. That is to say there are some data points whose membership degree to the

chosen center is close to 0.5. There is another situation that can also occur in the process of splitting center: the

biggest cluster is separate and distinct from the other clusters. For example, let there be two clusters in a set of

data points that are separated, with a clear boundary between them. v1 and v2 are the corresponding cluster

centers at a specific time in the search as shown in Figure 20.4 (shown in two dimensions). The biggest cluster

is chosen, say v1. Then a data point whose membership degree is closest to but less than 0.5 can only be chosen

from the data points that belong to v2 (where the data points have membership degrees to v1 less than 0.5). So,

for example, the data point w1 (which is closest to v1) is chosen as the reference data point. The new centers

will then move to vnew1 and vnew2. Obviously these centers are far from the ideal solution. Although the new

centers are likely to be changed by the perturb center function afterward, it will inevitably take a longer time

to ‘‘repair’’ the solutions. In the modified approach, two new centers are created within the biggest cluster.

The same data-set as in Figure 20.4 is used to illustrate this process. A data point is chosen, w1, for which the

membership value is closest to the mean of all the membership values above 0.5. Then two new centers vnew1

and vnew2 are created according the distance between v1 and w1. This is shown in Figure 20.5. Obviously the

new centers are better than the ones in Figure 20.4 and therefore better solutions are likely to be found in the

same time (number of iterations).

The fourth extension is in the final step of the algorithm (return the current solution as the final

solution). In the SAFC algorithm, the best center positions (with the best VXB index value) that have been

v1(deleted)

v2vnew1

vnew2

v1

v2w1

m11 = 0.15, m12 = 0.85

Figure 20.4 An illustration of split center from the original algorithm with distinct clusters (where �11 and �12

represent the membership degree of w1 to the centers v1 and v2 respectively).

v1(deleted)

v2
vnew1

vnew2

v1

v2

w1

Figure 20.5 The new split center applied to the same data-set as Figure 20.4 (where w1 is now the data point that is

closest to the mean value of the membership degree above 0.5).
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encountered are stored throughout the search. At the end of the search, rather than returning the current

solution, the best solution seen throughout the whole duration of the search is returned.

Aside from these four extensions, we also ensure that the number of clusters always remains within the

range ½cmin; cmax�. Therefore when splitting a center, if the number of clusters has reached cmax, then the

operation is disallowed. Similarly, deleting a center is not allowed if the number of clusters in the current

solution is cmin.

20.4.3 Application to FTIR Spectroscopy Clustering

In order to compare the relative performance of the FCM, VFC-SA, and SAFC algorithms, the following

experiments were conducted. The same seven oral cancer data-sets were used in this study. The number of

different types of cell in each tissue section from clinical analysis was considered as the number of

clusters to be referenced. This number was also used as the number of clusters for the FCM algorithm. The

VXB index was utilized throughout to evaluate the quality of the classification for the three algorithms. The

parameters for VFC-SA and SAFC are: Tmin ¼ 10�5, k ¼ 40 and r ¼ 0:9. Tmax was set as 3 in all cases.

That is because the maximum temperature has a direct impact on how much worse a solution can be

accepted at the beginning. If the Tmax value is set too high, this may result in the earlier stages of the search

being less productive because simulated annealing will accept almost all of the solutions and, therefore,

will behave like a random search. It was empirically determined that when the initial temperature was 3,

the percentage of worse solutions that were accepted was around 60 %. In 1996, Rayward-Smith and

colleagues discussed starting temperatures for simulated annealing search procedures and concluded that

a starting temperature that results in 60 % of worse solutions being accepted yields a good balance

between the usefulness of the initial search and overall search time (i.e., high enough to allow some worse

solutions, but low enough to avoid conducting a random walk through the search space and wasting search

time) [31]. Therefore, the initial temperature was chosen based on this observation.

Solutions for the seven FTIR data-sets were generated by using the FCM, VFC-SA, and SAFC

algorithms. Ten runs of each method were performed on each data-set. As mentioned at the beginning

of this section, the number of clusters was predetermined for FCM through clinical analysis. The outputs

of FCM (centers and membership degrees) were then used to compute the corresponding VXB index value.

VFC-SA and SAFC automatically found the number of clusters by choosing the solution with the smallest

VXB index value. Table 20.5 shows the average VXB index values obtained after 10 runs of each algorithm

(best average is shown in bold).

In Table 20.5, it can be seen that in all of these seven data sets, the average VXB values of the solutions

found by SAFC are smaller than both VFC-SA and FCM. This means that the clusters obtained by SAFC

have, on average, better VXB index values than the other two approaches. Put another way, it may also

indicate that SAFC is able to escape suboptimal solutions better than the other two methods.

Table 20.5 Average of the VXB index values obtained when

using the FCM, VFC-SA and SAFC algorithms.

Average VXB index value

Data-set FCM VFC-SA SAFC

1 0.048036 0.047837 0.047729

2 0.078896 0.078880 0.078076

3 0.291699 0.282852 0.077935

4 0.416011 0.046125 0.046108

5 0.295937 0.251705 0.212153

6 0.071460 0.070533 0.070512

7 0.140328 0.149508 0.135858
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In the Data-sets 1, 2, 4 and 6, the average of VXB index values in SAFC is only slightly smaller than that

obtained using VFC-SA. Nevertheless, when a Mann-Whitney test [32] was conducted on the results

of these two algorithms, the VXB index for SAFC was found to be statistically significantly lower (with

p < 0.01) than that for VFC-SA for all data-sets.

The number of clusters obtained by VFC-SA and SAFC for each data-set is presented in Table 20.6.

The numbers in parentheses indicate the number of runs for which that particular cluster number was

returned. For example, on Data-set 5, the VFC-SA algorithm found two clusters in five runs and three

clusters in the other five runs. The number of clusters identified by clinical analysis is also shown for

comparative purposes.

In Table 20.6, it can be observed that in Data-sets 3, 4, 5, and 7, either one or both of VFC-SA and SAFC

obtain solutions with a differing number of clusters than provided by clinical analysis. In fact, with Data-

sets 5 and 7, VFC-SA produced a variable number of clusters within the 10 runs. Returning to the VXB

index values of Table 20.5, it was found that all the average VXB index values obtained by SAFC are better.

It can be observed that the average VXB index obtained by SAFC is much smaller than that of FCM for

Data-sets 3 and 4. These two data-sets are also the data-sets in which SAFC obtained a different number of

clusters to clinical analysis. In Data-set 3, the average VXB index value for SAFC is also much smaller than

for VFC-SA. This is because the number of clusters obtained from these two algorithms is different (see

Table 20.6). Obviously a different number of clusters leads to a different cluster structure, and so there can

be a big difference in the validity index. In Data-sets 5 and 7, the differences of VXB index values are

noticeable, though not as big as Data-sets 3 and 4.

In order to examine the results further, the data have been plotted using the first and second principal

components in two dimensions. These have been extracted using the principal component analysis (PCA)

technique [33,34]. The data have been plotted in this way because, although the FTIR spectra are limited

to within 900 cm�1�1800 cm�1, there are still 901 absorbance values corresponding to each wave

number for each datum. The first and second principal components are the components that have the

most variance in the original data. Therefore, although the data have multidimensional, the principal

components can be plotted to give an approximate visualization of the solutions that have been achieved.

Figures 20.6 (a)–(d) show the results for Data-sets 3, 4, 5, and 7 respectively using SAFC (the data in each

cluster are depicted using different markers and each cluster center is presented by a star). The first and

second principal components in Data-sets 3, 4, 5, and 7 contain 89.76, 93.57, 79.28, and 82.64 % of the

variances in the original data, respectively.

There are three possible explanations for the differences between the clustering results and clinical

analysis. First, the clinical analysis may not be correct – this could potentially be caused by the different

types of cells in the tissue sample not being noticed by the clinical observers or the cells within each

sample could have been mixed with others. Secondly, it could be that although a smaller VXB index value

was obtained, indicating a ‘‘better’’ solution in technical terms, the VXB index is not accurately capturing

Table 20.6 Comparison of the number of clusters

obtained by clinical analysis, VFC-SA and the SAFC

methods.

Number of clusters obtained

Data-set Clinical VFC-SA SAFC

1 2 2(10) 2(10)

2 2 2(10) 2(10)

3 2 2(10) 3(10)

4 3 2(10) 2(10)

5 2 2(5), 3(5) 3(10)

6 2 2(10) 2(10)

7 3 3(9), 4(1) 3(10)
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the real validity of the clusters. Put another way, although the SAFC finds the better solution in terms of

the VXB index, this is not actually the best set of clusters in practice. A third possibility is that the FTIR

spectroscopic data have not extracted the required information necessary in order to permit a correct

determination of cluster numbers, i.e., there is a methodological problem with the technique itself. None

of these explanations of the difference between SAFC and VFC-SA algorithms detracts from the fact that

SAFC produces better solutions in that it consistently finds better (statistically lower) values of the

objective function (VXB index).

20.5 AUTOMATIC CLUSTER MERGING METHOD

In Section 20.4, it can be seen that the SAFC algorithm performed well on the seven data-sets. However,

these are relatively small and, as the size of the data-set increases, SAFC will become time-consuming.

For this reason, when large data-sets are analyzed, an FCM based selection algorithm (FBSA – see Section

20.3.2) can be used to find the optimal number of clusters. In our studies, it has been found that both SAFC

and FBSA occasionally identified an excessive number of clusters. This was partly due to the FCM

algorithm and partly due to the cluster validity index, where all distances between data points and cluster

centers are calculated using the Euclidean distance. This means that when the shapes of the clusters were

significantly different from spherical, the clustering and validity measures were not effective. In addition,

the complexity and range of different cell types (e.g., healthy, precancerous, and mature cancer) may also

result in an excessive number of clusters being identified. Nevertheless, at this stage of the study, we only

Figure 20.6 SAFC cluster results for Data-sets (a) 3; (b) 4; (c) 5 and (d) 7.
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focus on grouping the cells with the same clinical diagnosis into one cluster, so that the main types of the

tissue can be explored through further clinical analysis. In order to achieve this, it is required to combine

the most similar clusters together, such as within the suspected precancerous and mature cancer cell types.

Although they represent different stages of cancer, they may exhibit certain properties that make them

similar to one another. This information may be contained in the existing IR spectra. Most of material in

this section has previously appeared in [29].

A new method is proposed that will enable similar separated clusters, produced via the FBSA, to be

merged together into one cluster. In order to achieve this, we again used the VXB index as the measure of

cluster quality. A set of IR spectra from one tissue section were clustered and the best data structure obtained

with the corresponding minimal value of cluster validity (VXB). As mentioned above, the FCM algorithm

can occasionally identify an excessive number of clusters in comparison with clinical analysis. Based on this

problem, a method that can find and merge two similar clusters has been developed. In the rest of this

section, the following questions will be answered: ‘‘given a set of c clusters, which two clusters are the most

similar’’ and ‘‘How should they be merged?’’ (specifically, how to calculate the new cluster center).

In this study, two large lymph node cancer data-sets were used. There are 821 absorbance values

corresponding to each wave number for each datum in the given IR spectral data-sets. In order to reduce

the number of variables in the clustering analysis, we initially identified the first 10 principal components

(PCs) that were extracted using PCA. Within these first 10 PCs, the majority of the variance (approxi-

mately 99 %) is represented from the original data. The first two PCs incorporate around 80 % of the

variance in the original data. Thus by plotting the original data in these two PC dimensions, the

approximate data distribution can be visualized.

20.5.1 Finding the Two Most Similar Clusters

Previously, many algorithms have been proposed for merging clusters, for instance [20, 35]. The different

approaches can generally be divided into two groups. The first group are those that select the clusters

which are ‘‘closest’’ to each other [20], and the second are those that choose the ‘‘worst’’ two clusters

(judging by some cluster validity function) [35]. However, neither of these is suitable for solving the

problem described in this research, illustrated in Figure 20.7.

A set of IR spectral data was plotted in first and second PCs after applying the FCM-based model

selection algorithm. Four clusters (C1, C2, C3 and C4) were formed as shown in Figure 20.7. In clinical

analysis, C1 and C3 are all cancer cells although they were taken from different areas of the tissue section

that may contain different stages of cancer. C2 and C4 are normal nodal and reticulum cells respectively.

Obviously then, the two similar clusters that need to be merged together are C1 and C3. Referring to the

two types of techniques that merge clusters, the closest two clusters in the data-set are C1 and C2 (see the

distances between each cluster center). Normally, a good cluster is defined by the data points within the

cluster being tightly condensed around the center (compactness). In the sample data-set, clusters C1 and

C3
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Figure 20.7 A set of clusters obtained from an IR data-set, plotted against the first and second principal components.
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C2 are more compact than the other two, so the worst two clusters are C3 and C4. So, neither technique

chooses the desired two clusters, C1 and C3.

In order to tackle this problem, we examined the original IR spectra rather than searching for a

relationship using the data structure in the PCA plot. Plotting the mean spectra from the separate clusters

allowed the major differences between them to be more clearly visualized. The similarity between clusters

was more obvious at the wavelength where the biggest difference between any two mean spectra was

located. Based on this observation, the proposed method to find two similar clusters was as follows:

(1) Obtain the clustering results from the FCM-based model selection algorithm.

(2) Calculate the mean spectra Ai for each cluster,

Ai ¼
1

Ni

XNi

j¼1

Aij ði ¼ 1 . . . cÞ ð20:9Þ

where Ni is the number of data points in the cluster i, Aij is the absorbance of the spectrum for each data

point j in cluster i and c is the number of clusters. The size of Ai is p, the number of wave numbers in each

spectrum (each mean spectrum is a vector of p elements).

(3) Compute the vector of pair-wise squared differences Dij between all mean spectra,

Dij ¼ ðAi � AjÞ2 ði ¼ 1 . . . c; j ¼ 1 . . . cÞ: ð20:10Þ

(4) Find the largest single element, dmax, within the set of vectors D.

(5) Determine the wave number corresponding to the maximal element dmax.

(6) At the wave number identified in step (5), find the two mean spectra with minimal difference. The

clusters corresponding to these spectra are merged.

The mean spectra for the four clusters are displayed in Figure 20.8. We calculated the set of differences,

D, between each pair of mean spectra using Equation (20.10). The largest difference dmax exists between

C1 and C4 as shown in Figure 20.9. The wave number that corresponds to dmax is 2924 cm�1. Examining

the four absorbance values at this wave number we can clearly see that the two closest spectra are those

belonging to clusters C1 and C3. Hence these are the two clusters selected to be merged.

20.5.2 Automatic Cluster Merging

After finding the two most similar clusters, the next stage is to merge them together. First, all the data

points within each of the clusters are assigned to their center with a membership (�) of one. Note that the

Figure 20.8 Example of mean IR spectra obtained from different clusters.
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two chosen clusters outlined above (C1 and C3) are now considered as one cluster. Data points within a

particular cluster are assigned a membership value of zero to other cluster centers. The following was used

to calculate the centers [22]:

vj ¼

Pn

i¼1

�ijxi

Pn

i¼1

�ij

; 8j ¼ 1; . . . ; c: ð20:11Þ

where c is the number of clusters and n is the number of data points.

20.5.3 Application in FTIR Spectroscopic Clustering Analysis

In these experiments, we initially analyzed two lymph node tissue sections named LNII5 and LNII7. The

FBSA algorithm was first used to generate initial clusters with good data structure. These clusters were

then further combined using the new cluster merging method. Due to the fact that different initialization

states may lead to different clustering results, we ran the FBSA algorithm 10 times on both data-sets. The

results were fairly stable, and are shown in Figures 20.10 and 20.11.

Figure 20.9 Enlarged region of Figure 20.8.
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Figure 20.10 (a) LNII5 clustering results obtained from the FBSA algorithm (b) LNII5 merged clusters results.
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Figures 20.10(a) and 20.11(a) show the initial clustering results obtained from the FBSA algorithm for

LNII5 and LNII7, respectively, while Figures 20.10(b) and 20.11(b) show the clusters obtained after

merging. The results clearly show that the separate cancer clusters have now been correctly merged using

the new approach. In order to verify the cluster merging algorithm, the method was further applied to the

oral cancer data-sets described earlier, in which the SAFC clustering algorithm had obtained three

clusters, rather than the two found by histological analysis. The corresponding results are shown in

Figures 20.12 and 20.13.

Altogether then, the proposed method was applied to four separate IR spectral data-sets (for which

previous approaches could not obtain the correct number of clusters). For each data-set, the proposed

method identified clusters that best matched clinical analysis. It should be noted that after merging

clusters, there were still some misclassified data points (approximately three to four for LNII7 and
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Figure 20.11 (a) LNII7 clustering results obtain from FBSA algorithm; (b) LNII7 merged clusters

results.
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Figure 20.12 (a) Data-set 3 clustering results obtain from SAFC algorithm; (b) Data-set 3 merged clusters

results.
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one to two for the remaining data-sets). However, overall the clustering accuracy was significantly

improved.

20.6 CONCLUSION

In this chapter, we have summarized our recent work on the analysis of non-preprocessed FTIR spectra

data utilizing fuzzy clustering techniques. Three frequently used methods in FTIR clustering analysis,

namely hierarchical clustering, k-means, and fuzzy C-means clustering were described in Section 20.2.

Each of the clustering techniques was applied to seven data-sets containing FTIR spectra taken from oral

cancer cells and the clustering results were compared. It can be seen from the results that the hierarchical

complete linkage and Ward methods obtained the lowest number of disagreements in comparison with

clinical analysis. However, in practice, these are computationally expensive when large data-sets are

analyzed. K-means generated good results, but the variation in clustering results obtained from multiple

runs implies that it may not be generally suitable in this context. In comparison with k-means and

hierarchical clustering, fuzzy C-means provided reasonable performance, did not yield much variation in

results and is not time-consuming in analysing large data-sets. It also obtained fairly stable results

throughout our experimentation.

In Section 20.3, one of the most frequently used cluster validity indices, the Xie–Beni index, was

introduced. As was discussed, for fuzzy C-means it is important to prespecify the number of clusters in

advance. However, with the help of such a cluster validity index, it is possible to find the ‘‘optimal’’

number of clusters in the given data-sets without it being defined before the algorithm is executed. We

have termed this method the ‘‘fuzzy C-means based selection algorithm.’’ To achieve a similar purpose,

the proposed simulated annealing fuzzy clustering combined both simulated annealing and fuzzy C-

means techniques in order to detect automatically the optimal number of clusters from the data-sets. Due,

perhaps, to the complexity of biochemical systems, both techniques can occasionally obtain an excessive

number of clusters compared with clinical diagnosis. In order to attempt to solve this problem, a newly

developed cluster merging method was introduced. Experiments showed that this method can find the two

clusters with the most similar biochemical characteristics and then merge them together. This merging

technique resulted in much improved agreement with clinical analysis. In the future, we are trying to

collect a wider source of sample data for which the number of classifications is known, from a number of

clinical domains, such as cervical cancer smear test screening. Establishing the techniques necessary to

develop clinically useful diagnosis tools based on the automated interpretation of FTIR spectra across a

range of medical domains is the ultimate goal of this research.
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Figure 20.13 (a) Data-set 5 clustering results obtain from SAFC algorithm; (b) Data-set 5 merged clusters

results.
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